1
|
Sokołowska B, Orłowska M, Okrasińska A, Piłsyk S, Pawłowska J, Muszewska A. What can be lost? Genomic perspective on the lipid metabolism of Mucoromycota. IMA Fungus 2023; 14:22. [PMID: 37932857 PMCID: PMC10629195 DOI: 10.1186/s43008-023-00127-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 10/23/2023] [Indexed: 11/08/2023] Open
Abstract
Mucoromycota is a phylum of early diverging fungal (EDF) lineages, of mostly plant-associated terrestrial fungi. Some strains have been selected as promising biotechnological organisms due to their ability to produce polyunsaturated fatty acids and efficient conversion of nutrients into lipids. Others get their lipids from the host plant and are unable to produce even the essential ones on their own. Following the advancement in EDF genome sequencing, we carried out a systematic survey of lipid metabolism protein families across different EDF lineages. This enabled us to explore the genomic basis of the previously documented ability to produce several types of lipids within the fungal tree of life. The core lipid metabolism genes showed no significant diversity in distribution, however specialized lipid metabolic pathways differed in this regard among different fungal lineages. In total 165 out of 202 genes involved in lipid metabolism were present in all tested fungal lineages, while remaining 37 genes were found to be absent in some of fungal lineages. Duplications were observed for 69 genes. For the first time we demonstrate that ergosterol is not being produced by several independent groups of plant-associated fungi due to the losses of different ERG genes. Instead, they possess an ancestral pathway leading to the synthesis of cholesterol, which is absent in other fungal lineages. The lack of diacylglycerol kinase in both Mortierellomycotina and Blastocladiomycota opens the question on sterol equilibrium regulation in these organisms. Early diverging fungi retained most of beta oxidation components common with animals including Nudt7, Nudt12 and Nudt19 pointing at peroxisome divergence in Dikarya. Finally, Glomeromycotina and Mortierellomycotina representatives have a similar set of desaturases and elongases related to the synthesis of complex, polyunsaturated fatty acids pointing at an ancient expansion of fatty acid metabolism currently being explored by biotechnological studies.
Collapse
Affiliation(s)
- Blanka Sokołowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
- Faculty of Biology, Biological and Chemical Research Centre, Institute of Evolutionary Biology, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Małgorzata Orłowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
- Faculty of Biology, Biological and Chemical Research Centre, Institute of Evolutionary Biology, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Alicja Okrasińska
- Faculty of Biology, Biological and Chemical Research Centre, Institute of Evolutionary Biology, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Sebastian Piłsyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| | - Julia Pawłowska
- Faculty of Biology, Biological and Chemical Research Centre, Institute of Evolutionary Biology, University of Warsaw, Zwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland.
| |
Collapse
|
2
|
Urbanikova V, Park YK, Krajciova D, Tachekort M, Certik M, Grigoras I, Holic R, Nicaud JM, Gajdos P. Yarrowia lipolytica as a Platform for Punicic Acid Production. Int J Mol Sci 2023; 24:ijms24108823. [PMID: 37240172 DOI: 10.3390/ijms24108823] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Punicic acid (PuA) is a polyunsaturated fatty acid with significant medical, biological, and nutraceutical properties. The primary source of punicic acid is the pomegranate seed oil obtained from fruits of trees that are mainly cultivated in subtropical and tropical climates. To establish sustainable production of PuA, various recombinant microorganisms and plants have been explored as platforms with limited efficiencies. In this study, the oleaginous yeast Yarrowia lipolytica was employed as a host for PuA production. First, growth and lipid accumulation of Y. lipolytica were evaluated in medium supplemented with pomegranate seed oil, resulting in the accumulation of lipids up to 31.2%, consisting of 22% PuA esterified in the fraction of glycerolipids. In addition, lipid-engineered Y. lipolytica strains, transformed with the bifunctional fatty acid conjugase/desaturase from Punica granatum (PgFADX), showed the ability to accumulate PuA de novo. PuA was detected in both polar and neutral lipid fractions, especially in phosphatidylcholine and triacylglycerols. Promoter optimization for PgFADX expression resulted in improved accumulation of PuA from 0.9 to 1.8 mg/g of dry cell weight. The best-producing strain expressing PgFADX under the control of a strong erythritol-inducible promoter produced 36.6 mg/L PuA. These results demonstrate that the yeast Y. lipolytica is a promising host for PuA production.
Collapse
Grants
- APVV-20-0166 INRAE, the French National Research Institute for Agriculture, Food and Environment, Micalis Institute, the Slovak Research and Development Agency
- VEGA 2/0012/20 Ministry of Education, Science, Research, and Sport of the Slovak Republic, and the Slovak Academy of Sciences
- NA Genopole, University of Evry-val-d'Essonne, University of Paris-Saclay, Investissements d'Avenir
- NA New England BioLabs (NEB)
- NA Integrated DNA Technologies Inc. (IDT)
- NA Twist Biosciences
- NA SnapGene
- NA Macherey Nagel
- NA Zymo Research
- NA Promega
Collapse
Affiliation(s)
- Veronika Urbanikova
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, 81237 Bratislava, Slovakia
| | - Young-Kyoung Park
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Daniela Krajciova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 84005 Bratislava, Slovakia
| | - Mehdi Tachekort
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
- Université Paris-Saclay, Univ Evry, CNRS, CEA, Génomique métabolique, 91057 Evry-Courcouronnes, France
| | - Milan Certik
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, 81237 Bratislava, Slovakia
| | - Ioana Grigoras
- Université Paris-Saclay, Univ Evry, CNRS, CEA, Génomique métabolique, 91057 Evry-Courcouronnes, France
| | - Roman Holic
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, 84005 Bratislava, Slovakia
| | - Jean-Marc Nicaud
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Peter Gajdos
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, 81237 Bratislava, Slovakia
| |
Collapse
|
3
|
An Appraisal on Prominent Industrial and Biotechnological Applications of Bacterial Lipases. Mol Biotechnol 2023; 65:521-543. [PMID: 36319931 DOI: 10.1007/s12033-022-00592-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/22/2022] [Indexed: 11/05/2022]
Abstract
Microbial lipases expedite the hydrolysis and synthesis of long-chain acyl esters. They are highly significant commercial biocatalysts to biotechnologists and organic chemists. The market size of lipase is anticipated to reach $590 million by 2023. This is all owing to their versatility in properties, including stability in organic solvents, interfacial activation in micro-aqueous environments, high substrate specificity, and activity in even non-aqueous milieu. Lipases are omnipresent and synthesized by various living organisms, including animals, plants, and microorganisms. Microbial lipases are the preferred choice for industrial applications as they entail low production costs, higher yield independent of seasonal changes, easier purification practices, and are capable of being genetically modified. Microbial lipases are employed in several common industries, namely various food manufactories (dairy, bakery, flavor, and aroma enhancement, etc.), leather tanneries, paper and pulp, textiles, detergents, cosmetics, pharmaceuticals, biodiesel synthesis, bioremediation and waste treatment, and many more. In recent decades, circumspection toward eco-friendly and sustainable energy has led scientists to develop industrial mechanisms with lesser waste/effluent generation, minimal overall energy usage, and biocatalysts that can be synthesized using renewable, low-cost, and unconventional raw materials. However, there are still issues regarding the commercial use of lipases which make industrialists wary and sometimes even switch back to chemical catalysis. Industrially relevant lipase properties must be further optimized, analyzed, and explored to ensure their continuous successful utilization. This review comprehensively describes the general background, structural characteristics, classifications, thermostability, and various roles of bacterial lipases in important industries.
Collapse
|
4
|
Ciurko D, Neuvéglise C, Szwechłowicz M, Lazar Z, Janek T. Comparative Analysis of the Alkaline Proteolytic Enzymes of Yarrowia Clade Species and Their Putative Applications. Int J Mol Sci 2023; 24:ijms24076514. [PMID: 37047486 PMCID: PMC10095220 DOI: 10.3390/ijms24076514] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/19/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Proteolytic enzymes are commercially valuable and have multiple applications in various industrial sectors. The most studied proteolytic enzymes produced by Yarrowia lipolytica, extracellular alkaline protease (Aep) and extracellular acid protease (Axp), were shown to be good candidates for different biotechnological applications. In this study, we performed a comprehensive analysis of the alkaline proteolytic enzymes of Yarrowia clade species, including phylogenetic studies, synteny analysis, and protease production and application. Using a combination of comparative genomics approaches based on sequence similarity, synteny conservation, and phylogeny, we reconstructed the evolutionary scenario of the XPR2 gene for species of the Yarrowia clade. Furthermore, except for the proteolytic activity of the analyzed Yarrowia clade strains, the brewers’ spent grain (BSG) was used as a substrate to obtain protein hydrolysates with antioxidant activity. For each culture, the degree of hydrolysis was calculated. The most efficient protein hydrolysis was observed in the cultures of Y. lipolytica, Y. galli, and Y. alimentaria. In contrast, the best results obtained using the 2,2-azinobis (3-ethyl-benzothiazoline-6-sulfonic acid (ABTS) method were observed for the culture medium after the growth of Y. divulgata, Y. galli, and Y. lipolytica on BSG.
Collapse
Affiliation(s)
- Dominika Ciurko
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
| | - Cécile Neuvéglise
- SPO, Univ Montpellier, INRAE, Institut Agro, 34060 Montpellier, France
| | - Maciej Szwechłowicz
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
| | - Zbigniew Lazar
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
- Correspondence: (Z.L.); (T.J.); Tel.: +48-71-320-7735 (Z.L.); +48-71-320-7734 (T.J.)
| | - Tomasz Janek
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland
- Correspondence: (Z.L.); (T.J.); Tel.: +48-71-320-7735 (Z.L.); +48-71-320-7734 (T.J.)
| |
Collapse
|
5
|
Using oils and fats to replace sugars as feedstocks for biomanufacturing: Challenges and opportunities for the yeast Yarrowia lipolytica. Biotechnol Adv 2023; 65:108128. [PMID: 36921878 DOI: 10.1016/j.biotechadv.2023.108128] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023]
Abstract
More than 200 million tons of plant oils and animal fats are produced annually worldwide from oil, crops, and the rendered animal fat industry. Triacylglycerol, an abundant energy-dense compound, is the major form of lipid in oils and fats. While oils or fats are very important raw materials and functional ingredients for food or related products, a significant portion is currently diverted to or recovered as waste. To significantly increase the value of waste oils or fats and expand their applications with a minimal environmental footprint, microbial biomanufacturing is presented as an effective strategy for adding value. Though both bacteria and yeast can be engineered to use oils or fats as the biomanufacturing feedstocks, the yeast Yarrowia lipolytica is presented as one of the most attractive platforms. Y. lipolytica is oleaginous, generally regarded as safe, demonstrated as a promising industrial producer, and has unique capabilities for efficient catabolism and bioconversion of lipid substrates. This review summarizes the major challenges and opportunities for Y. lipolytica as a new biomanufacturing platform for the production of value-added products from oils and fats. This review also discusses relevant cellular and metabolic engineering strategies such as fatty acid transport, fatty acid catabolism and bioconversion, redox balances and energy yield, cell morphology and stress response, and bioreaction engineering. Finally, this review highlights specific product classes including long-chain diacids, wax esters, terpenes, and carotenoids with unique synthesis opportunities from oils and fats in Y. lipolytica.
Collapse
|
6
|
Bigey F, Pasteur E, Połomska X, Thomas S, Crutz-Le Coq AM, Devillers H, Neuvéglise C. Insights into the Genomic and Phenotypic Landscape of the Oleaginous Yeast Yarrowia lipolytica. J Fungi (Basel) 2023; 9:jof9010076. [PMID: 36675897 PMCID: PMC9865632 DOI: 10.3390/jof9010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Although Yarrowia lipolytica is a model yeast for the study of lipid metabolism, its diversity is poorly known, as studies generally consider only a few standard laboratory strains. To extend our knowledge of this biotechnological workhorse, we investigated the genomic and phenotypic diversity of 56 natural isolates. Y. lipolytica is classified into five clades with no correlation between clade membership and geographic or ecological origin. A low genetic diversity (π = 0.0017) and a pan-genome (6528 genes) barely different from the core genome (6315 genes) suggest Y. lipolytica is a recently evolving species. Large segmental duplications were detected, totaling 892 genes. With three new LTR-retrotransposons of the Gypsy family (Tyl4, Tyl9, and Tyl10), the transposable element content of genomes appeared diversified but still low (from 0.36% to 3.62%). We quantified 34 traits with substantial phenotypic diversity, but genome-wide association studies failed to evidence any associations. Instead, we investigated known genes and found four mutational events leading to XPR2 protease inactivation. Regarding lipid metabolism, most high-impact mutations were found in family-belonging genes, such as ALK or LIP, and therefore had a low phenotypic impact, suggesting that the huge diversity of lipid synthesis and accumulation is multifactorial or due to complex regulations.
Collapse
Affiliation(s)
- Frédéric Bigey
- INRAE, Institut Agro, SPO, University Montpellier, 34060 Montpellier, France
| | - Emilie Pasteur
- Micalis, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| | - Xymena Połomska
- Department of Biotechnology & Food Microbiology, Wroclaw University of Environmental and Life Sciences (WUELS), 50-375 Wroclaw, Poland
| | - Stéphane Thomas
- Micalis, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| | - Anne-Marie Crutz-Le Coq
- Micalis, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
- IJPB, INRAE, 78000 Versailles, France
| | - Hugo Devillers
- INRAE, Institut Agro, SPO, University Montpellier, 34060 Montpellier, France
- Micalis, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
| | - Cécile Neuvéglise
- INRAE, Institut Agro, SPO, University Montpellier, 34060 Montpellier, France
- Micalis, Université Paris-Saclay, INRAE, AgroParisTech, 78350 Jouy-en-Josas, France
- Correspondence:
| |
Collapse
|
7
|
Kashyap A, Gupta R. N-truncation in lipase Lip11 from Yarrowia lipolytica alleviates substrate inhibition with improved stability and efficiency ensuing distinct structural modifications. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Enespa, Chandra P, Singh DP. Sources, purification, immobilization and industrial applications of microbial lipases: An overview. Crit Rev Food Sci Nutr 2022; 63:6653-6686. [PMID: 35179093 DOI: 10.1080/10408398.2022.2038076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Microbial lipase is looking for better attention with the fast growth of enzyme proficiency and other benefits like easy, cost-effective, and reliable manufacturing. Immobilized enzymes can be used repetitively and are incapable to catalyze the reactions in the system continuously. Hydrophobic supports are utilized to immobilize enzymes when the ionic strength is low. This approach allows for the immobilization, purification, stability, and hyperactivation of lipases in a single step. The diffusion of the substrate is more advantageous on hydrophobic supports than on hydrophilic supports in the carrier. These approaches are critical to the immobilization performance of the enzyme. For enzyme immobilization, synthesis provides a higher pH value as well as greater heat stability. Using a mixture of immobilization methods, the binding force between enzymes and the support rises, reducing enzyme leakage. Lipase adsorption produces interfacial activation when it is immobilized on hydrophobic support. As a result, in the immobilization process, this procedure is primarily used for a variety of industrial applications. Microbial sources, immobilization techniques, and industrial applications in the fields of food, flavor, detergent, paper and pulp, pharmaceuticals, biodiesel, derivatives of esters and amino groups, agrochemicals, biosensor applications, cosmetics, perfumery, and bioremediation are all discussed in this review.
Collapse
Affiliation(s)
- Enespa
- School for Agriculture, Sri Mahesh Prasad Post Graduate College, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Prem Chandra
- Food Microbiology & Toxicology Laboratory, Department of Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh, India
| | - Devendra Pratap Singh
- Department of Environmental Science, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
9
|
A Temporal Evolution Perspective of Lipase Production by Yarrowia lipolytica in Solid-State Fermentation. Processes (Basel) 2022. [DOI: 10.3390/pr10020381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Lipases are enzymes that, in aqueous or non-aqueous media, act on water-insoluble substrates, mainly catalyzing reactions on carboxyl ester bonds, such as hydrolysis, aminolysis, and (trans)esterification. Yarrowia lipolytica is a non-conventional yeast known for secreting lipases and other bioproducts; therefore, it is of great interest in various industrial fields. The production of lipases can be carried on solid-state fermentation (SSF) that utilizes solid substrates in the absence, or near absence, of free water and presents minimal problems with microbial contamination due to the low water contents in the medium. Moreover, SSF offers high volumetric productivity, targets concentrated compounds, high substrate concentration tolerance, and has less wastewater generation. In this sense, the present work provides a temporal evolution perspective regarding the main aspects of lipase production in SSF by Y. lipolytica, focusing on the most relevant aspects and presenting the potential of such an approach.
Collapse
|
10
|
Kashyap A, Gupta R. Disrupting putative N-glycosylation site N17 in lipase Lip11 of Yarrowia lipolytica yielded a catalytically efficient and thermostable variant accompanying conformational changes. Enzyme Microb Technol 2021; 151:109922. [PMID: 34649689 DOI: 10.1016/j.enzmictec.2021.109922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/02/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
Lip11 gene from oleaginous yeast Yarrowia lipolytica MSR80 was recombinantly expressed in Pichia pastoris X33. Native secretion signal present in its sequence resulted in 92 % expression in comparison to α-secretion factor which resulted to 900 U/L in the extracellular broth. Catalytic triad in Lip11, like most lipases, was formed by serine, histidine, and aspartate residues. While point mutation disrupting putative glycosylation site (N389) present towards the C-terminus ruinously effected its stability and catalytic activity, disruption of the first putative glycosylation site (N17) located towards the N-terminus presented interesting insights. Mutation resulted in a variant N1 exhibiting higher thermal and acid stability; a t1/2 of 198 min was obtained at 50 °C and it retained almost 80 % activity following incubation at pH 3. Catalytic efficiency was improved by 2.7 fold and a 10 °C rise in temperature optima was accompanied by higher relative activity in acidic range. Thermal stability corresponded to convoying structural modifications in the tertiary structure, findings of fluorescence spectroscopy suggested. Thermal fluorescence studies revealed a Tm of 65 °C for both Lip11 and N1 and λmax of Lip11 exhibited a blue shift upon refolding while no shift in the λmax of N1 was observed. A resilient tertiary structure which could fold back to its native confirmation upon thermal denaturation and increase in surface-exposed hydrophobic residues as revealed by ANS binding assay summed up to thermal stability of N1. Furthermore, circular dichroism data disclosed an alternate ratio of alpha-helices and beta-sheets; respective values changed from 36 % and 8%-27% and 19 %. Following mutation, substrate specificity remained unaffected and similar to native protein, N1 showed activation in presence of organic solvents and most divalent cations.
Collapse
Affiliation(s)
- Amuliya Kashyap
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India
| | - Rani Gupta
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
11
|
Rakicka-Pustułka M, Miedzianka J, Jama D, Kawalec S, Liman K, Janek T, Skaradziński G, Rymowicz W, Lazar Z. High value-added products derived from crude glycerol via microbial fermentation using Yarrowia clade yeast. Microb Cell Fact 2021; 20:195. [PMID: 34627248 PMCID: PMC8502345 DOI: 10.1186/s12934-021-01686-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/24/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Contemporary biotechnology focuses on many problems related to the functioning of developed societies. Many of these problems are related to health, especially with the rapidly rising numbers of people suffering from civilization diseases, such as obesity or diabetes. One factor contributing to the development of these diseases is the high consumption of sucrose. A very promising substitute for this sugar has emerged: the polyhydroxy alcohols, characterized by low caloric value and sufficient sweetness to replace table sugar in food production. RESULTS In the current study, yeast belonging to the Yarrowia clade were tested for erythritol, mannitol and arabitol production using crude glycerol from the biodiesel and soap industries as carbon sources. Out of the 13 tested species, Yarrowia divulgata and Candida oslonensis turned out to be particularly efficient polyol producers. Both species produced large amounts of these compounds from both soap-derived glycerol (59.8-62.7 g dm-3) and biodiesel-derived glycerol (76.8-79.5 g dm-3). However, it is equally important that the protein and lipid content of the biomass (around 30% protein and 12% lipid) obtained after the processes is high enough to use this yeast in the production of animal feed. CONCLUSIONS The use of waste glycerol for the production of polyols as well as utilization of the biomass obtained after the process for the production of feed are part of the development of modern waste-free technologies.
Collapse
Affiliation(s)
- Magdalena Rakicka-Pustułka
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wroclaw, Poland.
| | - Joanna Miedzianka
- Department of Food Storage and Technology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wroclaw, Poland
| | - Dominika Jama
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wroclaw, Poland
| | - Sylwia Kawalec
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wroclaw, Poland
| | - Kamila Liman
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wroclaw, Poland
| | - Tomasz Janek
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wroclaw, Poland
| | - Grzegorz Skaradziński
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wroclaw, Poland
| | - Waldemar Rymowicz
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wroclaw, Poland
| | - Zbigniew Lazar
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wroclaw, Poland
| |
Collapse
|
12
|
Improved production of biocatalysts by Yarrowia lipolytica using natural sources of the biopolyesters cutin and suberin, and their application in hydrolysis of poly (ethylene terephthalate) (PET). Bioprocess Biosyst Eng 2021; 44:2277-2287. [PMID: 34165618 DOI: 10.1007/s00449-021-02603-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/17/2021] [Indexed: 10/21/2022]
Abstract
Since plastic pollution emerged as an urgent environmental problem, different biocatalysts have been tested for poly(ethylene terephthalate) (PET) hydrolysis. This work evaluated three different possible inducers for lipases and/or esterases, two natural sources of biopolymers (apple peels and commercial cork) and PET, as supplements in the solid-state fermentation of soybean bran by Yarrowia lipolytica. The obtained enzymatic extracts displaying different levels of lipase and esterase activities were then tested for PET depolymerization. Supplementation with 5 or 20 wt% of commercial cork led to an increase of 16% in lipase activity and to an increase of 131% in esterase activity, respectively. PET supplementation also led to an increase in the esterase activity of the enzymatic extracts (up to 69%). Enzymes produced in the screening step were able to act as biocatalysts in PET hydrolysis. Enzymatic extracts obtained in fermentation samples supplemented with 20 wt% PET and 20 wt% apple peels led to the highest terephthalic acid concentration (21.2 µmol L-1) in 7 days, whereas enzymes produced in commercial cork media were more efficient for bis(2-hydroxyethyl) terephthalate (BHET) hydrolysis, one of the key-PET hydrolysis intermediates. Results suggest a good potential of the biocatalysts produced by Y. lipolytica IMUFRJ 50,682 in a low-cost media for subsequent utilization in PET depolymerization reactions. This is one of the few reports on the use of a yeast for this application.
Collapse
|
13
|
Nwagu TNT, Osilo C, Arinze MN, Okpala GN, Amadi OC, Ndubuisi IA, Okolo B, Moneke A, Agu R. A novel strain of Yarrowia phangngaensis producing a multienzyme complex; a source of enzyme additives for baking high cassava-wheat composite bread. FOOD BIOTECHNOL 2021. [DOI: 10.1080/08905436.2021.1910520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Tochukwu N. T. Nwagu
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria Nsukka, Nsukka, Nigeria
| | - Chidimma Osilo
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria Nsukka, Nsukka, Nigeria
- Department of Applied Microbiology, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Nigeria
| | - Maureen N. Arinze
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria Nsukka, Nsukka, Nigeria
| | - Gloria N. Okpala
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria Nsukka, Nsukka, Nigeria
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Onyetugo C. Amadi
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria Nsukka, Nsukka, Nigeria
| | - Ifeanyi A. Ndubuisi
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria Nsukka, Nsukka, Nigeria
| | - Bartholomew Okolo
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria Nsukka, Nsukka, Nigeria
| | - Anene Moneke
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria Nsukka, Nsukka, Nigeria
| | - Reginald Agu
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria Nsukka, Nsukka, Nigeria
- Scotch Whisky Research Institute, Edinburgh, UK
| |
Collapse
|
14
|
Baloch KA, Upaichit A, Cheirsilp B, Fibriana F. The Occurrence of Triple Catalytic Characteristics of Yeast Lipases and Their Application Prospects in Biodiesel Production from Non-Edible Jatropha curcas Oil in a Solvent-Free System. Curr Microbiol 2021; 78:1914-1925. [PMID: 33835233 DOI: 10.1007/s00284-021-02448-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
Extracellular and cell-bound lipase-producing yeasts were isolated from the palm oil mill wastes and investigated for their potential uses as biocatalysts in biodiesel production. Twenty-six yeast strains were qualitatively screened as lipase producers. From those yeast strains, only six were selected and screened further for quantitative lipase production.The phylogenetic affiliations of the yeast strains were confirmed by investigating the D1/D2 domains of 26S rDNA and ITS1-5.8S-ITS2 molecular regions of the six yeast strains selected as potent lipase producers. The three yeast strains A4C, 18B, and 10F showed a close association with Magnusiomyces capitatus. Two yeast strains (17B and AgB) had a close relationship with Saprochaete clavata, whereas the strain AW2 was identified as Magnusiomyces spicifer. Three main catalytic activities of the yeast lipases were evaluated and Magnusiomyces capitatus A4C, among the selected lipase-producing yeasts, had the highest extracellular lipolytic enzyme activity (969 U/L) with the cell-bound lipolytic enzyme activity of 11.3 U/gdm. The maximum cell-bound lipolytic activity (12.4 U/gdm) was observed in the cell-bound lipase fraction produced by Magnusiomyces spicifer AW2 with an extracellular lipolytic enzyme activity of 886 U/L. Based on the specific hydrolytic enzymatic activities, the cell-bound lipases (CBLs) from the three yeast strains M. capitatus A4C, M. spicifer AW2, and Saprochaete clavata 17B were further investigated for biodiesel production. Among them, the CBL from M. spicifer AW2 synthesized the most FAME (fatty acid methyl esters) at 81.2% within 12 h indicating that it has potential for application in enzymatic biodiesel production.
Collapse
Affiliation(s)
- Khurshid Ahmed Baloch
- Molecular Biotechnology Laboratory, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand.,Biotechnology for Bioresource Utilization Laboratory, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand
| | - Apichat Upaichit
- Molecular Biotechnology Laboratory, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand. .,Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand.
| | - Benjamas Cheirsilp
- Biotechnology for Bioresource Utilization Laboratory, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand.,Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand
| | - Fidia Fibriana
- Molecular Biotechnology Laboratory, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand.,Biotechnology for Bioresource Utilization Laboratory, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90112, Songkhla, Thailand.,Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang, Semarang, Central Java, 50229, Indonesia
| |
Collapse
|
15
|
Gaikwad P, Joshi S, Mandlecha A, RaviKumar A. Phylogenomic and biochemical analysis reassesses temperate marine yeast Yarrowia lipolytica NCIM 3590 to be Yarrowia bubula. Sci Rep 2021; 11:5487. [PMID: 33750815 PMCID: PMC7943819 DOI: 10.1038/s41598-021-83914-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 02/03/2021] [Indexed: 11/24/2022] Open
Abstract
Yarrowia clade contains yeast species morphologically, ecologically, physiologically and genetically diverse in nature. Yarrowia lipolytica NCIM 3590 (NCIM 3590), a biotechnologically important strain, isolated from Scottish sea waters was reinvestigated for its phenotypic, biochemical, molecular and genomic properties as it exhibited characteristics unlike Y. lipolytica, namely, absence of extracellular lipolytic activity, growth at lower temperatures (less than 20 °C) and in high salt concentrations (10% NaCl). Molecular identification using ITS and D1/D2 sequences suggested NCIM 3590 to be 100% identical with reference strain Yarrowia bubula CBS 12934 rather than Y. lipolytica CBS 6124 (87% identity) while phylogenetic analysis revealed that it clustered with Y. bubula under a separate clade. Further, whole genome sequencing of NCIM 3590 was performed using Illumina NextSeq technology and the draft reported here. The overall genome relatedness values obtained by dDDH (94.1%), ANIb/ANIm (99.41/99.42%) and OrthoANI (99.47%) indicated proximity between NCIM 3590 and CBS 12934 as compared to the reference strain Y. lipolytica. No extracellular lipase activity could be detected in NCIM 3590 while LIP2 gene TBLASTN analysis suggests a low 42% identity with e value 2 e-77 and 62% coverage. Hence molecular, phylogenetic, genomics, biochemical and microbial analyses suggests it belongs to Yarrowia bubula.
Collapse
Affiliation(s)
- Prashant Gaikwad
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra, 411 007, India
| | - Swanand Joshi
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra, 411 007, India
| | - Akshay Mandlecha
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra, 411 007, India
| | - Ameeta RaviKumar
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra, 411 007, India.
| |
Collapse
|
16
|
Mamaev D, Zvyagilskaya R. Yarrowia lipolytica: a multitalented yeast species of ecological significance. FEMS Yeast Res 2021; 21:6141120. [PMID: 33595651 DOI: 10.1093/femsyr/foab008] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/13/2021] [Indexed: 02/07/2023] Open
Abstract
Yarrowia lipolytica is characterized by GRAS (Generally regarded as safe) status, the versatile substrate utilization profile, rapid utilization rates, metabolic diversity and flexibility, the unique abilities to tolerate to extreme environments (acidic, alkaline, hypersaline, heavy metal-pollutions and others) and elevated biosynthesis and secreting capacities. These advantages of Y. lipolytica allow us to consider it as having great ecological significance. Unfortunately, there is still a paucity of relevant review data. This mini-review highlights ecological ubiquity of Y. lipolytica species, their ability to diversify and colonize specialized niches. Different Y. lipolytica strains, native and engineered, are beneficial in degrading many environmental pollutants causing serious ecological problems worldwide. In agriculture has a potential to be a bio-control agent by stimulating plant defense response, and an eco-friendly bio-fertilizer. Engineered strains of Y. lipolytica have become a very promising platform for eco-friendly production of biofuel, commodities, chemicals and secondary metabolites of plant origin, obtaining which by other method were limited or economically infeasible, or were accompanied by stringent environmental problems. Perspectives to use potential of Y. lipolytica's capacities for industrial scale production of valuable compounds in an eco-friendly manner are proposed.
Collapse
Affiliation(s)
- Dmitry Mamaev
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russian Federation
| | - Renata Zvyagilskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russian Federation
| |
Collapse
|
17
|
do Nascimento FV, de Castro AM, Secchi AR, Coelho MAZ. Insights into media supplementation in solid-state fermentation of soybean hulls by Yarrowia lipolytica: Impact on lipase production in tray and insulated packed-bed bioreactors. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Borsenberger V, Croux C, Daboussi F, Neuvéglise C, Bordes F. Developing Methods to Circumvent the Conundrum of Chromosomal Rearrangements Occurring in Multiplex Gene Edition. ACS Synth Biol 2020; 9:2562-2575. [PMID: 32786349 DOI: 10.1021/acssynbio.0c00325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CRISPR/Cas9 is a powerful tool to edit the genome of the yeast Yarrowia lipolytica. Here, we design a simple and robust method to knockout multiple gene families based on the construction of plasmids enabling the simultaneous expression of several sgRNAs. We exemplify the potency of this approach by targeting the well-characterized acyl-CoA oxidase family (POX) and the uncharacterized SPS19 family. We establish a correlation between the high lethality observed upon editing multiple loci and chromosomal translocations resulting from the simultaneous generation of several double-strand breaks (DSBs) and develop multiplex gene editing strategies. Using homologous directed recombination to reduce chromosomal translocations, we demonstrated that simultaneous editing of four genes can be achieved and constructed a strain carrying a sextuple deletion of POX genes. We explore an "excision approach" by simultaneously performing two DSBs in genes and reached 73 to 100% editing efficiency in double disruptions and 41.7% in a triple disruption. This work led to identifying SPS193 as a gene encoding a 2-4 dienoyl-CoA reductase, demonstrating the potential of this method to accelerate knowledge on gene function in expanded gene families.
Collapse
Affiliation(s)
- Vinciane Borsenberger
- Toulouse Biotechnology Institute, Université de Toulouse, INSA, INRAE, CNRS, Toulouse, 31077, France
| | - Christian Croux
- Toulouse Biotechnology Institute, Université de Toulouse, INSA, INRAE, CNRS, Toulouse, 31077, France
| | - Fayza Daboussi
- Toulouse Biotechnology Institute, Université de Toulouse, INSA, INRAE, CNRS, Toulouse, 31077, France
- Toulouse White Biotechnology, Ramonville-Saint-Agne, 31520, France
| | - Cécile Neuvéglise
- AgroParisTech, Micalis Institute, Université Paris-Saclay, INRAE, Paris, 78350, France
| | - Florence Bordes
- Toulouse Biotechnology Institute, Université de Toulouse, INSA, INRAE, CNRS, Toulouse, 31077, France
| |
Collapse
|
19
|
Phylogeny, evolution, and potential ecological relationship of cytochrome CYP52 enzymes in Saccharomycetales yeasts. Sci Rep 2020; 10:10269. [PMID: 32581293 PMCID: PMC7314818 DOI: 10.1038/s41598-020-67200-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/07/2020] [Indexed: 01/16/2023] Open
Abstract
Cytochrome P450s from the CYP52 family participate in the assimilation of alkanes and fatty acids in fungi. In this work, the evolutionary history of a set of orthologous and paralogous CYP52 proteins from Saccharomycetales yeasts was inferred. Further, the phenotypic assimilation profiles were related with the distribution of cytochrome CYP52 members among species. The maximum likelihood phylogeny of CYP52 inferred proteins reveled a frequent ancient and modern duplication and loss events that generated orthologous and paralogous groups. Phylogeny and assimilation profiles of alkanes and fatty acids showed a family expansion in yeast isolated from hydrophobic-rich environments. Docking analysis of deduced ancient CYP52 proteins suggests that the most ancient function was the oxidation of C4-C11 alkanes, while the oxidation of >10 carbon alkanes and fatty acids is a derived character. The ancient CYP52 paralogs displayed partial specialization and promiscuous interaction with hydrophobic substrates. Additionally, functional optimization was not evident. Changes in the interaction of ancient CYP52 with different alkanes and fatty acids could be associated with modifications in spatial orientations of the amino acid residues that comprise the active site. The extended family of CYP52 proteins is likely evolving toward functional specialization, and certain redundancy for substrates is being maintained.
Collapse
|
20
|
MARTÍNEZ-CORONA R, BANDERAS-MARTÍNEZ FJ, PÉREZ-CASTILLO JN, CORTÉS-PENAGOS C, GONZÁLEZ-HERNÁNDEZ JC. Avocado oil as an inducer of the extracellular lipase activity of Kluyveromyces marxianus L-2029. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1590/fst.06519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Desnos-Ollivier M, Letscher-Bru V, Neuvéglise C, Dromer F. Yarrowia lipolytica causes sporadic cases and local outbreaks of infections and colonisation. Mycoses 2020; 63:737-745. [PMID: 32335966 DOI: 10.1111/myc.13095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Yarrowia lipolytica belongs to the normal human microbiota but is also found in substrates with high contents in lipids and used in biotechnological processes. It is sometimes reported as human pathogen and especially in catheter-related candidaemia. OBJECTIVES Two apparently grouped cases of infections and/or contamination were reported involving 3 and 9 patients, respectively, in two hospitals. The goal of this study was to design a molecular tool to study the genetic diversity of Y lipolytica and confirm or not the common source of contamination during these grouped cases. METHODS Given that there is no genotyping method, we used genomic markers assessed on environmental isolates to determine intra-species relationship. We selected five highly polymorphic intergenic regions, totalling more than 3200 bp and sequenced them for clinical (n = 20) and environmental (n = 14) isolates. Antifungal susceptibility was determined by EUCAST broth microdilution method. RESULTS Multiple alignment of the five sequences revealed divergence of 0%-5.8% between isolates as compared to approximately 0.2%-0.25% after alignment of whole genomes, suggesting their potential usefulness to establish genetic relatedness. The analysis showed the multiple origins of the isolates. It uncovered two grouped case of fungaemia involving 3 and 2 patients, respectively. It also revealed several unrelated sporadic cases despite their temporal relationship and one probable laboratory contamination by a common yet uncovered source, explaining several consecutive positive cultures without infection. All isolates had high minimal inhibitory concentration (MIC) for flucytosine, the majority (14/34) was susceptible to fluconazole, and all to the other antifungal agents tested. CONCLUSION This method could help elucidate cases related to the opportunistic pathogen Y lipolytica.
Collapse
Affiliation(s)
- Marie Desnos-Ollivier
- Molecular Mycology Unit, Institut Pasteur, CNRS, National Reference Center for Invasive Mycoses & Antifungals, UMR2000, Paris, France
| | - Valerie Letscher-Bru
- Laboratoire de Parasitologie et Mycologie Médicale, Plateau Technique de Microbiologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institut de Parasitologie et de Pathologie Tropicale, Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France
| | - Cecile Neuvéglise
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Francoise Dromer
- Molecular Mycology Unit, Institut Pasteur, CNRS, National Reference Center for Invasive Mycoses & Antifungals, UMR2000, Paris, France
| |
Collapse
|
22
|
Morin N, Czerwiec Q, Nicaud JM, Neuvéglise C, Rossignol T. Transforming Candida hispaniensis, a promising oleaginous and flavogenic yeast. Yeast 2020; 37:348-355. [PMID: 32212181 DOI: 10.1002/yea.3466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/26/2020] [Accepted: 03/22/2020] [Indexed: 11/08/2022] Open
Abstract
Candida hispaniensis is an oleaginous yeast with a great potential for production of single cell oil according to its naturally high lipid accumulation capacity. Its unusual small genome size trait is also attractive for fundamental research on genome evolution. Our physiological study suggests a great potential for lipid production, reaching 224 mg/g of cell dry weight in glucose minimum medium. C. hispaniensis is also able to secrete up to 34.6 mg/L of riboflavin promising further riboflavin production improvements by cultivation optimization and genetic engineering. However, while its genome sequence has been released very recently, no genetic tools have been described up to now for this yeast limiting its use for fundamental research and for exploitation in an industrial biotechnology. We report here the first genetic modification of C. hispaniensis by introducing a heterologous invertase allowing the growth on sucrose using a biolistic transformation approach using a dedicated vector. The first genetic tool and transformation method developed here appear as a proof of concept, and while it would benefit from further optimization, heterogeneous expression of invertase allows for metabolism of an additional sugar and shows heterologous enzyme production capacity.
Collapse
Affiliation(s)
- Nicolas Morin
- INRAE, AgroParisTech, Université Paris-Saclay, Micalis Institute, Jouy-en-Josas, France
| | - Quentin Czerwiec
- INRAE, AgroParisTech, Université Paris-Saclay, Micalis Institute, Jouy-en-Josas, France
| | - Jean-Marc Nicaud
- INRAE, AgroParisTech, Université Paris-Saclay, Micalis Institute, Jouy-en-Josas, France
| | - Cécile Neuvéglise
- INRAE, AgroParisTech, Université Paris-Saclay, Micalis Institute, Jouy-en-Josas, France
| | - Tristan Rossignol
- INRAE, AgroParisTech, Université Paris-Saclay, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
23
|
Martínez-Corona R, Vázquez Marrufo G, Cortés Penagos C, Madrigal-Pérez LA, González-Hernández JC. Bioinformatic characterization of the extracellular lipases from Kluyveromyces marxianus. Yeast 2019; 37:149-162. [PMID: 31758565 DOI: 10.1002/yea.3449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/29/2019] [Accepted: 11/15/2019] [Indexed: 11/06/2022] Open
Abstract
Lipases are hydrolytic enzymes that break the ester bonds of triglycerides, generating free fatty acids and glycerol. Extracellular lipase activity has been reported for the nonconventional yeast Kluyveromyces marxianus, grown in olive oil as a substrate, and the presence of at least eight putative lipases has been detected in its genome. However, to date, there is no experimental evidence on the physiological role of the putative lipases nor their structural and catalytic properties. In this study, a bioinformatic analysis of the genes of the putative lipases from K. marxianus L-2029 was performed, particularly identifying and characterizing the extracellular expected enzymes, due to their biotechnological relevance. The amino acid sequence of 10 putative lipases, obtained by in silico translation, ranged between 389 and 773 amino acids. Two of the analysed putative proteins showed a signal peptide, 25 and 33 amino acids long for KmYJR107Wp and KmLIP3p, and a molecular weight of 44.53 and 58.23 kDa, respectively. The amino acid alignment of KmLIP3p and KmYJR107Wp with the crystallized lipases from a patatin and the YlLip2 lipase from Yarrowia lipolytica, respectively, revealed the presence of the hydrolase characteristic motifs. From the 3D models of putative extracellular K. marxianus L-2029 lipases, the conserved pentapeptide of each was determined, being GTSMG for KmLIP3p and GHSLG for KmYJR107Wp; besides, the genes of these two enzymes (LIP3 and YJR107W) are apparently regulated by oleate response elements. The phylogenetic analysis of all K. marxianus lipases revealed evolutionary affinities with lipases from abH15.03, abH23.01, and abH23.02 families.
Collapse
Affiliation(s)
- Ricardo Martínez-Corona
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico.,Tecnológico Nacional de México/Instituto Tecnológico de Morelia, Morelia, Mexico
| | - Gerardo Vázquez Marrufo
- Centro Multidisciplinario de Estudios en Biotecnología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Carlos Cortés Penagos
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Luis Alberto Madrigal-Pérez
- Laboratorio de Biotecnología Microbiana, Instituto Tecnológico Superior de Ciudad Hidalgo, Ciudad Hidalgo, Mexico
| | | |
Collapse
|
24
|
Červenák F, Juríková K, Devillers H, Kaffe B, Khatib A, Bonnell E, Sopkovičová M, Wellinger RJ, Nosek J, Tzfati Y, Neuvéglise C, Tomáška Ľ. Identification of telomerase RNAs in species of the Yarrowia clade provides insights into the co-evolution of telomerase, telomeric repeats and telomere-binding proteins. Sci Rep 2019; 9:13365. [PMID: 31527614 PMCID: PMC6746865 DOI: 10.1038/s41598-019-49628-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/29/2019] [Indexed: 12/17/2022] Open
Abstract
Telomeric repeats in fungi of the subphylum Saccharomycotina exhibit great inter- and intra-species variability in length and sequence. Such variations challenged telomeric DNA-binding proteins that co-evolved to maintain their functions at telomeres. Here, we compare the extent of co-variations in telomeric repeats, encoded in the telomerase RNAs (TERs), and the repeat-binding proteins from 13 species belonging to the Yarrowia clade. We identified putative TER loci, analyzed their sequence and secondary structure conservation, and predicted functional elements. Moreover, in vivo complementation assays with mutant TERs showed the functional importance of four novel TER substructures. The TER-derived telomeric repeat unit of all species, except for one, is 10 bp long and can be represented as 5′-TTNNNNAGGG-3′, with repeat sequence variations occuring primarily outside the vertebrate telomeric motif 5′-TTAGGG-3′. All species possess a homologue of the Yarrowia lipolytica Tay1 protein, YlTay1p. In vitro, YlTay1p displays comparable DNA-binding affinity to all repeat variants, suggesting a conserved role among these species. Taken together, these results add significant insights into the co-evolution of TERs, telomeric repeats and telomere-binding proteins in yeasts.
Collapse
Affiliation(s)
- Filip Červenák
- Departments of Genetics and Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovičova 6, Mlynská dolina, 84215, Bratislava, Slovakia
| | - Katarína Juríková
- Departments of Genetics and Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovičova 6, Mlynská dolina, 84215, Bratislava, Slovakia
| | - Hugo Devillers
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Binyamin Kaffe
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Safra Campus, Jerusalem, 91904, Israel
| | - Areej Khatib
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Safra Campus, Jerusalem, 91904, Israel
| | - Erin Bonnell
- Department of Microbiology and Infectiology, RNA Group, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Martina Sopkovičová
- Departments of Genetics and Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovičova 6, Mlynská dolina, 84215, Bratislava, Slovakia
| | - Raymund J Wellinger
- Department of Microbiology and Infectiology, RNA Group, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1E 4K8, Canada
| | - Jozef Nosek
- Departments of Genetics and Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovičova 6, Mlynská dolina, 84215, Bratislava, Slovakia
| | - Yehuda Tzfati
- Department of Genetics, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Safra Campus, Jerusalem, 91904, Israel.
| | - Cécile Neuvéglise
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| | - Ľubomír Tomáška
- Departments of Genetics and Biochemistry, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovičova 6, Mlynská dolina, 84215, Bratislava, Slovakia.
| |
Collapse
|
25
|
Ouephanit C, Boonvitthya N, Theerachat M, Bozonnet S, Chulalaksananukul W. Efficient expression and secretion of endo-1,4-β-xylanase from Penicillium citrinum in non-conventional yeast Yarrowia lipolytica directed by the native and the preproLIP2 signal peptides. Protein Expr Purif 2019; 160:1-6. [PMID: 30923012 DOI: 10.1016/j.pep.2019.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 11/29/2022]
Abstract
Filamentous fungi are the most common industrial xylanase producers. In this study, the xynA gene encoding xylanase A of Penicilium citrinum was successfully synthesized and expressed in Yarrowia lipolytica under the control of the strong constitutive TEF promoter. Native and preproLIP2 secretion signals were used for comparison of the expression and secretion level. The recombinant xylanase was produced as a soluble protein, and the total activity production reached 11 and 52 times higher than the level of activity produced by the fungus P. citrinum native strain, respectively. Maximum activity was observed with the preproLIP2 secretion signal at 180 U/mL. Post translational glycosylation affected the molecular mass of the recombinant xylanase, resulting in an apparent molecular weight larger than 60 kDa, whereas after deglycosylation, the recombinant XynA displayed a molecular mass of 20 kDa. The deglycosylated xylanase was purified by ion exchange chromatography and reached 185-fold of purification. The enzyme was optimally active at 55 °C and pH 5 and stable over a broad pH range (3-9). It retained more than 80% of the original activity after 24 h. It conserved around 80% of the original activity after pre-incubation at 40 °C for 6 h. With birchwood xylan as substrate, the enzyme showed a Km of 5.2 mg/mL, and kcat of 245 per s. The high level of secretion and the stability over a wide range of pH and at moderate temperatures of the re-XynA could be useful for variety of biotechnological applications.
Collapse
Affiliation(s)
- Chanika Ouephanit
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Biofuels by Biocatalysts Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Monnat Theerachat
- Biofuels by Biocatalysts Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sophie Bozonnet
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse, 31077, France
| | - Warawut Chulalaksananukul
- Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Biofuels by Biocatalysts Research Unit, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
26
|
Gamboa-Melendez H, Larroude M, Park YK, Trebul P, Nicaud JM, Ledesma-Amaro R. Synthetic Biology to Improve the Production of Lipases and Esterases (Review). Methods Mol Biol 2018; 1835:229-242. [PMID: 30109656 DOI: 10.1007/978-1-4939-8672-9_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Synthetic biology is an emergent field of research whose aim is to make biology an engineering discipline, thus permitting to design, control, and standardize biological processes. Synthetic biology is therefore expected to boost the development of biotechnological processes such as protein production and enzyme engineering, which can be significantly relevant for lipases and esterases.
Collapse
Affiliation(s)
- Heber Gamboa-Melendez
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Macarena Larroude
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Young Kyoung Park
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Pauline Trebul
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Jean-Marc Nicaud
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Sythetic Biology, Imperial College London, London, UK.
| |
Collapse
|
27
|
Trassaert M, Vandermies M, Carly F, Denies O, Thomas S, Fickers P, Nicaud JM. New inducible promoter for gene expression and synthetic biology in Yarrowia lipolytica. Microb Cell Fact 2017; 16:141. [PMID: 28810867 PMCID: PMC5557077 DOI: 10.1186/s12934-017-0755-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/05/2017] [Indexed: 12/02/2022] Open
Abstract
Background The oleaginous yeast Yarrowia lipolytica is increasingly used as alternative cell factory for the production of recombinant proteins. At present, several promoters with different strengths have been developed based either on the constitutive pTEF promoter or on oleic acid inducible promoters such as pPOX2 and pLIP2. Although these promoters are highly efficient, there is still a lack of versatile inducible promoters for gene expression in Y. lipolytica. Results We have isolated and characterized the promoter of the EYK1 gene coding for an erythrulose kinase. pEYK1 induction was found to be impaired in media supplemented with glucose and glycerol, while the presence of erythritol and erythrulose strongly increased the promoter induction level. Promoter characterization and mutagenesis allowed the identification of the upstream activating sequence UAS1EYK1. New hybrid promoters containing tandem repeats of either UAS1XPR2 or UAS1EYK1 were developed showing higher expression levels than the native pEYK1 promoter. Furthermore, promoter strength was improved in a strain carrying a deletion in the EYK1 gene, allowing thus the utilization of erythritol and erythrulose as free inducer. Conclusions Novel tunable and regulated promoters with applications in the field of heterologous protein production, metabolic engineering, and synthetic biology have been developed, thus filling the gap of the absence of versatile inducible promoter in the yeast Y. lipolytica. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0755-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marion Trassaert
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Marie Vandermies
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, University of Liège - Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Fréderic Carly
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,Unité de Biotechnologies et Bioprocédés, Université Libre de Bruxelles, Brussels, Belgium
| | - Olivia Denies
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, University of Liège - Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Stéphane Thomas
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Patrick Fickers
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, University of Liège - Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Jean-Marc Nicaud
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France. .,Micalis Institute, INRA-AgroParisTech, UMR1319, Team BIMLip: Integrative Metabolism of Microbial Lipids, Bâtiment 526, domaine de Vilvert, 78352, Jouy-en-Josas, France.
| |
Collapse
|
28
|
Lazar Z, Neuvéglise C, Rossignol T, Devillers H, Morin N, Robak M, Nicaud JM, Crutz-Le Coq AM. Characterization of hexose transporters in Yarrowia lipolytica reveals new groups of Sugar Porters involved in yeast growth. Fungal Genet Biol 2017; 100:1-12. [DOI: 10.1016/j.fgb.2017.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/21/2016] [Accepted: 01/03/2017] [Indexed: 12/24/2022]
|