1
|
Bashir S, Aiman A, Chaudhary AA, Khan N, Ahanger IA, Sami N, Almugri EA, Ali MA, Khan SUD, Shahid M, Basir SF, Hassan MI, Islam A. Probing protein aggregation through spectroscopic insights and multimodal approaches: A comprehensive review for counteracting neurodegenerative disorders. Heliyon 2024; 10:e27949. [PMID: 38689955 PMCID: PMC11059433 DOI: 10.1016/j.heliyon.2024.e27949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 05/02/2024] Open
Abstract
Aberrant accumulation of protein misfolding can cause aggregation and fibrillation and is one of the primary characteristic features of neurodegenerative diseases. Because they are disordered, misfolded, and aggregated proteins pose a significant setback in drug designing. The structural study of intermediate steps in these kinds of aggregated proteins will allow us to determine the conformational changes as well as the probable pathways encompassing various neurodegenerative disorders. The analysis of protein aggregates involved in neurodegenerative diseases relies on a diverse toolkit of biophysical techniques, encompassing both morphological and non-morphological methods. Additionally, Thioflavin T (ThT) assays and Circular Dichroism (CD) spectroscopy facilitate investigations into aggregation kinetics and secondary structure alterations. The collective application of these biophysical techniques empowers researchers to comprehensively unravel the intricate nature of protein aggregates associated with neurodegeneration. Furthermore, the topics covered in this review have summed up a handful of well-established techniques used for the structural analysis of protein aggregation. This multifaceted approach advances our fundamental understanding of the underlying mechanisms driving neurodegenerative diseases and informs potential therapeutic strategies.
Collapse
Affiliation(s)
- Sania Bashir
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Ayesha Aiman
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Nashrah Khan
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Ishfaq Ahmad Ahanger
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Neha Sami
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Eman Abdullah Almugri
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Mohamed A.M. Ali
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic Universi-ty (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, AlKharj, 11942, Saudi Arabia
| | - Seemi Farhat Basir
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| |
Collapse
|
2
|
Monterroso B, Margolin W, Boersma AJ, Rivas G, Poolman B, Zorrilla S. Macromolecular Crowding, Phase Separation, and Homeostasis in the Orchestration of Bacterial Cellular Functions. Chem Rev 2024; 124:1899-1949. [PMID: 38331392 PMCID: PMC10906006 DOI: 10.1021/acs.chemrev.3c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/01/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024]
Abstract
Macromolecular crowding affects the activity of proteins and functional macromolecular complexes in all cells, including bacteria. Crowding, together with physicochemical parameters such as pH, ionic strength, and the energy status, influences the structure of the cytoplasm and thereby indirectly macromolecular function. Notably, crowding also promotes the formation of biomolecular condensates by phase separation, initially identified in eukaryotic cells but more recently discovered to play key functions in bacteria. Bacterial cells require a variety of mechanisms to maintain physicochemical homeostasis, in particular in environments with fluctuating conditions, and the formation of biomolecular condensates is emerging as one such mechanism. In this work, we connect physicochemical homeostasis and macromolecular crowding with the formation and function of biomolecular condensates in the bacterial cell and compare the supramolecular structures found in bacteria with those of eukaryotic cells. We focus on the effects of crowding and phase separation on the control of bacterial chromosome replication, segregation, and cell division, and we discuss the contribution of biomolecular condensates to bacterial cell fitness and adaptation to environmental stress.
Collapse
Affiliation(s)
- Begoña Monterroso
- Department
of Structural and Chemical Biology, Centro de Investigaciones Biológicas
Margarita Salas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain
| | - William Margolin
- Department
of Microbiology and Molecular Genetics, McGovern Medical School, UTHealth-Houston, Houston, Texas 77030, United States
| | - Arnold J. Boersma
- Cellular
Protein Chemistry, Bijvoet Centre for Biomolecular Research, Faculty
of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Germán Rivas
- Department
of Structural and Chemical Biology, Centro de Investigaciones Biológicas
Margarita Salas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain
| | - Bert Poolman
- Department
of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Silvia Zorrilla
- Department
of Structural and Chemical Biology, Centro de Investigaciones Biológicas
Margarita Salas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain
| |
Collapse
|
3
|
Dhillon AK, Sharma A, Yadav V, Singh R, Ahuja T, Barman S, Siddhanta S. Raman spectroscopy and its plasmon-enhanced counterparts: A toolbox to probe protein dynamics and aggregation. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1917. [PMID: 37518952 DOI: 10.1002/wnan.1917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023]
Abstract
Protein unfolding and aggregation are often correlated with numerous diseases such as Alzheimer's, Parkinson's, Huntington's, and other debilitating neurological disorders. Such adverse events consist of a plethora of competing mechanisms, particularly interactions that control the stability and cooperativity of the process. However, it remains challenging to probe the molecular mechanism of protein dynamics such as aggregation, and monitor them in real-time under physiological conditions. Recently, Raman spectroscopy and its plasmon-enhanced counterparts, such as surface-enhanced Raman spectroscopy (SERS) and tip-enhanced Raman spectroscopy (TERS), have emerged as sensitive analytical tools that have the potential to perform molecular studies of functional groups and are showing significant promise in probing events related to protein aggregation. We summarize the fundamental working principles of Raman, SERS, and TERS as nondestructive, easy-to-perform, and fast tools for probing protein dynamics and aggregation. Finally, we highlight the utility of these techniques for the analysis of vibrational spectra of aggregation of proteins from various sources such as tissues, pathogens, food, biopharmaceuticals, and lastly, biological fouling to retrieve precise chemical information, which can be potentially translated to practical applications and point-of-care (PoC) devices. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Diagnostic Tools > Diagnostic Nanodevices Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
| | - Arti Sharma
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Vikas Yadav
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Ruchi Singh
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Tripti Ahuja
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Sanmitra Barman
- Center for Advanced Materials and Devices (CAMD), BML Munjal University, Haryana, India
| | - Soumik Siddhanta
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
4
|
Sarkar D, Kang J, Wassie AT, Schroeder ME, Peng Z, Tarr TB, Tang AH, Niederst ED, Young JZ, Su H, Park D, Yin P, Tsai LH, Blanpied TA, Boyden ES. Revealing nanostructures in brain tissue via protein decrowding by iterative expansion microscopy. Nat Biomed Eng 2022; 6:1057-1073. [PMID: 36038771 PMCID: PMC9551354 DOI: 10.1038/s41551-022-00912-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 06/22/2022] [Indexed: 12/25/2022]
Abstract
Many crowded biomolecular structures in cells and tissues are inaccessible to labelling antibodies. To understand how proteins within these structures are arranged with nanoscale precision therefore requires that these structures be decrowded before labelling. Here we show that an iterative variant of expansion microscopy (the permeation of cells and tissues by a swellable hydrogel followed by isotropic hydrogel expansion, to allow for enhanced imaging resolution with ordinary microscopes) enables the imaging of nanostructures in expanded yet otherwise intact tissues at a resolution of about 20 nm. The method, which we named 'expansion revealing' and validated with DNA-probe-based super-resolution microscopy, involves gel-anchoring reagents and the embedding, expansion and re-embedding of the sample in homogeneous swellable hydrogels. Expansion revealing enabled us to use confocal microscopy to image the alignment of pre-synaptic calcium channels with post-synaptic scaffolding proteins in intact brain circuits, and to uncover periodic amyloid nanoclusters containing ion-channel proteins in brain tissue from a mouse model of Alzheimer's disease. Expansion revealing will enable the further discovery of previously unseen nanostructures within cells and tissues.
Collapse
Affiliation(s)
- Deblina Sarkar
- Media Lab, MIT, Cambridge, MA, 02139, USA.,MIT Center for Neurobiological Engineering, MIT, Cambridge, MA, 02139, USA.,These authors contributed equally
| | - Jinyoung Kang
- MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, 02139, USA.,These authors contributed equally
| | - Asmamaw T Wassie
- Department of Biological Engineering, MIT, Cambridge, MA, 02139, USA.,These authors contributed equally
| | - Margaret E. Schroeder
- MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, 02139, USA.,Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, 02139, USA
| | - Zhuyu Peng
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, 02139, USA.,The Picower Institute for Learning and Memory, MIT, Cambridge, MA, 02139, USA
| | - Tyler B. Tarr
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Ai-Hui Tang
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,CAS Key Laboratory of Brain Function and Disease, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, China
| | - Emily D. Niederst
- The Picower Institute for Learning and Memory, MIT, Cambridge, MA, 02139, USA
| | - Jennie, Z. Young
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, 02139, USA.,The Picower Institute for Learning and Memory, MIT, Cambridge, MA, 02139, USA
| | - Hanquan Su
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.,Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Demian Park
- MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, 02139, USA
| | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.,Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Li-Huei Tsai
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA. .,The Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Thomas A. Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Correspondence and requests for materials should be addressed to Li-Huei Tsai, Thomas A. Blanpied or Edward S. Boyden. , ,
| | - Edward S. Boyden
- MIT Center for Neurobiological Engineering, MIT, Cambridge, MA, 02139, USA.,MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, 02139, USA.,Department of Biological Engineering, MIT, Cambridge, MA, 02139, USA.,Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, 02139, USA.,Koch Institute, MIT, Cambridge, MA, 02139, USA.,Howard Hughes Medical Institute, Cambridge, MA, 02139, USA.,Media Arts and Sciences, MIT, Cambridge, MA, 02139, USA.,K. Lisa Yang Center for Bionics, MIT, Cambridge, MA, 02139, USA.,Correspondence and requests for materials should be addressed to Li-Huei Tsai, Thomas A. Blanpied or Edward S. Boyden. , ,
| |
Collapse
|
5
|
Siposova K, Petrenko VI, Garcarova I, Sedlakova D, Almásy L, Kyzyma OA, Kriechbaum M, Musatov A. The intriguing dose-dependent effect of selected amphiphilic compounds on insulin amyloid aggregation: Focus on a cholesterol-based detergent, Chobimalt. Front Mol Biosci 2022; 9:955282. [PMID: 36060240 PMCID: PMC9437268 DOI: 10.3389/fmolb.2022.955282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/22/2022] [Indexed: 11/15/2022] Open
Abstract
The amyloidogenic self-assembly of many peptides and proteins largely depends on external conditions. Among amyloid-prone proteins, insulin attracts attention because of its physiological and therapeutic importance. In the present work, the amyloid aggregation of insulin is studied in the presence of cholesterol-based detergent, Chobimalt. The strategy to elucidate the Chobimalt-induced effect on insulin fibrillogenesis is based on performing the concentration- and time-dependent analysis using a combination of different experimental techniques, such as ThT fluorescence assay, CD, AFM, SANS, and SAXS. While at the lowest Chobimalt concentration (0.1 µM; insulin to Chobimalt molar ratio of 1:0.004) the formation of insulin fibrils was not affected, the gradual increase of Chobimalt concentration (up to 100 µM; molar ratio of 1:4) led to a significant increase in ThT fluorescence, and the maximal ThT fluorescence was 3-4-fold higher than the control insulin fibril's ThT fluorescence intensity. Kinetic studies confirm the dose-dependent experimental results. Depending on the concentration of Chobimalt, either (i) no effect is observed, or (ii) significantly, ∼10-times prolonged lag-phases accompanied by the substantial, ∼ 3-fold higher relative ThT fluorescence intensities at the steady-state phase are recorded. In addition, at certain concentrations of Chobimalt, changes in the elongation-phase are noticed. An increase in the Chobimalt concentrations also triggers the formation of insulin fibrils with sharply altered morphological appearance. The fibrils appear to be more flexible and wavy-like with a tendency to form circles. SANS and SAXS data also revealed the morphology changes of amyloid fibrils in the presence of Chobimalt. Amyloid aggregation requires the formation of unfolded intermediates, which subsequently generate amyloidogenic nuclei. We hypothesize that the different morphology of the formed insulin fibrils is the result of the gradual binding of Chobimalt to different binding sites on unfolded insulin. A similar explanation and the existence of such binding sites with different binding energies was shown previously for the nonionic detergent. Thus, the data also emphasize the importance of a protein partially-unfolded state which undergoes the process of fibrils formation; i.e., certain experimental conditions or the presence of additives may dramatically change not only kinetics but also the morphology of fibrillar aggregates.
Collapse
Affiliation(s)
- Katarina Siposova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| | - Viktor I. Petrenko
- BCMaterials—Basque Center for Materials, Applications and Nanostructures, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Ivana Garcarova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| | - Dagmar Sedlakova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| | - László Almásy
- Neutron Spectroscopy Department, Centre for Energy Research, Budapest, Hungary
| | - Olena A. Kyzyma
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
- Faculty of Physics, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Manfred Kriechbaum
- Institute of Inorganic Chemistry, Graz University of Technology, Graz, Austria
| | - Andrey Musatov
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| |
Collapse
|
6
|
Abstract
Experimental studies of amyloids encounter many challenges. There are many methods available for studying proteins, which can be applied to amyloids: from basic staining techniques, allowing visualization of fibers, to complex methods, e.g., AFM-IR used to their detailed biochemical and structural characterization in nanoscale. Which method is appropriate depends on the goal of an experiment: verification of aggregational properties of a peptide, distinguishing oligomers from mature fibers, or kinetic studies. Insolubility, rapid aggregation, and the need of using a high-purity peptide may be a limiting factor in studies involving amyloids. Moreover, the results obtained by various experimental methods often differ significantly, which may lead to misclassification of amyloid peptides. Due to ambiguity of experimental results, laborious and time-consuming analysis, bioinformatical methods become more widely used for amyloids.
Collapse
Affiliation(s)
| | - Natalia Szulc
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wrocław, Poland
| | - Monika Szefczyk
- Department of Bioorganic Chemistry, Wroclaw University of Science and Technology, Wrocław, Poland
| |
Collapse
|
7
|
Chiang YL, Chang YJ, Chen YR, Hwang IS. Effects of Dissolved Gases on the Amyloid Fibril Morphology. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:516-523. [PMID: 33352048 DOI: 10.1021/acs.langmuir.0c03215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The onset or progression of numerous neurodegenerative diseases occurs due to aggregation of proteins that ultimately form fibrils. The assembly and morphology of fibrils are susceptible to environmental factors. In this work, we used atomic force microscopy (AFM) to investigate the effects of dissolved nitrogen and oxygen molecules on the morphology of fibrils formed by a hydrophobic amyloid peptide implicated in amyotrophic lateral sclerosis, 15 repeats of glycine-alanine, on a highly oriented pyrolytic graphite substrate. We started with preformed fibril solutions that were then diluted with buffers of different gas conditions, resulting in the aggregation of the fibrils into different morphologies that were revealed by AFM after adsorption on the substrate. Straight fibrils were observed in both degassed and ambient buffers, but a stronger lateral association was seen in degassed buffers. Smaller and softer fibrils were observed in O2-supersaturated buffers, and plaque-like fibril aggregates of considerably large size were evident in N2-supersaturated buffers. In overnight incubation experiments, we observed changes in both the morphology and height of the fibril aggregates, and their evolution varied with different gas conditions. These findings indicate that the gas type and concentration affect the aggregation of amyloid fibrils and may facilitate the development of biomaterial applications and treatments for amyloid-related diseases.
Collapse
Affiliation(s)
- Ya-Ling Chiang
- Institute of Physics, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Yu-Jen Chang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Taiwan University and Academia Sinica, Taipei, 115, Taiwan
| | - Yun-Ru Chen
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Taiwan University and Academia Sinica, Taipei, 115, Taiwan
| | - Ing-Shouh Hwang
- Institute of Physics, Academia Sinica, Nankang, Taipei 115, Taiwan
| |
Collapse
|
8
|
Munusamy S, Conde R, Bertrand B, Munoz-Garay C. Biophysical approaches for exploring lipopeptide-lipid interactions. Biochimie 2020; 170:173-202. [PMID: 31978418 PMCID: PMC7116911 DOI: 10.1016/j.biochi.2020.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
Abstract
In recent years, lipopeptides (LPs) have attracted a lot of attention in the pharmaceutical industry due to their broad-spectrum of antimicrobial activity against a variety of pathogens and their unique mode of action. This class of compounds has enormous potential for application as an alternative to conventional antibiotics and for pest control. Understanding how LPs work from a structural and biophysical standpoint through investigating their interaction with cell membranes is crucial for the rational design of these biomolecules. Various analytical techniques have been developed for studying intramolecular interactions with high resolution. However, these tools have been barely exploited in lipopeptide-lipid interactions studies. These biophysical approaches would give precise insight on these interactions. Here, we reviewed these state-of-the-art analytical techniques. Knowledge at this level is indispensable for understanding LPs activity and particularly their potential specificity, which is relevant information for safe application. Additionally, the principle of each analytical technique is presented and the information acquired is discussed. The key challenges, such as the selection of the membrane model are also been briefly reviewed.
Collapse
Affiliation(s)
- Sathishkumar Munusamy
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Renaud Conde
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Brandt Bertrand
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Carlos Munoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico.
| |
Collapse
|
9
|
Amyloidogenic Peptides in Human Neuro-Degenerative Diseases and in Microorganisms: A Sorrow Shared Is a Sorrow Halved? Molecules 2020; 25:molecules25040925. [PMID: 32093040 PMCID: PMC7070710 DOI: 10.3390/molecules25040925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 01/06/2023] Open
Abstract
The term "amyloid" refers to proteinaceous deposits of peptides that might be generated from larger precursor proteins e.g., by proteolysis. Common to these peptides is a stable cross-β dominated secondary structure which allows self-assembly, leading to insoluble oligomers and lastly to fibrils. These highly ordered protein aggregates have been, for a long time, mainly associated with human neurodegenerative diseases such as Alzheimer's disease (Amyloid-β peptides). However, they also exert physiological functions such as in release of deposited hormones in human beings. In the light of the rediscovery of our microbial commensals as important companions in health and disease, the fact that microbes also possess amyloidogenic peptides is intriguing. Transmission of amyloids by iatrogenic means or by consumption of contaminated meat from diseased animals is a well-known fact. What if also our microbial commensals might drive human amyloidosis or suffer from our aggregated amyloids? Moreover, as the microbial amyloids are evolutionarily older, we might learn from these organisms how to cope with the sword of Damocles forged of endogenous, potentially toxic peptides. This review summarizes knowledge about the interplay between human amyloids involved in neurodegenerative diseases and microbial amyloids.
Collapse
|
10
|
Herrera MG, Gómez Castro MF, Prieto E, Barrera E, Dodero VI, Pantano S, Chirdo F. Structural conformation and self-assembly process of p31-43 gliadin peptide in aqueous solution. Implications for celiac disease. FEBS J 2019; 287:2134-2149. [PMID: 31659864 DOI: 10.1111/febs.15109] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/06/2019] [Accepted: 10/25/2019] [Indexed: 12/13/2022]
Abstract
Celiac disease (CeD) is a highly prevalent chronic immune-mediated enteropathy developed in genetically predisposed individuals after ingestion of a group of wheat proteins (called gliadins and glutenins). The 13mer α-gliadin peptide, p31-43, induces proinflammatory responses, observed by in vitro assays and animal models, that may contribute to innate immune mechanisms of CeD pathogenesis. Since a cellular receptor for p31-43 has not been identified, this raises the question of whether this peptide could mediate different biological effects. In this work, we aimed to characterize the p31-43 secondary structure by different biophysical and in silico techniques. By dynamic light scattering and using an oligomer/fibril-sensitive fluorescent probe, we showed the presence of oligomers of this peptide in solution. Furthermore, atomic force microscopy analysis showed p31-43 oligomers with different height distribution. Also, peptide concentration had a very strong influence on peptide self-organization process. Oligomers gradually increased their size at lower concentration. Whereas, at higher ones, oligomers increased their complexity, forming branched structures. By CD, we observed that p31-43 self-organized in a polyproline II conformation in equilibrium with β-sheets-like structures, whose pH remained stable in the range of 3-8. In addition, these findings were supported by molecular dynamics simulation. The formation of p31-43 nanostructures with increased β-sheet structure may help to explain the molecular etiopathogenesis in the induction of proinflammatory effects and subsequent damage at the intestinal mucosa in CeD.
Collapse
Affiliation(s)
- María Georgina Herrera
- Instituto de Química y Fisicoquímica Biológicas - IQUIFIB (UBA-CONICET), Buenos Aires, Argentina
| | | | - Eduardo Prieto
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, UNLP-CONICET), La Plata, Argentina
| | | | | | - Sergio Pantano
- Institut Pasteur de Montevideo, Uruguay.,Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, China
| | - Fernando Chirdo
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP, UNLP-CONICET), La Plata, Argentina
| |
Collapse
|
11
|
Khan JM, Malik A, Rehman T, AlAjmi MF, Alamery SF, Alghamdi OHA, Khan RH, Odeibat HAM, Fatima S. Alpha-cyclodextrin turns SDS-induced amyloid fibril into native-like structure. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111090] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Mizuuchi K, Vecchiarelli AG. Mechanistic insights of the Min oscillator via cell-free reconstitution and imaging. Phys Biol 2018; 15:031001. [PMID: 29188788 DOI: 10.1088/1478-3975/aa9e5e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The MinD and MinE proteins of Escherichia coli self-organize into a standing-wave oscillator on the membrane to help align division at mid-cell. When unleashed from cellular confines, MinD and MinE form a spectrum of patterns on artificial bilayers-static amoebas, traveling waves, traveling mushrooms, and bursts with standing-wave dynamics. We recently focused our cell-free studies on bursts because their dynamics recapitulate many features of Min oscillation observed in vivo. The data unveiled a patterning mechanism largely governed by MinE regulation of MinD interaction with membrane. We proposed that the MinD to MinE ratio on the membrane acts as a toggle switch between MinE-stimulated recruitment and release of MinD from the membrane. In this review, we summarize cell-free data on the Min system and expand upon a molecular mechanism that provides a biochemical explanation as to how these two 'simple' proteins can form the remarkable spectrum of patterns.
Collapse
Affiliation(s)
- Kiyoshi Mizuuchi
- Laboratory of Molecular Biology, National Institute of Diabetes, and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States of America
| | | |
Collapse
|
13
|
Piantanida L, Bolt HL, Rozatian N, Cobb SL, Voïtchovsky K. Ions Modulate Stress-Induced Nanotexture in Supported Fluid Lipid Bilayers. Biophys J 2017; 113:426-439. [PMID: 28746853 PMCID: PMC5529180 DOI: 10.1016/j.bpj.2017.05.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/22/2017] [Accepted: 05/30/2017] [Indexed: 12/13/2022] Open
Abstract
Most plasma membranes comprise a large number of different molecules including lipids and proteins. In the standard fluid mosaic model, the membrane function is effected by proteins whereas lipids are largely passive and serve solely in the membrane cohesion. Here we show, using supported 1,2-dioleoyl-sn-glycero-3-phosphocholine lipid bilayers in different saline solutions, that ions can locally induce ordering of the lipid molecules within the otherwise fluid bilayer when the latter is supported. This nanoordering exhibits a characteristic length scale of ∼20 nm, and manifests itself clearly when mechanical stress is applied to the membrane. Atomic force microscopy (AFM) measurements in aqueous solutions containing NaCl, KCl, CaCl2, and Tris buffer show that the magnitude of the effect is strongly ion-specific, with Ca2+ and Tris, respectively, promoting and reducing stress-induced nanotexturing of the membrane. The AFM results are complemented by fluorescence recovery after photobleaching experiments, which reveal an inverse correlation between the tendency for molecular nanoordering and the diffusion coefficient within the bilayer. Control AFM experiments on other lipids and at different temperatures support the hypothesis that the nanotexturing is induced by reversible, localized gel-like solidification of the membrane. These results suggest that supported fluid phospholipid bilayers are not homogenous at the nanoscale, but specific ions are able to locally alter molecular organization and mobility, and spatially modulate the membrane’s properties on a length scale of ∼20 nm. To illustrate this point, AFM was used to follow the adsorption of the membrane-penetrating antimicrobial peptide Temporin L in different solutions. The results confirm that the peptides do not absorb randomly, but follow the ion-induced spatial modulation of the membrane. Our results suggest that ionic effects have a significant impact for passively modulating the local properties of biological membranes, when in contact with a support such as the cytoskeleton.
Collapse
Affiliation(s)
- Luca Piantanida
- Department of Physics, Durham University, Durham, United Kingdom
| | - Hannah L Bolt
- Department of Chemistry, Durham University, Durham, United Kingdom
| | - Neshat Rozatian
- Department of Chemistry, Durham University, Durham, United Kingdom
| | - Steven L Cobb
- Department of Chemistry, Durham University, Durham, United Kingdom
| | | |
Collapse
|
14
|
Ding RF, Yang CW, Huang KY, Hwang IS. High-sensitivity imaging with lateral resonance mode atomic force microscopy. NANOSCALE 2016; 8:18421-18427. [PMID: 27775132 DOI: 10.1039/c6nr04151e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In the operation of a dynamic mode atomic force microscope, a micro-fabricated rectangular cantilever is typically oscillated at or near its mechanical resonance frequency. Lateral bending resonances of cantilevers are rarely used because the resonances are not expected to be detected by the beam-deflection method. In this work, we found that micro-cantilevers with a large tip produced an out-of-plane displacement in lateral resonance (LR), which could be detected with the beam-deflection method. Finite-element analysis indicated that the presence of a large tip is the major source of the out-of-plane coupling for the LR. We also imaged a heterogeneous sample by operating a cantilever in LR, torsional resonance, and tapping modes. LR mode yielded a small deformation and noise level in the height maps as well as a high contrast and small noise level in the phase maps. LR mode also had a resonance frequency that was orders of magnitude higher than that of tapping mode. Operation with LR mode may have the benefits of high-speed scanning, high-sensitivity imaging, and mapping of in-plane mechanical properties of the sample surface. In general, LR mode may become a powerful new atomic force microscopy technique for characterizing sample materials.
Collapse
Affiliation(s)
- Ren-Feng Ding
- Institute of Physics, Academia Sinica, 11529, Taipei, Taiwan. and Department of Mechanical Engineering, National Taiwan University, 10617, Taipei, Taiwan
| | - Chih-Wen Yang
- Institute of Physics, Academia Sinica, 11529, Taipei, Taiwan.
| | - Kuang-Yuh Huang
- Department of Mechanical Engineering, National Taiwan University, 10617, Taipei, Taiwan
| | - Ing-Shouh Hwang
- Institute of Physics, Academia Sinica, 11529, Taipei, Taiwan.
| |
Collapse
|
15
|
Khan JM, Khan MS, Ali MS, Al-Shabib NA, Khan RH. Cetyltrimethylammonium bromide (CTAB) promote amyloid fibril formation in carbohydrate binding protein (concanavalin A) at physiological pH. RSC Adv 2016. [DOI: 10.1039/c6ra03707k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Low concentration of CTAB provoked cross β-sheet formation whereas high concentrations of CTAB direct to alpha helix induction in Con A.
Collapse
Affiliation(s)
- Javed Masood Khan
- Department of Food Science and Nutrition
- Faculty of Food and Agricultural Sciences
- King Saud University
- 2460 Riyadh 11451
- Saudi Arabia
| | - Mohd Shahnawaz Khan
- Protein Research Chair
- Department of Biochemistry
- College of Science
- King Saud University
- Riyadh
| | - Mohd Sajid Ali
- Department of Chemistry
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | - Nasser Abdulatif Al-Shabib
- Department of Food Science and Nutrition
- Faculty of Food and Agricultural Sciences
- King Saud University
- 2460 Riyadh 11451
- Saudi Arabia
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh
- India
| |
Collapse
|