1
|
de Bakker M, Loncq de Jong M, Petersen T, de Lange I, Akkerhuis KM, Umans VA, Rizopoulos D, Boersma E, Brugts JJ, Kardys I. Sex-specific cardiovascular protein levels and their link with clinical outcome in heart failure. ESC Heart Fail 2024; 11:594-600. [PMID: 38009274 PMCID: PMC10804167 DOI: 10.1002/ehf2.14578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/02/2023] [Accepted: 10/29/2023] [Indexed: 11/28/2023] Open
Abstract
AIMS This study aims to provide insight into sex-specific cardiovascular protein profiles and their associations with adverse outcomes, which may contribute to a better understanding of heart failure (HF) pathophysiology and the optimal use of circulating proteins for prognostication in women and men. METHODS AND RESULTS In 250 stable patients with HF with reduced ejection fraction (HFrEF), we performed trimonthly blood sampling (median follow-up: 26 [17-30] months). We selected all baseline samples and two samples closest to the primary endpoint (PEP; composite of cardiovascular death, heart transplantation, left ventricular assist device implantation, and HF hospitalization) or one sample closest to censoring and applied the Olink Cardiovascular III panel. We used linear regression to study sex-based differences in baseline levels and joint models to study differences in the prognostic value of serially measured proteins. In 66 women and 184 men (mean age of 66 and 67 years, respectively), 21% and 28% reached the PEP, respectively. Mean baseline levels of fatty acid-binding protein 4, secretoglobin family 3A member 2, paraoxonase 3, and trefoil factor 3 were higher in women (Pinteraction : 0.001, 0.007, 0.018, and 0.049, respectively), while matrix metalloproteinase-3, interleukin 1 receptor-like 1, and myoglobin were higher in men (Pinteraction : <0.001, 0.001, and 0.049, respectively), independent of clinical characteristics. No significant differences between sexes were observed in the longitudinal associations of proteins with the PEP. Only peptidoglycan recognition protein 1 showed a suggestive interaction with sex for the primary outcome (Pinteraction = 0.028), without multiple testing correction, and was more strongly associated with adverse outcome in women {hazard ratio [HR] 3.03 [95% confidence interval (CI), 1.42 to 6.68], P = 0.008} compared with men [HR 1.18 (95% CI, 0.84 to 1.66), P = 0.347]. CONCLUSIONS Although multiple cardiovascular-related proteins show sex differences at baseline, temporal associations with the adverse outcome do not differ between women and men with HFrEF.
Collapse
Affiliation(s)
- Marie de Bakker
- Department of CardiologyErasmus MC Cardiovascular Institute, University Medical Center RotterdamRoom Na‐316, P.O. Box 20403000 CARotterdamThe Netherlands
| | - Mylène Loncq de Jong
- Department of CardiologyErasmus MC Cardiovascular Institute, University Medical Center RotterdamRoom Na‐316, P.O. Box 20403000 CARotterdamThe Netherlands
| | - Teun Petersen
- Department of CardiologyErasmus MC Cardiovascular Institute, University Medical Center RotterdamRoom Na‐316, P.O. Box 20403000 CARotterdamThe Netherlands
- Department of BiostatisticsErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands
| | - Iris de Lange
- Department of CardiologyErasmus MC Cardiovascular Institute, University Medical Center RotterdamRoom Na‐316, P.O. Box 20403000 CARotterdamThe Netherlands
| | - K. Martijn Akkerhuis
- Department of CardiologyErasmus MC Cardiovascular Institute, University Medical Center RotterdamRoom Na‐316, P.O. Box 20403000 CARotterdamThe Netherlands
| | - Victor A. Umans
- Department of CardiologyNorthwest ClinicsAlkmaarThe Netherlands
| | - Dimitris Rizopoulos
- Department of BiostatisticsErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands
- Department of EpidemiologyErasmus MC, University Medical Center RotterdamRotterdamThe Netherlands
| | - Eric Boersma
- Department of CardiologyErasmus MC Cardiovascular Institute, University Medical Center RotterdamRoom Na‐316, P.O. Box 20403000 CARotterdamThe Netherlands
| | - Jasper J. Brugts
- Department of CardiologyErasmus MC Cardiovascular Institute, University Medical Center RotterdamRoom Na‐316, P.O. Box 20403000 CARotterdamThe Netherlands
| | - Isabella Kardys
- Department of CardiologyErasmus MC Cardiovascular Institute, University Medical Center RotterdamRoom Na‐316, P.O. Box 20403000 CARotterdamThe Netherlands
| |
Collapse
|
2
|
Reilly CS, Borges ÁH, Baker JV, Safo SE, Sharma S, Polizzotto MN, Pankow JS, Hu X, Sherman BT, Babiker AG, Lundgren JD, Lane HC. Investigation of Causal Effects of Protein Biomarkers on Cardiovascular Disease in Persons With HIV. J Infect Dis 2023; 227:951-960. [PMID: 36580481 PMCID: PMC10319949 DOI: 10.1093/infdis/jiac496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND There is an incompletely understood increased risk for cardiovascular disease (CVD) among people with HIV (PWH). We investigated if a collection of biomarkers were associated with CVD among PWH. Mendelian randomization (MR) was used to identify potentially causal associations. METHODS Data from follow-up in 4 large trials among PWH were used to identify 131 incident CVD cases and they were matched to 259 participants without incident CVD (controls). Tests of associations between 460 baseline protein levels and case status were conducted. RESULTS Univariate analysis found CLEC6A, HGF, IL-6, IL-10RB, and IGFBP7 as being associated with case status and a multivariate model identified 3 of these: CLEC6A (odds ratio [OR] = 1.48, P = .037), HGF (OR = 1.83, P = .012), and IL-6 (OR = 1.45, P = .016). MR methods identified 5 significantly associated proteins: AXL, CHI3L1, GAS6, IL-6RA, and SCGB3A2. CONCLUSIONS These results implicate inflammatory and fibrotic processes as contributing to CVD. While some of these biomarkers are well established in the general population and in PWH (IL-6 and its receptor), some are novel to PWH (HGF, AXL, and GAS6) and some are novel overall (CLEC6A). Further investigation into the uniqueness of these biomarkers in PWH and the role of these biomarkers as targets among PWH is warranted.
Collapse
Affiliation(s)
- Cavan S Reilly
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Jason V Baker
- HIV Medicine, Infectious Diseases, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| | - Sandra E Safo
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shweta Sharma
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mark N Polizzotto
- Department of Medicine, Australian National University, Canberra, Australia
| | - James S Pankow
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xiaojun Hu
- Animal and Plant Inspection Service, US Department of Agriculture, Beltsville, Maryland, USA
| | - Brad T Sherman
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratories, Frederick, Maryland, USA
| | - Abdel G Babiker
- Epidemiology and Medical Statistics, University College London, London, United Kingdom
| | - Jens D Lundgren
- Department of Infectious Diseases, University of Copenhagen, Copenhagen, Denmark
| | - H Clifford Lane
- Division of Clinical Research, National Institutes of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Herrera-Luis E, Mak ACY, Perez-Garcia J, Martin-Gonzalez E, Eng C, Beckman KB, Huntsman S, Hu D, González-Pérez R, Hernández-Pérez JM, Mederos-Luis E, Sio YY, Poza-Guedes P, Sardón O, Corcuera P, Sánchez-Machín I, Korta-Murua J, Martínez-Rivera C, Mullol J, Muñoz X, Valero A, Sastre J, Garcia-Aymerich J, Llop S, Torrent M, Casas M, Rodríguez-Santana JR, Villar J, del Pozo V, Lorenzo-Diaz F, Williams LK, Melén E, Chew FT, Borrell LN, Burchard EG, Pino-Yanes M. Admixture mapping of severe asthma exacerbations in Hispanic/Latino children and youth. Thorax 2023; 78:233-241. [PMID: 36180068 PMCID: PMC9957797 DOI: 10.1136/thorax-2022-218755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/04/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND In the USA, genetically admixed populations have the highest asthma prevalence and severe asthma exacerbations rates. This could be explained not only by environmental factors but also by genetic variants that exert ethnic-specific effects. However, no admixture mapping has been performed for severe asthma exacerbations. OBJECTIVE We sought to identify genetic variants associated with severe asthma exacerbations in Hispanic/Latino subgroups by means of admixture mapping analyses and fine mapping, and to assess their transferability to other populations and potential functional roles. METHODS We performed an admixture mapping in 1124 Puerto Rican and 625 Mexican American children with asthma. Fine-mapping of the significant peaks was performed via allelic testing of common and rare variants. We performed replication across Hispanic/Latino subgroups, and the transferability to non-Hispanic/Latino populations was assessed in 1001 African Americans, 1250 Singaporeans and 941 Europeans with asthma. The effects of the variants on gene expression and DNA methylation from whole blood were also evaluated in participants with asthma and in silico with data obtained through public databases. RESULTS Genomewide significant associations of Indigenous American ancestry with severe asthma exacerbations were found at 5q32 in Mexican Americans as well as at 13q13-q13.2 and 3p13 in Puerto Ricans. The single nucleotide polymorphism (SNP) rs1144986 (C5orf46) showed consistent effects for severe asthma exacerbations across Hispanic/Latino subgroups, but it was not validated in non-Hispanics/Latinos. This SNP was associated with DPYSL3 DNA methylation and SCGB3A2 gene expression levels. CONCLUSIONS Admixture mapping study of asthma exacerbations revealed a novel locus that exhibited Hispanic/Latino-specific effects and regulated DPYSL3 and SCGB3A2.
Collapse
Affiliation(s)
- Esther Herrera-Luis
- Genomics and Health Group, Department of Biochemistry,
Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna,
Tenerife, Spain
| | - Angel C. Y. Mak
- Department of Medicine, University of California San
Francisco, San Francisco, California, U.S.A
| | - Javier Perez-Garcia
- Genomics and Health Group, Department of Biochemistry,
Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna,
Tenerife, Spain
| | - Elena Martin-Gonzalez
- Genomics and Health Group, Department of Biochemistry,
Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna,
Tenerife, Spain
| | - Celeste Eng
- Department of Medicine, University of California San
Francisco, San Francisco, California, U.S.A
| | | | - Scott Huntsman
- Department of Medicine, University of California San
Francisco, San Francisco, California, U.S.A
| | - Donglei Hu
- Department of Medicine, University of California San
Francisco, San Francisco, California, U.S.A
| | - Ruperto González-Pérez
- Allergy Department, Hospital Universitario de Canarias,
Santa Cruz de Tenerife, Tenerife, Spain,Asthma Unit, Hospital Universitario de Canarias, La Laguna,
Tenerife, Spain
| | - José M. Hernández-Pérez
- Pulmonary Medicine, Hospital Universitario de N.S de
Candelaria, Santa Cruz de Tenerife, Spain,Pulmonary Medicine, Hospital General de La Palma, La Palma,
Santa Cruz de Tenerife, Spain
| | - Elena Mederos-Luis
- Allergy Department, Hospital Universitario de Canarias,
Santa Cruz de Tenerife, Tenerife, Spain
| | - Yang Yie Sio
- Department of Biological Sciences, National University of
Singapore, Singapore
| | - Paloma Poza-Guedes
- Allergy Department, Hospital Universitario de Canarias,
Santa Cruz de Tenerife, Tenerife, Spain,Asthma Unit, Hospital Universitario de Canarias, La Laguna,
Tenerife, Spain
| | - Olaia Sardón
- Division of Pediatric Respiratory Medicine, Hospital
Universitario Donostia, San Sebastián, Spain,Department of Pediatrics, University of the Basque
Country (UPV/EHU), San Sebastián, Spain
| | - Paula Corcuera
- Division of Pediatric Respiratory Medicine, Hospital
Universitario Donostia, San Sebastián, Spain
| | | | - Javier Korta-Murua
- Division of Pediatric Respiratory Medicine, Hospital
Universitario Donostia, San Sebastián, Spain,Department of Pediatrics, University of the Basque
Country (UPV/EHU), San Sebastián, Spain
| | - Carlos Martínez-Rivera
- CIBER de Enfermedades Respiratorias, Instituto de Salud
Carlos III, Madrid, Spain,Servicio de Neumología, Hospital Universitario
Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona,
Spain
| | - Joaquim Mullol
- CIBER de Enfermedades Respiratorias, Instituto de Salud
Carlos III, Madrid, Spain,Rhinology Unit & Smell Clinic, ENT Department;
Clinical & Experimental Respiratory Immunoallergy (IDIBAPS), Universitat de
Barcelona, Barcelona, Spain
| | - Xavier Muñoz
- CIBER de Enfermedades Respiratorias, Instituto de Salud
Carlos III, Madrid, Spain,Servicio de Neumología, Hospital Vall
d’Hebron, Barcelona, Spain
| | - Antonio Valero
- CIBER de Enfermedades Respiratorias, Instituto de Salud
Carlos III, Madrid, Spain,Allergy Unit & Severe Asthma Unit, Pneumonology and
Allergy Department, Hospital Clínic; IDIBAPS; Universitat de
Barcelona.Barcelona, Spain
| | - Joaquín Sastre
- CIBER de Enfermedades Respiratorias, Instituto de Salud
Carlos III, Madrid, Spain,Allergy Department, Hospital Universitario
Fundación Jiménez Díaz, Madrid, Spain
| | - Judith Garcia-Aymerich
- Spanish Consortium for Research on Epidemiology and
Public Health (CIBERESP), Madrid, Spain,ISGlobal, Barcelona, Spain,Universitat Pompeu Fabra, Barcelona, Spain
| | - Sabrina Llop
- Spanish Consortium for Research on Epidemiology and
Public Health (CIBERESP), Madrid, Spain,Epidemiology and Environmental Health Joint Research
Unit, FISABIO–Universitat Jaume I–Universitat de València,
Valencia, Spain
| | | | - Maribel Casas
- ISGlobal, Barcelona, Spain,Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud
Carlos III, Madrid, Spain,Multidisciplinary Organ Dysfunction Evaluation Research
Network, Research Unit, Hospital Universitario Dr. Negrín, Las Palmas de Gran
Canaria, Spain
| | - Victoria del Pozo
- CIBER de Enfermedades Respiratorias, Instituto de Salud
Carlos III, Madrid, Spain,Immunology Department, Instituto de Investigación
Sanitaria Hospital Universitario Fundación Jiménez Díaz,
Madrid, Spain
| | - Fabian Lorenzo-Diaz
- Genomics and Health Group, Department of Biochemistry,
Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), La Laguna,
Tenerife, Spain,Instituto Universitario de Enfermedades Tropicales y
Salud Pública de Canarias (IUETSPC), Universidad de La Laguna (ULL), La
Laguna, Tenerife, Spain
| | - L. Keoki Williams
- Center for Individualized and Genomic Medicine Research,
Department of Internal Medicine, Henry Ford Health System, Detroit, MI, U.S.A
| | - Erik Melén
- Department of Clinical Sciences and Education,
Södersjukhuset, Karolinska Institutet, Stockholm, Sweden,Sachs’ Children’s Hospital, South General
Hospital, Stockholm, Sweden
| | - Fook Tim Chew
- Department of Biological Sciences, National University of
Singapore, Singapore
| | - Luisa N. Borrell
- Department of Epidemiology & Biostatistics, Graduate
School of Public Health & Health Policy, City University of New York, New York,
NY, U.S.A
| | - Esteban G. Burchard
- UMN Genomics Center, Minneapolis, Minnesota, U.S.A.,Department of Bioengineering and Therapeutic Sciences,
University of California San Francisco, San Francisco, California, U.S.A
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology, and Genetics, Universidad de La Laguna (ULL), La Laguna, Spain .,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), La Laguna, Spain
| |
Collapse
|
4
|
Li Q, Miao J, Shi N, Lin C, Hu X, Shen Y. The lncRNA XIST/miR-29b-3p/COL3A1 axis regulates central carbon metabolism in head and neck squamous cell carcinoma and is associated with poor tumor prognosis. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:165. [PMID: 36923098 PMCID: PMC10009572 DOI: 10.21037/atm-23-30] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/09/2023] [Indexed: 02/24/2023]
Abstract
Background Recent evidence shows that COL3A1 promotes the progression of many types of cancer. The purpose of our study is to explore the correlation between COL3A1 and the prognosis of patients with head and neck squamous cell carcinoma (HNSCC) and its potential mechanism. Methods We initially screened the differentially expressed gene COL3A1 in The Cancer Genome Atlas (TCGA) database, and the association between the expression level of COL3A1, prognosis, and the clinical parameters of HNSCC patients was verified. A nomogram was constructed according to the multivariate analysis results. Next, a heatmap of COL3A1 co-expressed genes was constructed in TCGA database. The TargetScan database is used to explore the microRNAs (miRNA) related to COL3A1. The starBase database was used to explore and predict the long non-coding RNAs (lncRNAs) that the candidate miRNAs might bind to. Finally, the potential mechanism of action was investigated using Gene Set Enrichment Analysis (GSEA). Results COL3A1 expression is elevated in HNSCC tumor tissues, and HNSCC patients with high COL3A1 expression have worse prognostic factors. COL3A1 was positively correlated with the central carbon metabolism-related proteins: epidermal growth factor receptor (EGFR), phosphoglycerate mutase 1 (PGAM1), hexokinase 3 (HK3), and phosphofructokinase, platelet (PFKP). The TargetScan database showed that the best candidate miRNA for binding to the three prime untranslated region (3'UTR) end of COL3A1 mRNA was hsa-miR-29b-3p, which was negatively correlated with COL3A1. The starBase database showed that the lncRNA X Inactive Specific Transcript (lncRNA XIST) was the best candidate upstream non-coding RNA for regulating hsa-miR-29b-3p. GSEA showed that COL3A1 may be involved in the poor prognosis of HNSCC by participating in carbon metabolism, glucose metabolism, oxidative stress, and the Wingless-Type MMTV Integration Site Family (Wnt) and vascular endothelial growth factor A-vascular endothelial growth factor receptor 2 (VEGFA-VEGFR2) pathways. Conclusions Low COL3A1 expression can be employed as a new HNSCC predictive biomarker, and the prognosis of HNSCC patients with lower COL3A1 expression can be greatly improved. At the same time, we found that the lncRNA XIST/miR-29b-3p/COL3A1 axis may regulate the central carbon metabolism of HNSCC and is associated with poor prognosis. These findings point to a potential target for developing HNSCC anticancer therapies.
Collapse
Affiliation(s)
- Qin Li
- Department of Stomatology, Eye & ENT Hospital of Fudan University, Shanghai, China
| | - Jie Miao
- Department of Stomatology, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Neng Shi
- Department of Stomatology, Shanghai Jiao Tong University School of Medicine St. Luke’s Hospital, Shanghai, China
| | - Chaosheng Lin
- Department of Stomatology, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xun Hu
- Department of Stomatology, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Shen
- Department of General Surgery, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Wang L, Feng J, Deng Y, Yang Q, Wei Q, Ye D, Rong X, Guo J. CCAAT/Enhancer-Binding Proteins in Fibrosis: Complex Roles Beyond Conventional Understanding. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9891689. [PMID: 36299447 PMCID: PMC9575473 DOI: 10.34133/2022/9891689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/18/2022] [Indexed: 07/29/2023]
Abstract
CCAAT/enhancer-binding proteins (C/EBPs) are a family of at least six identified transcription factors that contain a highly conserved basic leucine zipper domain and interact selectively with duplex DNA to regulate target gene expression. C/EBPs play important roles in various physiological processes, and their abnormal function can lead to various diseases. Recently, accumulating evidence has demonstrated that aberrant C/EBP expression or activity is closely associated with the onset and progression of fibrosis in several organs and tissues. During fibrosis, various C/EBPs can exert distinct functions in the same organ, while the same C/EBP can exert distinct functions in different organs. Modulating C/EBP expression or activity could regulate various molecular processes to alleviate fibrosis in multiple organs; therefore, novel C/EBPs-based therapeutic methods for treating fibrosis have attracted considerable attention. In this review, we will explore the features of C/EBPs and their critical functions in fibrosis in order to highlight new avenues for the development of novel therapies targeting C/EBPs.
Collapse
Affiliation(s)
- Lexun Wang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiaojiao Feng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanyue Deng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qianqian Yang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Quxing Wei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dewei Ye
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China
- Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
6
|
Kimura S, Yokoyama S, Pilon AL, Kurotani R. Emerging role of an immunomodulatory protein secretoglobin 3A2 in human diseases. Pharmacol Ther 2022; 236:108112. [PMID: 35016921 PMCID: PMC9271138 DOI: 10.1016/j.pharmthera.2022.108112] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 12/27/2022]
Abstract
Secretoglobin (SCGB) 3A2 was first identified in 2001 as a protein exhibiting similarities in amino acid sequence and gene structure to SCGB1A1, a multi-functional cytokine-like molecule highly expressed in airway epithelial Club cells that was the first identified and extensively studied member of the SCGB gene superfamily. SCGB3A2 is a small secretory protein of ~10 kDa that forms a dimer and a tetramer. SCGB3A2 is predominantly expressed in airway epithelial Club cells, and has anti-inflammatory, growth factor, anti-fibrotic, and anti-cancer activities that influence various lung diseases. This review summarizes the current understanding of SCGB3A2 biological functions and its role in human diseases with emphasis on its mechanisms of actions and signaling pathway.
Collapse
Affiliation(s)
- Shioko Kimura
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Shigetoshi Yokoyama
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | | | - Reiko Kurotani
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
7
|
Shi M, Cui H, Shi J, Mei Y. mmu-microRNA-92a-3p attenuates pulmonary fibrosis by modulating Cpeb4-mediated Smad2/3 signaling pathway. Funct Integr Genomics 2022; 22:1297-1306. [PMID: 35909199 DOI: 10.1007/s10142-022-00879-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 04/02/2022] [Accepted: 06/23/2022] [Indexed: 11/26/2022]
Abstract
Pulmonary fibrosis (PF) is a chronic lung disorder, in which the mechanism of mmu-microRNA (miR)-92a-3p is not elucidated clearly. The present work was proposed to disclose mmu-miR-92a-3p-focused mechanism in PF with cytoplasmic polyadenylation element-binding protein 4 (Cpeb4)/Smad2/3 axis. PF was induced in mice by the intratracheal injection of bleomycin (BLM). Then, the BLM-treated mice were injected with mmu-miR-92a-3p- and/or Cpeb4-related adenovirus vectors. mmu-miR-92a-3p, Cpeb4, and Smad2/3 expression in lung tissues were examined. Alveolar cell apoptosis and collagen deposition in lung tissues and inflammatory factors in serum were observed. The interaction between mmu-miR-92a-3p and Cpeb4 was explored. Lowly expressed mmu-miR-92a-3p and highly expressed Cpeb4 and Smad2/3 were manifested in BLM-induced PF mice. BLM-induced PF mice exhibited enhanced inflammation, alveolar cell apoptosis, and collagen deposition, which would be attenuated by upregulating mmu-miR-92a-3p or downregulating Cpeb4. mmu-miR-92a-3p targeted Cpeb4. Upregulating mmu-miR-92a-3p or downregulating Cpeb4 inactivated the Smad2/3 signaling pathway in BLM-induced PF mice. It is elaborated that mmu-miR-92a-3p attenuates the process of PF by modulating Cpeb4-mediated Smad2/3 signaling pathway, renewing the molecular mechanism of PF.
Collapse
Affiliation(s)
- Mengkun Shi
- Department of Cardiothoracic Surgery, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Putuo District, Shanghai, 200092, China
| | - Huixia Cui
- Department of Medical Institution Conducting Clinical Trials for Human Used Drug, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046099, Shanxi, China
| | - Jialun Shi
- Department of Cardiothoracic Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046099, Shanxi, China
| | - Yunqing Mei
- Department of Cardiothoracic Surgery, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Putuo District, Shanghai, 200092, China.
| |
Collapse
|
8
|
Bowman WS, Newton CA, Linderholm AL, Neely ML, Pugashetti JV, Kaul B, Vo V, Echt GA, Leon W, Shah RJ, Huang Y, Garcia CK, Wolters PJ, Oldham JM. Proteomic biomarkers of progressive fibrosing interstitial lung disease: a multicentre cohort analysis. THE LANCET RESPIRATORY MEDICINE 2022; 10:593-602. [DOI: 10.1016/s2213-2600(21)00503-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 10/25/2022]
|
9
|
Zhang M, Guo FR. BSDE: barycenter single-cell differential expression for case-control studies. Bioinformatics 2022; 38:2765-2772. [PMID: 35561165 PMCID: PMC9113363 DOI: 10.1093/bioinformatics/btac171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Single-cell sequencing brings about a revolutionarily high resolution for finding differentially expressed genes (DEGs) by disentangling highly heterogeneous cell tissues. Yet, such analysis is so far mostly focused on comparing between different cell types from the same individual. As single-cell sequencing becomes cheaper and easier to use, an increasing number of datasets from case-control studies are becoming available, which call for new methods for identifying differential expressions between case and control individuals. RESULTS To bridge this gap, we propose barycenter single-cell differential expression (BSDE), a nonparametric method for finding DEGs for case-control studies. Through the use of optimal transportation for aggregating distributions and computing their distances, our method overcomes the restrictive parametric assumptions imposed by standard mixed-effect-modeling approaches. Through simulations, we show that BSDE can accurately detect a variety of differential expressions while maintaining the type-I error at a prescribed level. Further, 1345 and 1568 cell type-specific DEGs are identified by BSDE from datasets on pulmonary fibrosis and multiple sclerosis, among which the top findings are supported by previous results from the literature. AVAILABILITY AND IMPLEMENTATION R package BSDE is freely available from doi.org/10.5281/zenodo.6332254. For real data analysis with the R package, see doi.org/10.5281/zenodo.6332566. These can also be accessed thorough GitHub at github.com/mqzhanglab/BSDE and github.com/mqzhanglab/BSDE_pipeline. The two single-cell sequencing datasets can be download with UCSC cell browser from cells.ucsc.edu/?ds=ms and cells.ucsc.edu/?ds=lung-pf-control. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Mengqi Zhang
- Department of Surgery, Perelman Medical School, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
10
|
Karn RC, Yazdanifar G, Pezer Ž, Boursot P, Laukaitis CM. Androgen-Binding Protein (Abp) Evolutionary History: Has Positive Selection Caused Fixation of Different Paralogs in Different Taxa of the Genus Mus? Genome Biol Evol 2021; 13:6377336. [PMID: 34581786 PMCID: PMC8525912 DOI: 10.1093/gbe/evab220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 11/14/2022] Open
Abstract
Comparison of the androgen-binding protein (Abp) gene regions of six Mus genomes provides insights into the evolutionary history of this large murid rodent gene family. We identified 206 unique Abp sequences and mapped their physical relationships. At least 48 are duplicated and thus present in more than two identical copies. All six taxa have substantially elevated LINE1 densities in Abp regions compared with flanking regions, similar to levels in mouse and rat genomes, although nonallelic homologous recombination seems to have only occurred in Mus musculus domesticus. Phylogenetic and structural relationships support the hypothesis that the extensive Abp expansion began in an ancestor of the genus Mus. We also found duplicated Abpa27's in two taxa, suggesting that previously reported selection on a27 alleles may have actually detected selection on haplotypes wherein different paralogs were lost in each. Other studies reported that a27 gene and species trees were incongruent, likely because of homoplasy. However, L1MC3 phylogenies, supposed to be homoplasy-free compared with coding regions, support our paralog hypothesis because the L1MC3 phylogeny was congruent with the a27 topology. This paralog hypothesis provides an alternative explanation for the origin of the a27 gene that is suggested to be fixed in the three different subspecies of Mus musculus and to mediate sexual selection and incipient reinforcement between at least two of them. Finally, we ask why there are so many Abp genes, especially given the high frequency of pseudogenes and suggest that relaxed selection operates over a large part of the gene clusters.
Collapse
Affiliation(s)
- Robert C Karn
- Gene Networks in Neural and Developmental Plasticity, Institute for Genomic Biology, University of Illinois, Urbana, Illinois, USA
| | | | - Željka Pezer
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Pierre Boursot
- Institut des Sciences de l'Evolution Montpellier, Université de Montpellier, CNRS, IRD, France
| | - Christina M Laukaitis
- Carle Health and Carle Illinois College of Medicine, University of Illinois, Urbana-Champaign, USA
| |
Collapse
|
11
|
Janicova A, Becker N, Xu B, Wutzler S, Vollrath JT, Hildebrand F, Ehnert S, Marzi I, Störmann P, Relja B. Endogenous Uteroglobin as Intrinsic Anti-inflammatory Signal Modulates Monocyte and Macrophage Subsets Distribution Upon Sepsis Induced Lung Injury. Front Immunol 2019; 10:2276. [PMID: 31632392 PMCID: PMC6779999 DOI: 10.3389/fimmu.2019.02276] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022] Open
Abstract
Sepsis is a serious clinical condition which can cause life-threatening organ dysfunction, and has limited therapeutic options. The paradigm of limiting excessive inflammation and promoting anti-inflammatory responses is a simplified concept. Yet, the absence of intrinsic anti-inflammatory signaling at the early stage of an infection can lead to an exaggerated activation of immune cells, including monocytes and macrophages. There is emerging evidence that endogenous molecules control those mechanisms. Here we aimed to identify and describe the dynamic changes in monocyte and macrophage subsets and lung damage in CL57BL/6N mice undergoing blunt chest trauma with subsequent cecal ligation and puncture. We showed that early an increase in systemic and activated Ly6C+CD11b+CD45+Ly6G- monocytes was paralleled by their increased emigration into lungs. The ratio of pro-inflammatory Ly6ChighCD11b+CD45+Ly6G- to patrolling Ly6ClowCD11b+CD45+Ly6G- monocytes significantly increased in blood, lungs and bronchoalveolar lavage fluid (BALF) suggesting an early transition to inflammatory phenotypes during early sepsis development. Similar to monocytes, the level of pro-inflammatory Ly6ChighCD45+F4/80+ macrophages increased in lungs and BALF, while tissue repairing Ly6ClowCD45+F4/80+ macrophages declined in BALF. Levels of inflammatory mediators TNF-α and MCP-1 in blood and RAGE in lungs and BALF were elevated, and besides their boosting of inflammation via the recruitment of cells, they may promote monocyte and macrophage polarization, respectively, toward the pro-inflammatory phenotype. Neutralization of uteroglobin increased pro-inflammatory cytokine levels, activation of inflammatory phenotypes and their recruitment to lungs; concurrent with increased pulmonary damage in septic mice. In in vitro experiments, the influence of uteroglobin on monocyte functions including migratory behavior, TGF-β1 expression, cytotoxicity and viability were proven. These results highlight an important role of endogenous uteroglobin as intrinsic anti-inflammatory signal upon sepsis-induced early lung injury, which modules the early monocyte/macrophages driven inflammation. Short Summary Blunt chest injury is the third largest cause of death following major trauma, and ongoing excessive pro-inflammatory immune response entails high risk for the development of secondary complications, such as sepsis, with limited therapeutic options. In murine double hit trauma consisting of thoracic trauma and subsequent cecal ligation and puncture, we investigated the cytokine profile, pulmonary epithelial integrity and phenotypic shift of patrolling Ly6ClowCD11b+CD45+Ly6G- monocytes and Ly6ClowCD45+F4/80+ macrophages to pro-inflammatory Ly6ChighCD11b+CD45+Ly6G- monocytes and Ly6ChighCD45+F4/80+ cells in blood, lungs and bronchoalveolar lavage fluid (BALF). Pro-inflammatory mediators and phenotypes were elevated and uteroglobin neutralization led to further increase. Enhanced total protein levels in BALF suggests leakage of respiratory epithelium. In vitro, uteroglobin inhibited the migratory capacity of monocytes and the TGF-β1 expression without affecting the viability. These results highlight an important role of endogenous uteroglobin as an intrinsic anti-inflammatory signal upon sepsis-induced early lung injury, which modulates the early monocyte/macrophages driven inflammation.
Collapse
Affiliation(s)
- Andrea Janicova
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany.,Department of Aquatic Ecotoxicology, Goethe University, Frankfurt, Germany.,Department of Radiology and Nuclear Medicine, Experimental Radiology, Otto-von-Guericke University, Magdeburg, Germany
| | - Nils Becker
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
| | - Baolin Xu
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
| | - Sebastian Wutzler
- Orthopedic and Trauma Surgery, Helios Horst Schmidt Clinic, Wiesbaden, Germany
| | - Jan Tilmann Vollrath
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
| | | | - Sabrina Ehnert
- Department of Trauma and Reconstructive Surgery, Siegfried Weller Research Institute, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
| | - Philipp Störmann
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
| | - Borna Relja
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, Frankfurt, Germany
| |
Collapse
|
12
|
Wang YY, Liu XL, Zhao R. Induction of Pyroptosis and Its Implications in Cancer Management. Front Oncol 2019; 9:971. [PMID: 31616642 PMCID: PMC6775187 DOI: 10.3389/fonc.2019.00971] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022] Open
Abstract
Pyroptosis is a gasdermins mediated programmed cell death, which has been widely studied in inflammatory disease models. Recently, there are growing evidences that pyroptosis can be chemically induced in cancer cells without any bacterial or viral infection. Pyroptosis may affect all stages of carcinogenesis and has become a new topic in cancer research. In this review, we first briefly introduced pyroptosis. In the subsequent section, we discussed the induction of pyroptosis in cancer and its potential role as a promising target for cancer therapy. In addition, the biological characteristics of gasdermin D (GSDMD) and gasdermin E (GSDME), two important pyroptosis substrates, and their prognostic role in cancer management were reviewed. These results help us to understand the pathogenesis of cancer and develop new drugs, which based on pyroptosis modulation, for cancer patients.
Collapse
Affiliation(s)
- Yan-Yang Wang
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, China.,Cancer Institute, Ningxia Medical University, Yinchuan, China
| | - Xin-Lan Liu
- Department of Medical Oncology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ren Zhao
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, China.,Cancer Institute, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
13
|
Naizhen X, Kido T, Yokoyama S, Linnoila RI, Kimura S. Spatiotemporal Expression of Three Secretoglobin Proteins, SCGB1A1, SCGB3A1, and SCGB3A2, in Mouse Airway Epithelia. J Histochem Cytochem 2019; 67:453-463. [PMID: 30768367 DOI: 10.1369/0022155419829050] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Secretoglobins (SCGBs) are cytokine-like small molecular weight secreted proteins with largely unknown biological functions. Three SCGB proteins, SCGB1A1, SCGB3A1, and SCGB3A2, are predominantly expressed in lung airways. To gain insight into the possible functional relationships among the SCGBs, their protein and mRNA expression patterns were examined in lungs during gestation and in adult mice, using Scgb3a1-null and Scgb3a2-null mice as negative controls, by immunohistochemistry and by qRT-PCR analysis, respectively. The three SCGBs exhibited unique spatiotemporal expression patterns during embryogenesis. The lack of Scgb3a1 or Scgb3a2 did not affect expression of the other Scgb genes as determined by mRNA measurements. Moreover, the lack of Scgb3a1 or Scgb3a2 did not affect development of the pulmonary neuroepithelial bodies during embryogenesis, while the lack of Scgb3a2 may have resulted in slightly fewer ciliated cells than in the wild-type. These results suggest that SCGB1A1, SCGB3A1, and SCGB3A2 each may possess its own unique biological function.
Collapse
Affiliation(s)
- Xu Naizhen
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.,Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland
| | - Taketomo Kido
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.,Laboratory of Stem Cell Therapy, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Shigetoshi Yokoyama
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - R Ilona Linnoila
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Shioko Kimura
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
14
|
Brankovic M, Martijn Akkerhuis K, Mouthaan H, Constantinescu A, Caliskan K, van Ramshorst J, Germans T, Umans V, Kardys I. Utility of temporal profiles of new cardio-renal and pulmonary candidate biomarkers in chronic heart failure. Int J Cardiol 2019; 276:157-165. [DOI: 10.1016/j.ijcard.2018.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/03/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023]
|
15
|
Yokoyama S, Cai Y, Murata M, Tomita T, Yoneda M, Xu L, Pilon AL, Cachau RE, Kimura S. A novel pathway of LPS uptake through syndecan-1 leading to pyroptotic cell death. eLife 2018; 7:e37854. [PMID: 30526845 PMCID: PMC6286126 DOI: 10.7554/elife.37854] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 11/08/2018] [Indexed: 01/15/2023] Open
Abstract
Intracellular lipopolysaccharide (LPS) triggers the non-canonical inflammasome pathway, resulting in pyroptosis of innate immune cells. In addition to its well-known proinflammatory role, LPS can directly cause regression of some tumors, although the underlying mechanism has remained unknown. Here we show that secretoglobin(SCGB)3A2, a small protein predominantly secreted in airways, chaperones LPS to the cytosol through the cell surface receptor syndecan-1; this leads to pyroptotic cell death driven by caspase-11. SCGB3A2 and LPS co-treatment significantly induced pyroptosis of macrophage RAW264.7 cells and decreased cancer cell proliferation in vitro, while SCGB3A2 treatment resulted in reduced progression of xenograft tumors in mice. These data suggest a conserved function for SCGB3A2 in the innate immune system and cancer cells. These findings demonstrate a critical role for SCGB3A2 as an LPS delivery vehicle; they reveal one mechanism whereby LPS enters innate immune cells leading to pyroptosis, and they clarify the direct effect of LPS on cancer cells.
Collapse
MESH Headings
- Animals
- Biological Transport
- Carcinoma, Lewis Lung/drug therapy
- Carcinoma, Lewis Lung/genetics
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/mortality
- Caspases/genetics
- Caspases/immunology
- Caspases, Initiator
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic
- Humans
- Immunity, Innate
- Lipopolysaccharides/pharmacology
- Lymphatic Metastasis
- Male
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/genetics
- Melanoma, Experimental/immunology
- Melanoma, Experimental/mortality
- Mice
- Mice, Transgenic
- Protein Array Analysis
- Pyroptosis/drug effects
- Pyroptosis/genetics
- Pyroptosis/immunology
- RAW 264.7 Cells
- RNA, Small Interfering/genetics
- RNA, Small Interfering/immunology
- Secretoglobins/antagonists & inhibitors
- Secretoglobins/genetics
- Secretoglobins/immunology
- Signal Transduction
- Survival Analysis
- Syndecan-1/antagonists & inhibitors
- Syndecan-1/genetics
- Syndecan-1/immunology
- Toll-Like Receptor 4/antagonists & inhibitors
- Toll-Like Receptor 4/genetics
- Toll-Like Receptor 4/immunology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Shigetoshi Yokoyama
- Laboratory of MetabolismNational Cancer Institute, National Institutes of HealthBethesdaUnited States
| | - Yan Cai
- Laboratory of MetabolismNational Cancer Institute, National Institutes of HealthBethesdaUnited States
| | - Miyuki Murata
- Laboratory of MetabolismNational Cancer Institute, National Institutes of HealthBethesdaUnited States
| | - Takeshi Tomita
- Laboratory of MetabolismNational Cancer Institute, National Institutes of HealthBethesdaUnited States
| | - Mitsuhiro Yoneda
- Laboratory of MetabolismNational Cancer Institute, National Institutes of HealthBethesdaUnited States
| | - Lei Xu
- Laboratory of MetabolismNational Cancer Institute, National Institutes of HealthBethesdaUnited States
| | | | - Raul E Cachau
- Advanced Biomedical Computing CenterFrederick National Laboratory for Cancer Research, Leidos Biomedical Inc.FrederickUnited States
| | - Shioko Kimura
- Laboratory of MetabolismNational Cancer Institute, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
16
|
Zhao J, Okamoto Y, Asano Y, Ishimaru K, Aki S, Yoshioka K, Takuwa N, Wada T, Inagaki Y, Takahashi C, Nishiuchi T, Takuwa Y. Sphingosine-1-phosphate receptor-2 facilitates pulmonary fibrosis through potentiating IL-13 pathway in macrophages. PLoS One 2018; 13:e0197604. [PMID: 29782549 PMCID: PMC5962071 DOI: 10.1371/journal.pone.0197604] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 05/04/2018] [Indexed: 01/26/2023] Open
Abstract
Idiopathic pulmonary fibrosis is a devastating disease with poor prognosis. The pathogenic role of the lysophospholipid mediator sphingosine-1-phosphate and its receptor S1PR2 in lung fibrosis is unknown. We show here that genetic deletion of S1pr2 strikingly attenuated lung fibrosis induced by repeated injections of bleomycin in mice. We observed by using S1pr2LacZ/+ mice that S1PR2 was expressed in alveolar macrophages, vascular endothelial cells and alveolar epithelial cells in the lung and that S1PR2-expressing cells accumulated in the fibrotic legions. Bone marrow chimera experiments suggested that S1PR2 in bone marrow–derived cells contributes to the development of lung fibrosis. Depletion of macrophages greatly attenuated lung fibrosis. Bleomycin administration stimulated the mRNA expression of the profibrotic cytokines IL-13 and IL-4 and the M2 markers including arginase 1, Fizz1/Retnla, Ccl17 and Ccl24 in cells collected from broncho-alveolar lavage fluids (BALF), and S1pr2 deletion markedly diminished the stimulated expression of these genes. BALF cells from bleomycin–administered wild-type mice showed a marked increase in phosphorylation of STAT6, a transcription factor which is activated downstream of IL-13, compared with saline–administered wild-type mice. Interestingly, in bleomycin–administered S1pr2-/- mice, STAT6 phosphorylation in BALF cells was substantially diminished compared with wild-type mice. Finally, pharmacological S1PR2 blockade in S1pr2+/+ mice alleviated bleomycin–induced lung fibrosis. Thus, S1PR2 facilitates lung fibrosis through the mechanisms involving augmentation of IL-13 expression and its signaling in BALF cells, and represents a novel target for treating lung fibrosis.
Collapse
MESH Headings
- Animals
- Bleomycin/toxicity
- Bronchoalveolar Lavage Fluid/chemistry
- Bronchoalveolar Lavage Fluid/cytology
- Disease Models, Animal
- Idiopathic Pulmonary Fibrosis/etiology
- Idiopathic Pulmonary Fibrosis/metabolism
- Idiopathic Pulmonary Fibrosis/pathology
- Interleukin-13/genetics
- Interleukin-13/metabolism
- Macrophages/drug effects
- Macrophages/metabolism
- Macrophages/pathology
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Lysosphingolipid/deficiency
- Receptors, Lysosphingolipid/genetics
- Receptors, Lysosphingolipid/metabolism
- STAT6 Transcription Factor/metabolism
- Signal Transduction
- Sphingosine-1-Phosphate Receptors
- Transplantation Chimera/genetics
- Transplantation Chimera/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Juanjuan Zhao
- Department of Physiology, Kanazawa University School of Medicine, Ishikawa, Japan
| | - Yasuo Okamoto
- Department of Physiology, Kanazawa University School of Medicine, Ishikawa, Japan
| | - Yuya Asano
- Department of Physiology, Kanazawa University School of Medicine, Ishikawa, Japan
| | - Kazuhiro Ishimaru
- Department of Physiology, Kanazawa University School of Medicine, Ishikawa, Japan
| | - Sho Aki
- Department of Physiology, Kanazawa University School of Medicine, Ishikawa, Japan
| | - Kazuaki Yoshioka
- Department of Physiology, Kanazawa University School of Medicine, Ishikawa, Japan
| | - Noriko Takuwa
- Department of Physiology, Kanazawa University School of Medicine, Ishikawa, Japan
- Department of Health and Medical Sciences, Ishikawa Prefectural Nursing University, Ishikawa, Japan
| | - Takashi Wada
- Department of Nephrology and Laboratory Medicine, Kanazawa University School of Medicine, Ishikawa, Japan
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, Kanagawa, Japan
| | - Chiaki Takahashi
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Ishikawa, Japan
| | - Takumi Nishiuchi
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Ishikawa, Japan
| | - Yoh Takuwa
- Department of Physiology, Kanazawa University School of Medicine, Ishikawa, Japan
- * E-mail:
| |
Collapse
|
17
|
Jenkins RG, Moore BB, Chambers RC, Eickelberg O, Königshoff M, Kolb M, Laurent GJ, Nanthakumar CB, Olman MA, Pardo A, Selman M, Sheppard D, Sime PJ, Tager AM, Tatler AL, Thannickal VJ, White ES. An Official American Thoracic Society Workshop Report: Use of Animal Models for the Preclinical Assessment of Potential Therapies for Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2017; 56:667-679. [PMID: 28459387 DOI: 10.1165/rcmb.2017-0096st] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Numerous compounds have shown efficacy in limiting development of pulmonary fibrosis using animal models, yet few of these compounds have replicated these beneficial effects in clinical trials. Given the challenges associated with performing clinical trials in patients with idiopathic pulmonary fibrosis (IPF), it is imperative that preclinical data packages be robust in their analyses and interpretations to have the best chance of selecting promising drug candidates to advance to clinical trials. The American Thoracic Society has convened a group of experts in lung fibrosis to discuss and formalize recommendations for preclinical assessment of antifibrotic compounds. The panel considered three major themes (choice of animal, practical considerations of fibrosis modeling, and fibrotic endpoints for evaluation). Recognizing the need for practical considerations, we have taken a pragmatic approach. The consensus view is that use of the murine intratracheal bleomycin model in animals of both genders, using hydroxyproline measurements for collagen accumulation along with histologic assessments, is the best-characterized animal model available for preclinical testing. Testing of antifibrotic compounds in this model is recommended to occur after the acute inflammatory phase has subsided (generally after Day 7). Robust analyses may also include confirmatory studies in human IPF specimens and validation of results in a second system using in vivo or in vitro approaches. The panel also strongly encourages the publication of negative results to inform the lung fibrosis community. These recommendations are for preclinical therapeutic evaluation only and are not intended to dissuade development of emerging technologies to better understand IPF pathogenesis.
Collapse
|
18
|
Zhang X, Liu Y, Shao R, Li W. Cdc42-interacting protein 4 silencing relieves pulmonary fibrosis in STZ-induced diabetic mice via the Wnt/GSK-3β/β-catenin pathway. Exp Cell Res 2017; 359:284-290. [PMID: 28720386 DOI: 10.1016/j.yexcr.2017.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/20/2017] [Accepted: 07/15/2017] [Indexed: 10/19/2022]
Abstract
Cdc42-interacting protein-4 (CIP4) has been reported to be closely associated with diabetic nephropathy in rat. However, little is known about the correlation between CIP4 and diabetic pulmonary fibrosis (PF) in mice. Here, diabetes was induced by streptozotocin (STZ), and later lung tissue was collected and subjected to hematoxylin and eosin (H & E) staining for morphological examination. The distinct up-regulation of CIP4 was observed in diabetic PF mice. CIP4 silencing increased overall weight and decreased lung weight. Simultaneously, levels of TGF-β1, collagen-1, collagen-3 and hydroxyproline were down-regulated by CIP4 silencing, accompanied by an increase in MMP-9 expression and a decrease in TIMP-1 expression. Down-regulation of CIP4 suppressed EMT by decreasing the expression of vimentin and α-SMA as well as augmenting E-cadherin expression. Mechanistic analysis confirmed that CIP4 silencing inhibited p-GSK-3β and β-catenin expression, indicating that CIP4 down-regulation attenuated the activation of Wnt/GSK-3β/β-catenin signaling. However, β-catenin overexpression ameliorated the inhibitory effect of CIP4 down-regulation on lung tissue damage, fibrosis-related cytokines and EMT. These results suggest that CIP4 silencing can efficiently alleviate STZ-induced PF in mice, perhaps through suppressing Wnt/GSK-3β/β-catenin signaling.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Department of Respiration Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, Henan, China
| | - Ying Liu
- Department of Respiration Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, Henan, China
| | - Runxia Shao
- Department of Respiration Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, Henan, China.
| | - Wei Li
- The Second Department of Handsurgery and Microsurgery, Zhengzhou Orthopaedics Hospital, Zhengzhou 450052, Henan, China
| |
Collapse
|
19
|
Yoneda M, Xu L, Kajiyama H, Kawabe S, Paiz J, Ward JM, Kimura S. Secretoglobin Superfamily Protein SCGB3A2 Alleviates House Dust Mite-Induced Allergic Airway Inflammation in Mice. Int Arch Allergy Immunol 2016; 171:36-44. [PMID: 27820933 PMCID: PMC5127774 DOI: 10.1159/000450788] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 09/12/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Secretoglobin (SCGB) 3A2, a novel, lung-enriched, cytokine-like, secreted protein of small molecular weight, was demonstrated to exhibit various biological functions including anti-inflammatory, antifibrotic and growth-factor activities. Anti-inflammatory activity was uncovered using the ovalbumin-induced allergic airway inflammation model. However, further validation of this activity using knockout mice in a different allergic inflammation model is necessary in order to establish the antiallergic inflammatory role for this protein. METHODS Scgb3a2-null (Scgb3a2-/-) mice were subjected to nasal inhalation of Dermatophagoides pteronyssinus extract for 5 days/week for 5 consecutive weeks; control mice received nasal inhalation of saline as a comparator. Airway inflammation was assessed by histological analysis, the number of inflammatory cells and various Th2-type cytokine levels in the lungs and bronchoalveolar lavage fluids by qRT-PCR and ELISA, respectively. RESULTS Exacerbated inflammation was found in the airway of Scgb3a2-/- mice subjected to house dust mite (HDM)-induced allergic airway inflammation compared with saline-treated control groups. All the inflammation end points were increased in the Scgb3a2-/- mice. The Ccr4 and Ccl17 mRNA levels were higher in HDM-treated lungs of Scgb3a2-/- mice than wild-type mice or saline-treated Scgb3a2-/- mice, whereas no changes were observed for Ccr3 and Ccl11 mRNA levels. CONCLUSIONS These results demonstrate that SCGB3A2 has an anti-inflammatory activity in the HDM-induced allergic airway inflammation model, in which SCGB3A2 may modulate the CCR4-CCL17 pathway. SCGB3A2 may provide a useful tool to treat allergic airway inflammation, and further studies on the levels and function of SCGB3A2 in asthmatic patients are warranted.
Collapse
Affiliation(s)
- Mitsuhiro Yoneda
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Lei Xu
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Hiroaki Kajiyama
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 4668550, JAPAN
| | - Shuko Kawabe
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jorge Paiz
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jerrold M. Ward
- Global VetPathology, Montgomery Villiage, Maryland 20886, USA
| | - Shioko Kimura
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
20
|
Venkatadri R, Iyer AKV, Ramesh V, Wright C, Castro CA, Yakisich JS, Azad N. MnTBAP Inhibits Bleomycin-Induced Pulmonary Fibrosis by Regulating VEGF and Wnt Signaling. J Cell Physiol 2016; 232:506-516. [PMID: 27649046 DOI: 10.1002/jcp.25608] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/19/2016] [Indexed: 01/02/2023]
Abstract
Cellular oxidative stress is implicated not only in lung injury but also in contributing to the development of pulmonary fibrosis. We demonstrate that a cell-permeable superoxide dismutase (SOD) mimetic and peroxynitrite scavenger, manganese (III) tetrakis (4-benzoic acid) porphyrin chloride (MnTBAP) significantly inhibited bleomycin-induced fibrogenic effects both in vitro and in vivo. Further investigation into the underlying mechanisms revealed that MnTBAP targets canonical Wnt and non-canonical Wnt/Ca2+ signaling pathways, both of which were upregulated by bleomycin treatment. The effect of MnTBAP on canonical Wnt signaling was significant in vivo but inconclusive in vitro and the non-canonical Wnt/Ca2+ signaling pathway was observed to be the predominant pathway regulated by MnTBAP in bleomycin-induced pulmonary fibrosis. Furthermore, we show that the inhibitory effects of MnTBAP involve regulation of VEGF which is upstream of the Wnt signaling pathway. Overall, the data show that the superoxide scavenger MnTBAP attenuates bleomycin-induced pulmonary fibrosis by targeting VEGF and Wnt signaling pathways. J. Cell. Physiol. 232: 506-516, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rajkumar Venkatadri
- Department of Pharmaceutical Sciences, Hampton University, Hampton, Virginia
| | | | - Vani Ramesh
- Department of Obstetrics and Gynecology, The Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Norfolk, Virginia
| | - Clayton Wright
- Department of Pharmaceutical Sciences, Hampton University, Hampton, Virginia
| | - Carlos A Castro
- Magee Women's Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Juan S Yakisich
- Department of Pharmaceutical Sciences, Hampton University, Hampton, Virginia
| | - Neelam Azad
- Department of Pharmaceutical Sciences, Hampton University, Hampton, Virginia
| |
Collapse
|