1
|
Guangmei D, Weishan H, Wenya L, Fasheng W, Jibing C. Evolution of radiation-induced dermatitis treatment. Clin Transl Oncol 2024; 26:2142-2155. [PMID: 38594379 DOI: 10.1007/s12094-024-03460-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/09/2024] [Indexed: 04/11/2024]
Abstract
Radiation-induced skin damage (RID) is the most prevalent, significant side effect of radiotherapy (RT). Nearly 95% of patients experience moderate to severe skin reactions after receiving radiation therapy. However, criteria for acute radiation dermatitis (ARD) treatment remain unavailable. Topical agents with anti-inflammatory properties may protect the skin and facilitate tissue regeneration in patients with RID. Many of these topical agents function through nuclear factor kappa B pathway regulation. They either reduce the levels of inflammatory factors or elicit anti-inflammatory properties of their own, thus preventing oxidative stress and inflammatory responses and thus enabling RID prevention and management. Herein, we explore the 25 topical agents investigated for RID prevention and management thus far and evaluate their mechanisms of action. These agents include 11 natural agents, 3 miscellaneous agents, 9 topical nonsteroidal agents, and 2 topical corticosteroids.
Collapse
Affiliation(s)
- Deng Guangmei
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - He Weishan
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Liu Wenya
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Wu Fasheng
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China.
| | - Chen Jibing
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China.
| |
Collapse
|
2
|
Catalano A, Ceramella J, Iacopetta D, Marra M, Conforti F, Lupi FR, Gabriele D, Borges F, Sinicropi MS. Aloe vera-An Extensive Review Focused on Recent Studies. Foods 2024; 13:2155. [PMID: 38998660 PMCID: PMC11241682 DOI: 10.3390/foods13132155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/16/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
Since ancient times, Aloe vera L. (AV) has attracted scientific interest because of its multiple cosmetic and medicinal properties, attributable to compounds present in leaves and other parts of the plant. The collected literature data show that AV and its products have a beneficial influence on human health, both by topical and oral use, as juice or an extract. Several scientific studies demonstrated the numerous biological activities of AV, including, for instance, antiviral, antimicrobial, antitumor, and antifungal. Moreover, its important antidepressant activity in relation to several diseases, including skin disorders (psoriasis, acne, and so on) and prediabetes, is a growing field of research. This comprehensive review intends to present the most significant and recent studies regarding the plethora of AV's biological activities and an in-depth analysis exploring the component/s responsible for them. Moreover, its morphology and chemical composition are described, along with some studies regarding the single components of AV available in commerce. Finally, valorization studies and a discussion about the metabolism and toxicological aspects of this "Wonder Plant" are reported.
Collapse
Affiliation(s)
- Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70126 Bari, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Maria Marra
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Francesca R Lupi
- Department of Information, Modeling, Electronics and System Engineering, (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, CS, 87036 Rende, Italy
| | - Domenico Gabriele
- Department of Information, Modeling, Electronics and System Engineering, (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, CS, 87036 Rende, Italy
| | - Fernanda Borges
- CIQUP-IMS-Centro de Investigação em Química da Universidade do Porto, Institute of Molecular Sciences, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
3
|
Chelu M, Musuc AM, Popa M, Calderon Moreno J. Aloe vera-Based Hydrogels for Wound Healing: Properties and Therapeutic Effects. Gels 2023; 9:539. [PMID: 37504418 PMCID: PMC10379830 DOI: 10.3390/gels9070539] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023] Open
Abstract
Aloe vera-based hydrogels have emerged as promising platforms for the delivery of therapeutic agents in wound dressings due to their biocompatibility and unique wound-healing properties. The present study provides a comprehensive overview of recent advances in the application of Aloe vera-based hydrogels for wound healing. The synthesis methods, structural characteristics, and properties of Aloe vera-based hydrogels are discussed. Mechanisms of therapeutic agents released from Aloe vera-based hydrogels, including diffusion, swelling, and degradation, are also analyzed. In addition, the therapeutic effects of Aloe vera-based hydrogels on wound healing, as well as the reduction of inflammation, antimicrobial activity, and tissue regeneration, are highlighted. The incorporation of various therapeutic agents, such as antimicrobial and anti-inflammatory ones, into Aloe vera-based hydrogels is reviewed in detail. Furthermore, challenges and future prospects of Aloe vera-based hydrogels for wound dressing applications are considered. This review provides valuable information on the current status of Aloe vera-based hydrogels for the delivery of therapeutic agents in wound dressings and highlights their potential to improve wound healing outcomes.
Collapse
Affiliation(s)
| | - Adina Magdalena Musuc
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania; (M.C.); (M.P.)
| | | | - Jose Calderon Moreno
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Splaiul Independentei, 060021 Bucharest, Romania; (M.C.); (M.P.)
| |
Collapse
|
4
|
Liu HM, Cheng MY, Xun MH, Zhao ZW, Zhang Y, Tang W, Cheng J, Ni J, Wang W. Possible Mechanisms of Oxidative Stress-Induced Skin Cellular Senescence, Inflammation, and Cancer and the Therapeutic Potential of Plant Polyphenols. Int J Mol Sci 2023; 24:ijms24043755. [PMID: 36835162 PMCID: PMC9962998 DOI: 10.3390/ijms24043755] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
As the greatest defense organ of the body, the skin is exposed to endogenous and external stressors that produce reactive oxygen species (ROS). When the antioxidant system of the body fails to eliminate ROS, oxidative stress is initiated, which results in skin cellular senescence, inflammation, and cancer. Two main possible mechanisms underlie oxidative stress-induced skin cellular senescence, inflammation, and cancer. One mechanism is that ROS directly degrade biological macromolecules, including proteins, DNA, and lipids, that are essential for cell metabolism, survival, and genetics. Another one is that ROS mediate signaling pathways, such as MAPK, JAK/STAT, PI3K/AKT/mTOR, NF-κB, Nrf2, and SIRT1/FOXO, affecting cytokine release and enzyme expression. As natural antioxidants, plant polyphenols are safe and exhibit a therapeutic potential. We here discuss in detail the therapeutic potential of selected polyphenolic compounds and outline relevant molecular targets. Polyphenols selected here for study according to their structural classification include curcumin, catechins, resveratrol, quercetin, ellagic acid, and procyanidins. Finally, the latest delivery of plant polyphenols to the skin (taking curcumin as an example) and the current status of clinical research are summarized, providing a theoretical foundation for future clinical research and the generation of new pharmaceuticals and cosmetics.
Collapse
Affiliation(s)
- Hui-Min Liu
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China
| | - Ming-Yan Cheng
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Meng-Han Xun
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zhi-Wei Zhao
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yun Zhang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Wei Tang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jun Cheng
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jia Ni
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
| | - Wei Wang
- School of Perfume & Aroma and Cosmetics, Shanghai Institute of Technology, Shanghai 201418, China
- Engineering Research Center of Perfume & Aroma and Cosmetics, Ministry of Education, Shanghai 201418, China
- Correspondence: ; Tel.: +86-18918830550
| |
Collapse
|
5
|
Wang F, Liu J, An Q, Wang Y, Yang Y, Huo T, Yang S, Ju R, Quan Q. Aloe Extracts Inhibit Skin Inflammatory Responses by Regulating NF-κB, ERK, and JNK Signaling Pathways in an LPS-Induced RAW264.7 Macrophages Model. Clin Cosmet Investig Dermatol 2023; 16:267-278. [PMID: 36742263 PMCID: PMC9891070 DOI: 10.2147/ccid.s391741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023]
Abstract
Introduction Inflammation generally refers to the body's defensive response to stimuli, and skin inflammation is still one of the major problems that affect human physical and mental health. While current pharmacological treatments are reported to have cytotoxicity and various side effects, herbal medicines with few side effects and low cytotoxicity are considered as alternative therapeutic approaches. Methods In order to investigate anti-inflammatory effects and mechanisms of ALOE, the potential cytotoxicity of A. vera extracts (ALOE) was determined in vitro at first. The production of the pro-inflammatory proteins (ie, IL-6, TNF-α) in lipopolysaccharides (LPS) and ultraviolet A (UVA)-stimulated HaCaT and RAW264.7 cells were then treated with ALOE to test its inhibitory effects using enzyme-linked immunosorbent assay (ELISA). To further explore the anti-inflammatory mechanisms of ALOE, quantitative Polymerase Chain Reaction (qPCR) was used to analyze the mRNA expression of inflammatory genes iNOS, COX-2 and NO production. For NF-κB and MAPK signaling pathways analysis, Western blotting and nuclear fluorescence staining were used to evaluate the expression of key factors. Results ALOE did not exhibit obvious cytotoxicity (0-3 mg/mL) in vitro. ALOE was able to inhibit the expression of pro-inflammatory cytokines IL-6, TNF-α and functioned more prominently in LPS-induced model. ALOE could also suppress the mRNA expression of LPS-induced iNOS and COX-2 and further down-regulate NO level. Furthermore, ALOE reduced the protein expression of P65 in NF-κB signaling pathway and suppressed LPS-induced activation of ERK and JNK, instead of p38 MAPK pathway. Conclusion Taken together, these results demonstrated that ALOE is a potential treatment in suppressing LPS-stimulated inflammation reactions targeting NF-κB, JNK and ERK signaling pathways. The anti-inflammatory effects of ALOE indicated that it has the potential to become an effective cosmetic ingredient.
Collapse
Affiliation(s)
- Fei Wang
- Research and Development Department, Yunnan Baiyao Group Health Products Co., Ltd., Kunming, People’s Republic of China
- East Asia Skin Health Research Center, Beijing, People’s Republic of China
- Research and Development Department, REAL DermaSci & Biotech Co., Ltd., Beijing, People’s Republic of China
| | - Jitao Liu
- Research and Development Department, Yunnan Baiyao Group Health Products Co., Ltd., Kunming, People’s Republic of China
- East Asia Skin Health Research Center, Beijing, People’s Republic of China
- Research and Development Department, REAL DermaSci & Biotech Co., Ltd., Beijing, People’s Republic of China
| | - Quan An
- Research and Development Department, Yunnan Baiyao Group Health Products Co., Ltd., Kunming, People’s Republic of China
- East Asia Skin Health Research Center, Beijing, People’s Republic of China
- Research and Development Department, REAL DermaSci & Biotech Co., Ltd., Beijing, People’s Republic of China
- Research and Development Department, Yunnan Baiyao Group Shanghai Science & Technology Co., Ltd., Shanghai, People’s Republic of China
| | - Yiming Wang
- Research and Development Department, Yunnan Baiyao Group Health Products Co., Ltd., Kunming, People’s Republic of China
- East Asia Skin Health Research Center, Beijing, People’s Republic of China
- Research and Development Department, REAL DermaSci & Biotech Co., Ltd., Beijing, People’s Republic of China
| | - Yang Yang
- Research and Development Department, Yunnan Baiyao Group Health Products Co., Ltd., Kunming, People’s Republic of China
- East Asia Skin Health Research Center, Beijing, People’s Republic of China
- Research and Development Department, REAL DermaSci & Biotech Co., Ltd., Beijing, People’s Republic of China
| | - Tong Huo
- Research and Development Department, Yunnan Baiyao Group Health Products Co., Ltd., Kunming, People’s Republic of China
- East Asia Skin Health Research Center, Beijing, People’s Republic of China
- Research and Development Department, REAL DermaSci & Biotech Co., Ltd., Beijing, People’s Republic of China
| | - Simin Yang
- Beijing Key Laboratory of Enze Biomass Fine Chemicals, Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing, People’s Republic of China
| | - Ruijun Ju
- Beijing Key Laboratory of Enze Biomass Fine Chemicals, Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing, People’s Republic of China
| | - Qianghua Quan
- Research and Development Department, Yunnan Baiyao Group Health Products Co., Ltd., Kunming, People’s Republic of China
- East Asia Skin Health Research Center, Beijing, People’s Republic of China
- Research and Development Department, REAL DermaSci & Biotech Co., Ltd., Beijing, People’s Republic of China
- Research and Development Department, Yunnan Baiyao Group Shanghai Science & Technology Co., Ltd., Shanghai, People’s Republic of China
| |
Collapse
|
6
|
Habibi P, Ostad SN, Heydari A, Aliebrahimi S, Montazeri V, Foroushani AR, Monazzam MR, Ghazi-Khansari M, Golbabaei F. Effect of heat stress on DNA damage: a systematic literature review. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:2147-2158. [PMID: 36178536 DOI: 10.1007/s00484-022-02351-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/27/2022] [Accepted: 08/16/2022] [Indexed: 06/16/2023]
Abstract
Thermal stress has a direct effect on various types of DNA damage, which depends on the stage of the cell cycle when the cell is exposed to different climate conditions. A literature review was conducted to systematically investigate and assess the overall effect of heat stress and DNA damage following heat exposure. In this study, electronic databases including PubMed, Scopus, and Web of Science were searched to find relevant literature on DNA damage in different ambient temperatures. Outcomes included (1) measurement of DNA damage in heat exposure, (2) three different quantification methods (comet assay, 8-hydroxy-2-deoxyguanosine (8-OHdG), and γ-H2AX), and (3) protocols used for moderate (31) and high temperatures (42). The evidence shows that long exposure and very high temperature can induce an increase in DNA damage through aggregate in natural proteins, ROS generation, cell death, and reproductive damage in hot-humid and hot-dry climate conditions. A substantial increase in DNA damage occurs following acute heat stress exposure, especially in tropical and subtropical climate conditions. The results of this systematic literature review showed a positive association between thermal stress exposure and inhibition of repair of DNA damage.
Collapse
Affiliation(s)
- Peymaneh Habibi
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Naser Ostad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahad Heydari
- Department of Health in Disaster and Emergencies, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Shima Aliebrahimi
- Artificial Intelligence Department, Smart University of Medical Sciences, Tehran, Iran
| | - Vahideh Montazeri
- Artificial Intelligence Department, Smart University of Medical Sciences, Tehran, Iran
| | - Abbas Rahimi Foroushani
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Monazzam
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Ghazi-Khansari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Golbabaei
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Yan X, Chen X, Fu C, Jing C, Zhao D, Sun L. Ginseng oligosaccharides protect neurons from glutamate-induced oxidative damage through the Nrf2/HO-1 signaling pathway. Food Funct 2022; 13:8605-8615. [PMID: 35894549 DOI: 10.1039/d2fo01432g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effects of ginseng oligosaccharides (GSOs) on neuronal oxidative injury induced by glutamate (GLU) and the molecular mechanisms involved were investigated. Cell damage was assessed using MTT assays, and the lactate dehydrogenase (LDH) release rate and flow cytometry were used to detect the accumulation of reactive oxygen species (ROS) and mitochondrial membrane potential respectively. The levels of catalase (CAT) and glutathione (GSH) were measured in PC12 cells and Drosophila brain tissue. The climbing ability of Drosophila was observed. Levels of proteins, including Cyt C, Bcl-2/BAX, and Nrf2/HO-1-associated proteins, were determined by western blotting and immunofluorescence. It was found that GSOs reversed GLU-induced reductions in cell viability and the LDH release rate, and rescued ROS accumulation. GSOs also mitigated the deleterious effects of GLU on the mitochondrial membrane potential and Cyt C release, thus alleviating mitochondrial dysfunction, and increased GSH levels and CAT activity in both cells and Drosophila brain tissue. The climbing index in GSO-treated Drosophila was significantly higher than that in the tert-butyl-hydroperoxide-treated flies. Furthermore, GSOs protected cells against GLU-induced apoptosis by reducing the expression of the mitochondrial apoptosis-associated Bcl-2 family effector proteins and protected cells from GLU-induced oxidative damage by increasing the nuclear translocation of Nrf2 and HO-1 expression. These findings indicate that GSOs protect against GLU-induced neuronal oxidative damage through Nrf2/HO-1 activation.
Collapse
Affiliation(s)
- Xiuci Yan
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gongnong Street, Changchun, Jilin Province, 130021, PR China.
| | - Xuenan Chen
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gongnong Street, Changchun, Jilin Province, 130021, PR China.
| | - Chunge Fu
- Changchun Maternal and Child Health Care Center, Changchun, 1287 Dama Road, Changchun, Jilin Province 130021, PR China
| | - Chenxu Jing
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gongnong Street, Changchun, Jilin Province, 130021, PR China.
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin Province 130021, PR China.
| | - Liwei Sun
- Research Center of Traditional Chinese Medicine, the Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gongnong Street, Changchun, Jilin Province, 130021, PR China. .,Jilin Provincial Science and Technology Innovation Cross-Regional Cooperation Center of Traditional Chinese Medicine Health Product Research and Development, PR China
| |
Collapse
|
8
|
Liu E, Gao H, Zhao Y, Pang Y, Yao Y, Yang Z, Zhang X, Wang Y, Yang S, Ma X, Zeng J, Guo J. The potential application of natural products in cutaneous wound healing: A review of preclinical evidence. Front Pharmacol 2022; 13:900439. [PMID: 35935866 PMCID: PMC9354992 DOI: 10.3389/fphar.2022.900439] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022] Open
Abstract
Under normal circumstances, wound healing can be summarized as three processes. These include inflammation, proliferation, and remodeling. The vast majority of wounds heal rapidly; however, a large percentage of nonhealing wounds have still not been studied significantly. The factors affecting wound nonhealing are complex and diverse, and identifying an effective solution from nature becomes a key goal of research. This study aimed to highlight and review the mechanisms and targets of natural products (NPs) for treating nonhealing wounds. The results of relevant studies have shown that the effects of NPs are associated with PI3K-AKT, P38MAPK, fibroblast growth factor, MAPK, and ERK signaling pathways and involve tumor growth factor (TNF), vascular endothelial growth factor, TNF-α, interleukin-1β, and expression of other cytokines and proteins. The 25 NPs that contribute to wound healing were systematically summarized by an inductive collation of the six major classes of compounds, including saponins, polyphenols, flavonoids, anthraquinones, polysaccharides, and others, which will further direct the attention to the active components of NPs and provide research ideas for further development of new products for wound healing.
Collapse
Affiliation(s)
- E Liu
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongjin Gao
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - YiJia Zhao
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaobing Pang
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yejing Yao
- Neijiang Hospital of Traditional Chinese Medicine, Neijiang, China
| | - Zhengru Yang
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xueer Zhang
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - YanJin Wang
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Siming Yang
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiao Ma, ; Jinhao Zeng, ; Jing Guo,
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiao Ma, ; Jinhao Zeng, ; Jing Guo,
| | - Jing Guo
- Dermatological Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Xiao Ma, ; Jinhao Zeng, ; Jing Guo,
| |
Collapse
|
9
|
Eriodictyol Attenuates H 2O 2-Induced Oxidative Damage in Human Dermal Fibroblasts through Enhanced Capacity of Antioxidant Machinery. Nutrients 2022; 14:nu14122553. [PMID: 35745283 PMCID: PMC9228723 DOI: 10.3390/nu14122553] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/23/2022] Open
Abstract
Oxidative stress in dermal fibroblasts is strongly correlated with the aging process of the skin. The application of natural compounds that can increase the ability of dermal fibroblasts to counteract oxidative stress is a promising approach to promote skin health and beauty. Eriodictyol is a flavonoid that exerts several pharmacological actions through its antioxidant properties. However, its protective effects on dermal fibroblasts have not yet been investigated. In this study, we investigated whether eriodictyol protects human dermal fibroblasts (BJ fibroblasts) from the harmful effects of hydrogen peroxide (H2O2). Eriodictyol pretreatment significantly prevented necrotic cell death caused by H2O2 exposure. In addition, the level of 2′,7′-dichloro-dihydro-fluorescein oxidation was decreased, and that of glutathione was maintained, indicating that the beneficial effects of eriodictyol against H2O2 were closely associated with oxidative-stress attenuation. Eriodictyol mediates its antioxidant effects on dermal fibroblasts against H2O2 through (i) the direct neutralization of reactive oxygen species; (ii) the enhancement of the activities of H2O2-detoxifying enzymes, including catalase and glutathione peroxidase; and (iii) the induction of the expressions of catalase and glutathione peroxidase 1 via the activation of the Nrf2 signaling system. These results support the potential application of eriodictyol as an ingredient in skincare products for cosmeceutical and pharmaceutical purposes.
Collapse
|
10
|
Peña JS, Vazquez M. Harnessing the Neuroprotective Behaviors of Müller Glia for Retinal Repair. FRONT BIOSCI-LANDMRK 2022; 27:169. [PMID: 35748245 PMCID: PMC9639582 DOI: 10.31083/j.fbl2706169] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/18/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022]
Abstract
Progressive and irreversible vision loss in mature and aging adults creates a health and economic burden, worldwide. Despite the advancements of many contemporary therapies to restore vision, few approaches have considered the innate benefits of gliosis, the endogenous processes of retinal repair that precede vision loss. Retinal gliosis is fundamentally driven by Müller glia (MG) and is characterized by three primary cellular mechanisms: hypertrophy, proliferation, and migration. In early stages of gliosis, these processes have neuroprotective potential to halt the progression of disease and encourage synaptic activity among neurons. Later stages, however, can lead to glial scarring, which is a hallmark of disease progression and blindness. As a result, the neuroprotective abilities of MG have remained incompletely explored and poorly integrated into current treatment regimens. Bioengineering studies of the intrinsic behaviors of MG hold promise to exploit glial reparative ability, while repressing neuro-disruptive MG responses. In particular, recent in vitro systems have become primary models to analyze individual gliotic processes and provide a stepping stone for in vivo strategies. This review highlights recent studies of MG gliosis seeking to harness MG neuroprotective ability for regeneration using contemporary biotechnologies. We emphasize the importance of studying gliosis as a reparative mechanism, rather than disregarding it as an unfortunate clinical prognosis in diseased retina.
Collapse
Affiliation(s)
- Juan S. Peña
- Department of Biomedical Engineering, Rutgers, The State
University of New Jersey, Piscataway (08854), New Jersey, USA
| | - Maribel Vazquez
- Department of Biomedical Engineering, Rutgers, The State
University of New Jersey, Piscataway (08854), New Jersey, USA
| |
Collapse
|
11
|
Xiao J, Chen S, Chen Y, Su J. The potential health benefits of aloin from genus Aloe. Phytother Res 2022; 36:873-890. [PMID: 35040198 DOI: 10.1002/ptr.7371] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 01/04/2023]
Abstract
The Aloe species is known for its medicinal and cosmetic properties. Aloin is an active ingredient found in the leaves of medicinal plants of the genus Aloe. Aloin has attracted considerable interest for its antiinflammatory, anticancer, antibacterial, and antioxidant activities. However, since its clinical application is restricted by its unclear mechanism of action, a deeper understanding of its pharmacological activity is required. This review provides an overview of current pharmacological and toxicological studies published in English from February 2000 to August 2021. Herein, we summarized the sources and potential health benefits of aloin from a clinical application perspective to guide for further studies on the sources of aloin, aimed at efficiently increasing aloin production. Importantly, the function and mechanism of action of aloin remain unclarified. In future research, it is necessary to develop new approaches for studying the pharmacological molecular mechanisms underlying the activity of this compound against various diseases.
Collapse
Affiliation(s)
- Jianbin Xiao
- College of Life Science, Fujian Normal University, Fuzhou, China.,The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Siyuan Chen
- College of Life Science, Fujian Normal University, Fuzhou, China.,The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Youqiang Chen
- College of Life Science, Fujian Normal University, Fuzhou, China.,The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Jingqian Su
- College of Life Science, Fujian Normal University, Fuzhou, China.,Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| |
Collapse
|
12
|
Zhong R, Chen L, Liu Y, Xie S, Li S, Liu B, Zhao C. Anti-diabetic effect of aloin via JNK-IRS1/PI3K pathways and regulation of gut microbiota. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.07.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Mügge FLB, Prates SMS, Andrade APS, Melo JC, Silva AM, Araujo RLBD, Labanca RA, Brandão MGL. Proliferative Effect of Food Plant Species from Brazil's Cerrado on Cultured Fibroblasts. J Med Food 2021; 24:1323-1330. [PMID: 34491843 DOI: 10.1089/jmf.2021.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Brazilian Cerrado is the second largest biome in South America and contains many unstudied valuable plant species rich in bioactive substances. In this study we investigated the phenolic content and proliferative effects on cultured fibroblasts of 32 extracts of different polarities prepared from 11 plants found in Cerrado regions. Eight extracts from six species increased cell proliferation and significantly induced ATP production by the cells. Four of these extracts were obtained from plants used as food, specifically from its fruits or seeds. A high phenolic content for these eight extracts, which directly correlated with the induction of cell proliferation, was corroborated by mass spectrometry analysis. We suggest that the bioactive substance content of these species shows an interesting potential use in cosmetic and food industry, which can contribute to the conservation and sustainable development of this region.
Collapse
Affiliation(s)
- Fernanda L B Mügge
- Morfology Department, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Specialized Center for Aromatic, Medicinal and Toxic Plants (CEPLAMT), Natural History Museum and Botanical Garden, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sarah M S Prates
- Specialized Center for Aromatic, Medicinal and Toxic Plants (CEPLAMT), Natural History Museum and Botanical Garden, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Graduate Program in Food Science, Pharmacy Faculty, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Aretha P S Andrade
- Specialized Center for Aromatic, Medicinal and Toxic Plants (CEPLAMT), Natural History Museum and Botanical Garden, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jean C Melo
- Specialized Center for Aromatic, Medicinal and Toxic Plants (CEPLAMT), Natural History Museum and Botanical Garden, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Graduate Program in Food Science, Pharmacy Faculty, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Aristóbolo M Silva
- Morfology Department, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Raquel L Bello de Araujo
- Graduate Program in Food Science, Pharmacy Faculty, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Renata A Labanca
- Graduate Program in Food Science, Pharmacy Faculty, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria G L Brandão
- Specialized Center for Aromatic, Medicinal and Toxic Plants (CEPLAMT), Natural History Museum and Botanical Garden, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Graduate Program in Food Science, Pharmacy Faculty, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
14
|
Protective Effects of Titanium Dioxide-based Emulsion after Short-term and Long-term Infrared-A Ray Irradiation on Skin Cells. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0308-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Zhao Y, Dong Y, Ge Q, Cui P, Sun N, Lin S. Neuroprotective effects of NDEELNK from sea cucumber ovum against scopolamine-induced PC12 cell damage through enhancing energy metabolism and upregulation of the PKA/BDNF/NGF signaling pathway. Food Funct 2021; 12:7676-7687. [PMID: 34259275 DOI: 10.1039/d1fo00631b] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The aim of the study was to evaluate the neuroprotective function of sea cucumber ovum peptide-derived NDEELNK and explore the underlying molecular mechanisms. NDEELNK exerted the neuroprotective effect by improving the acetylcholine (ACh) level and reducing the acetylcholinesterase (AChE) activity in PC12 cells. By molecular docking, we confirmed that the NDEELNK backbone and AChE interacted through hydrophobic and hydrogen bonds in contact with the amino acid residues of the cavity wall. NDEELNK increased superoxide dismutase (SOD) activity and decreased reactive oxygen species (ROS) production, thereby reducing mitochondrial dysfunction and enhancing energy metabolism. Our results demonstrated that NDEELNK supplementation alleviated scopolamine-induced PC12 cell damage by improving the cholinergic system, increasing energy metabolism and upregulating the expression of phosphorylated protein kinase A (p-PKA), brain-derived neurotrophic factor (BNDF) and nerve growth factor (NGF) signaling proteins in in vitro experiments. These results demonstrated that the sea cucumber ovum peptide-derived NDEELNK might play a protective role in PC12 cells.
Collapse
Affiliation(s)
- Yue Zhao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | | | | | | | | | | |
Collapse
|
16
|
Health Potential of Aloe vera against Oxidative Stress Induced Corneal Damage: An "In Vitro" Study. Antioxidants (Basel) 2021; 10:antiox10020318. [PMID: 33672553 PMCID: PMC7923787 DOI: 10.3390/antiox10020318] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/05/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Fuchs endothelial corneal dystrophy (FECD) is characterized by the gradual deterioration of corneal endothelial cells (CECs) and is the most common cause of corneal transplantation worldwide. CECs apoptosis caused by oxidative stress plays a pivotal role in the pathogenesis of FECD. Antioxidant compounds have been of considerable significance as a candidate treatment in the management of corneal diseases. Based on these findings, the objective of this study was to evaluate the effects of an aloe extract with antioxidant properties, in an “in vitro” model of FECD. Human corneal epithelial (HCE) cells were preincubated with aloe extract 100 μg/mL, two hours before hydrogen peroxide (H2O2) stimulus. H2O2 challenge significantly reduced the cell viability, increased the generation of Reactive Oxygen Species (ROS) and malondialdehyde levels. Moreover, m-RNA expression and activity of Nrf-2, Catalase and Superoxide dismutase (SOD) were reduced together with an enhanced expression of IL-1β, tumor necrosis factor-α (TNF-α), IL-6, and cyclooxygenase 2 (COX-2). Furthermore, Bcl-2, Caspase-3 and Caspase-8 expression were down-regulated while Bax was up-regulated by H2O2 stimulus. Aloe extract blunted the oxidative stress-induced inflammatory cascade triggered by H2O2 and modulated apoptosis. Aloe extract defends HCE cells from H2O2-induced injury possibly due its antioxidant and anti-inflammatory activity, indicating that eye drops containing aloe extract may be used as an adjunctive treatment for FECD.
Collapse
|
17
|
Dolp R, Eylert G, Auger C, Aijaz A, Chen YA, Amini-Nik S, Parousis A, Datu AK, Jeschke MG. Biological characteristics of stem cells derived from burned skin-a comparative study with umbilical cord stem cells. Stem Cell Res Ther 2021; 12:137. [PMID: 33597003 PMCID: PMC7888080 DOI: 10.1186/s13287-021-02140-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/05/2021] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Burned human skin, which is routinely excised and discarded, contains viable mesenchymal stromal/stem cells (burn-derived mesenchymal stromal/stem cells; BD-MSCs). These cells show promising potential to enable and aid wound regeneration. However, little is known about their cell characteristics and biological function. OBJECTIVES This study had two aims: first, to assess critical and cellular characteristics of BD-MSCs and, second, to compare those results with multipotent well-characterized MSCs from Wharton's jelly of human umbilical cords (umbilical cord mesenchymal stromal/stem cells, UC-MSCs). METHODS BD- and UC-MSCs were compared using immunophenotyping, multi-lineage differentiation, seahorse analysis for glycolytic and mitochondrial function, immune surface markers, and cell secretion profile assays. RESULTS When compared to UC-MSCs, BD-MSCs demonstrated a lower mesenchymal differentiation capacity and altered inflammatory cytokine secretomes at baseline and after stimulation with lipopolysaccharides. No significant differences were found in population doubling time, colony formation, cell proliferation cell cycle, production of reactive oxygen species, glycolytic and mitochondrial function, and in the expression of major histocompatibility complex I and II and toll-like receptor (TLR). IMPORTANCE, TRANSLATION This study reveals valuable insights about MSCs obtained from burned skin and show comparable cellular characteristics with UC-MSCs, highlighting their potentials in cell therapy and skin regeneration.
Collapse
Affiliation(s)
- Reinhard Dolp
- Sunnybrook Research Institute, Toronto, Canada
- Department of Psychiatry, Queen's University, Kingston, Canada
- Institute of Medical Science, University of Toronto, Ontario, Canada
| | - Gertraud Eylert
- Sunnybrook Research Institute, Toronto, Canada
- Institute of Medical Science, University of Toronto, Ontario, Canada
- Division of Plastic, Aesthetic and Reconstructive Surgery, Medical University of Graz, Graz, Austria
| | | | | | | | - Saeid Amini-Nik
- Sunnybrook Research Institute, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology (LMP), University of Toronto, Toronto, Canada
- SGS Harrison Research Laboratories, SGS North America, New York Metropolitan Area, Union, NJ, USA
| | | | | | - Marc G Jeschke
- Sunnybrook Research Institute, Toronto, Canada.
- Department of Immunology, Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, 2075 Bayview Ave., Toronto, ON, M4N 3M5, Canada.
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Canada.
- Ross Tilley Burn Centre, Sunnybrook Health Science Centre, Toronto, Canada.
| |
Collapse
|
18
|
Aloin antagonizes stimulated ischemia/reperfusion-induced damage and inflammatory response in cardiomyocytes by activating the Nrf2/HO-1 defense pathway. Cell Tissue Res 2021; 384:735-744. [PMID: 33502605 DOI: 10.1007/s00441-020-03345-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022]
Abstract
Myocardial ischemia/reperfusion injury (I/RI) frequently incurs in acute myocardial infarction with high morbidity and mortality worldwide and is characterized with cardiomyocyte apoptosis and inflammatory response. Aloin is a major anthraquinone from Aloe species and fulfills pleiotropic protective functions in several disease models including hepatic injury. Nevertheless, the potential of aloin in MI/RI remains elusive. Intriguingly, aloin had modest cytotoxicity in H9c2 cardiomyocytes. Importantly, aloin dose-dependently ameliorated cell viability that was inhibited in response to simulated ischemia/reperfusion (SI/R) stimulation. Moreover, the enhanced apoptosis in cells under SI/R conditions were reduced after aloin treatment, concomitant with the decrease in pro-apoptotic Bax protein levels and increase in anti-apoptotic Bcl-2 protein expression. Of interest, aloin administration attenuated SI/R-induced oxidant stress by decreasing reactive oxygen species (ROS) production, lactate dehydrogenase (LDH), and malondialdehyde (MDA) release and increasing activity of anti-oxidant stress enzyme superoxide dismutase (SOD). Additionally, the elevated pro-inflammatory cytokine levels were counteracted after aloin treatment in cells under SI/R conditions, including TNF-α, IL-6, and IL-1β. Mechanically, aloin further enforced the activation of the NF-E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling. Noticeably, blockage of this pathway by si-Nrf2 transfection blunted aloin-mediated cardioprotective efficacy against SI/R-evoked oxidative stress injury and inflammatory response. Thus, these findings corroborate that aloin may antagonize SI/R-induced cardiomyocyte injury by attenuating excessive oxidative stress and inflammation, thereby endorsing its potential as a promising therapeutic agent against myocardial infarction.
Collapse
|
19
|
Shi M, Zong X, Chen L, Guo X, Ding X. MiR-506-3p regulates autophagy and proliferation in post-burn skin fibroblasts through post-transcriptionally suppressing Beclin-1 expression. In Vitro Cell Dev Biol Anim 2020; 56:522-532. [PMID: 32754856 DOI: 10.1007/s11626-020-00472-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) is involved in diverse biological processes of cells including dermal fibroblasts that contributed to wound healing and resulted in keloid scarring. MiR-506-3p has been identified as a tumor suppressor or oncogene in fibroblasts of various cancers, while the role of miR-506-3p in regulating functions of post-burn dermal fibroblasts is poorly known. In this study, miR-506-3p was confirmed to be significantly downregulated in burned tissues and heat-stimulated dermal fibroblasts. Expression levels of autophagy-related proteins suggested thermal stimulus promoting the autophagy in dermal fibroblasts. Then, miR-506-3p inhibition enhanced cell proliferation and cell cycle process in dermal fibroblasts after thermal stimulus, whereas overexpression of miR-506-3p showed the opposite effect. Western blot assay showed that inhibition of miR-506-3p resulted in the upregulation of the expression levels of LC3-II, ATG5, and structural protein collagen I, as well as the downregulation of p62. Marker proteins of intermolecular cross-links in collagen synthesis, including hydroxylysylpyridinoline (HP), lysinepyridine (LP), and lysyl hydroxylase 2 (LH2), were increased by miR-506-3p overexpression and decreased by miR-506-3p inhibition. Moreover, transfection with miR-506-3p mimic suppressed the proliferation and autophagy in heat-stimulated dermal fibroblasts in a dose-dependent manner. Subsequently, dual luciferase reporter gene assay demonstrated that Beclin-1 was a direct target of miR-506-3p, and reintroduction of Beclin-1 could antagonize the suppressive effect of miR-506-3p overexpression on fibroblast proliferation, autophagy, and the intermolecular cross-links in collagen synthesis. Taken together, our findings showed that miR-506-3p regulated autophagy and proliferation in post-burn skin fibroblasts through post-transcriptionally suppressing Beclin-1 expression.
Collapse
Affiliation(s)
- Min Shi
- School of Medicine, Xi'an Peihua University, Xi'an, China
| | - Xiaoming Zong
- Department of Oncology, Shaanxi Friendship Hospital, Xi'an, China
| | - Lei Chen
- School of Medicine, Xi'an Peihua University, Xi'an, China
| | - Xiaobo Guo
- Department of Hematology, Xi'an Central Hospital, Xi'an, China
| | - Xinqiang Ding
- Department of Dermatology, Xi'an Children's Hospital, 69 Xijuyuan Road, Lianhu District, Xi'an, 710000, China.
| |
Collapse
|
20
|
Hei X, Xie M, Xu J, Li J, Liu T. β-Asarone Exerts Antioxidative Effects on H 2O 2-Stimulated PC12 Cells by Activating Nrf2/HO-1 Pathway. Neurochem Res 2020; 45:1953-1961. [PMID: 32623664 DOI: 10.1007/s11064-020-03060-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 05/13/2020] [Accepted: 05/23/2020] [Indexed: 12/12/2022]
Abstract
Oxidative stress-mediated neuron damage is considered an important contributor to the pathogenesis and development of neurodegenerative diseases. Although β-asarone is widely known for its neuroprotective pharmacological properties, the exact mechanism of β-asarone against oxidative stress has not been fully elucidated. The aim of the present study was to investigate underlying mechanisms of β-asarone against oxidative damage in PC12 cells. Our results demonstrated that the treatment of β-asarone significantly alleviated the reduction in cell viability and the excessive accumulation of lactate dehydrogenase (LDH), malondialdehyde (MDA) and reactive oxygen species (ROS) by increasing the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH). Moreover, β-asarone pretreatment also activated nuclear factor 2 erythroid-related factor 2 (Nrf2) and its downstream target heme oxygenase-1 (HO-1), which was involved in quenching reactive oxygen to inhibit oxidative stress. Furthermore, when silenced by Nrf2 siRNA, the protective effect of β-asarone was reduced and the oxidative stress induced by H2O2 was enhanced. In conclusion, our findings revealed that β-asarone could reduce oxidative stress via activating Nrf2/HO-1 pathway in PC12 cells, highlighting the potential therapeutic role of β-asarone in neurodegenerative diseases.
Collapse
Affiliation(s)
- Xinxin Hei
- College of Traditional Chinese Medicine·College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Liyang City Hospital of TCM, Changzhou, China
| | - Miao Xie
- College of Basic Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jingqian Xu
- College of Traditional Chinese Medicine·College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinjin Li
- College of Traditional Chinese Medicine·College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tao Liu
- College of Traditional Chinese Medicine·College of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
21
|
Lei J, Shen Y, Xv G, Di Z, Li Y, Li G. Aloin suppresses lipopolysaccharide-induced acute lung injury by inhibiting NLRP3/NF-κB via activation of SIRT1 in mice. Immunopharmacol Immunotoxicol 2020; 42:306-313. [PMID: 32419528 DOI: 10.1080/08923973.2020.1765373] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The purpose of this study was to explore the protective effects and potential mechanisms of aloin on lipopolysaccharide (LPS)-induced acute lung injury (ALI). METHODS Mice were pretreatment with aloin 1 h before LPS administration. The number of inflammatory cells and the levels of TNF-α and IL-1β was detected. The lung histopathological changes, wet/dry ratio, MPO activity, GSH, MDA, SOD, and the expression of NF-κB and NLRP3 inflammasome were measured. RESULTS The results showed that aloin significantly inhibited the number of total cells, neutrophils, and macrophages, as well as the levels of TNF-α and IL-1β in BALF induced by LPS. In addition, pretreatment with aloin also inhibited LPS-induced lung histopathological injuries, lung wet/dry ratio, MPO activity, and MDA content. The levels of GSH and SOD were decreased by LPS and treatment of aloin could increase the levels of GSH and SOD. To study the protective mechanisms of alion on LPS-induced ALI, the expression of SIRT1, NF-κB and NLRP3 inflammasome were tested. We found that aloin significantly inhibited the activation of NF-κB and NLRP3 inflammasome in ALI induced by LPS. Meanwhile, aloin was found to increase the expression of SIRT1 and inhibition of SIRT1 by EX-527 reversed the protective effects of aloin. CONCLUSIONS These results suggest that aloin exerts its protective effects on LPS-induced ALI by activation SIRT1, which subsequently results in the suppression of NF-κB and NLRP3 inflammasome.
Collapse
Affiliation(s)
- Jiaji Lei
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongbin Shen
- Department of Vascular Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangquan Xv
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhixin Di
- Department of ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongchao Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guanghua Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
22
|
Sánchez M, González-Burgos E, Iglesias I, Gómez-Serranillos MP. Pharmacological Update Properties of Aloe Vera and its Major Active Constituents. Molecules 2020; 25:molecules25061324. [PMID: 32183224 PMCID: PMC7144722 DOI: 10.3390/molecules25061324] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 01/23/2023] Open
Abstract
Aloe vera has been traditionally used to treat skin injuries (burns, cuts, insect bites, and eczemas) and digestive problems because its anti-inflammatory, antimicrobial, and wound healing properties. Research on this medicinal plant has been aimed at validating traditional uses and deepening the mechanism of action, identifying the compounds responsible for these activities. The most investigated active compounds are aloe-emodin, aloin, aloesin, emodin, and acemannan. Likewise, new actions have been investigated for Aloe vera and its active compounds. This review provides an overview of current pharmacological studies (in vitro, in vivo, and clinical trials), written in English during the last six years (2014–2019). In particular, new pharmacological data research has shown that most studies refer to anti-cancer action, skin and digestive protective activity, and antimicrobial properties. Most recent works are in vitro and in vivo. Clinical trials have been conducted just with Aloe vera, but not with isolated compounds; therefore, it would be interesting to study the clinical effect of relevant metabolites in different human conditions and pathologies. The promising results of these studies in basic research encourage a greater number of clinical trials to test the clinical application of Aloe vera and its main compounds, particularly on bone protection, cancer, and diabetes.
Collapse
|
23
|
Wang Z, Tang T, Wang S, Cai T, Tao H, Zhang Q, Qi S, Qi Z. Aloin Inhibits the Proliferation and Migration of Gastric Cancer Cells by Regulating NOX2-ROS-Mediated Pro-Survival Signal Pathways. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:145-155. [PMID: 32021099 PMCID: PMC6969686 DOI: 10.2147/dddt.s219247] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/17/2019] [Indexed: 01/25/2023]
Abstract
Background Aloin has been reported to have many pharmacological effects including anti-inflammatory, anti-oxidant and anti-tumour activities. However, the precise molecular mechanisms underlying the anti-tumour properties of aloin are yet to be elucidated. Methods HGC-27 and BGC-823 gastric cancer cells were treated with aloin. EdU and colony formation assays were used to detect the proliferation ability of cells. The migration of cells was detected using wound healing and transwell assays. Western blotting was used to detect the levels of cyclinD1, cyclin E1, MMPs, N-cadherin, E-cadherin and NOX2. The phosphorylation of Akt, mTOR, P70S6K, S6, Src, stat3 and IκBα were also detected by Western blotting. Flow cytometry was used to detect the cell cycle distribution.The location of p65 in cells was determined by using a confocal microscopy assay. The total amounts of ROS present in cells were measured using an ROS assay kit. Results Here, we found that aloin inhibited the proliferation and migration of HGC-27 and BGC-823 gastric cancer cells using a combination of EdU, colony formation, wound healing and transwell assays. Further investigations revealed that aloin decreased the protein expression levels of cyclin D1, N-cadherin, and the matrix metalloproteinases (MMP)-2 and MMP-9; increased E-cadherin expression in a dose-dependent manner; inhibited reactive oxygen species (ROS) generation; and mediated the activation of Akt-mTOR, signal transducer and activator of transcription-3 (Stat3), and NF-κB signalling pathways. Our results also indicated that aloin is able to attenuate the expression levels of the two regulatory proteins of nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2), p47phox and p22phox, but had no effect on the level of gp91phox. N-acetylcysteine treatment of gastric cancer cells inhibited ROS production and Akt-mTOR, Stat3, and IκBα phosphorylation. Taken together, our data suggest that aloin inhibits the proliferation and migration of gastric cancer cells by downregulating NOX2–ROS-mediated activation of the Akt-mTOR, Stat3, and NF-κB signalling pathways. Conclusion Our findings suggest a potential role for aloin in the prevention of gastric cancer cell proliferation and migration and provide novel insights into the anti-cancer properties of aloin.
Collapse
Affiliation(s)
- Ziqian Wang
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China.,Anhui Province Key Laboratory of Active Biological Macro-Molecules, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China
| | - Tuo Tang
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China.,Anhui Province Key Laboratory of Active Biological Macro-Molecules, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China
| | - Shengnan Wang
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China.,Anhui Province Key Laboratory of Active Biological Macro-Molecules, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China
| | - Tianyu Cai
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China.,Anhui Province Key Laboratory of Active Biological Macro-Molecules, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China
| | - Hong Tao
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China.,Anhui Province Key Laboratory of Active Biological Macro-Molecules, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China
| | - Qing Zhang
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China.,Anhui Province Key Laboratory of Active Biological Macro-Molecules, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China
| | - Shimei Qi
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China.,Anhui Province Key Laboratory of Active Biological Macro-Molecules, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China
| | - Zhilin Qi
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China.,Anhui Province Key Laboratory of Active Biological Macro-Molecules, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China
| |
Collapse
|
24
|
High Potency of SN-38-Loaded Bovine Serum Albumin Nanoparticles Against Triple-Negative Breast Cancer. Pharmaceutics 2019; 11:pharmaceutics11110569. [PMID: 31683822 PMCID: PMC6920977 DOI: 10.3390/pharmaceutics11110569] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer with a worse prognosis than other types. There are currently no specific approved treatments for TNBC. Albumin is a promising biomimetic material that may be fabricated into nanoparticles to possibly exert passive effects on targeted tumors. Irinotecan has been extensively used in clinical settings, although a high dosage is required due to its low efficiency of conversion into the active metabolite SN-38, also known as 7-ethyl-10-hydroxy-camptothecin. The aim of this work was to optimize SN-38-loaded bovine serum albumin nanoparticles (sBSANPs) and evaluate their potency against TNBC. The sBSANPs were characterized by a small size of about 134-264 nm, a negative charge of -37 to -40 mV, an entrapment efficiency of 59-71%, and a particle yield of 65-86%. The cytotoxicity assays using sBSANPs showed a higher potency specifically against both MDA-MB-468 and MDA-MB-231 cells (ER-, PR-, HER2-) compared to MCF-7 (ER+, PR+, HER2-), and exhibited an extremely low IC50 at the nanomolar levels (2.01-6.82 nM). The release profiles indicated that SN-38 presented an initial burst release within 12 h, and sBSANPs had a slow release pattern. Flow cytometry results showed that the fluorescence intensity of sBSANPs was significantly higher than that of the control group. The confocal images also confirmed that sBSANPs were taken up by MDA-MB-468 cells. Moreover, we found that a larger BSANP size resulted in an increased hemolytic effect. In vivo animal studies demonstrated that loading of SN-38 into bovine serum albumin nanoparticles could minimize the initial concentration without extending the elimination half-life, but significantly minimized the Cmax (p < 0.001) as compared with irinotecan treatment.
Collapse
|
25
|
Rasoulian B, Almasi A, Hoveizi E, Bagher Z, Hayat P, Joghataei MT, Rezayat SM, Tavakol S. Strong binding active constituents of phytochemical to BMPR1A promote bone regeneration: In vitro, in silico docking, and in vivo studies. J Cell Physiol 2019; 234:14246-14258. [PMID: 30656682 DOI: 10.1002/jcp.28121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 12/11/2018] [Indexed: 11/08/2022]
Abstract
Two of the most problematic orthopedic and neurosurgeon visits are associated with spine and craniofacial fractures. Therefore, more attention needs to be paid to finding a medicine to repair these fractures. Amongst the most mysterious herbs, Aloe vera stands out. In the present study, the ameliorating function of A. vera on osteogenesis was studied in vitro and in vivo. Osteoblast-like cells were exposed to A. vera, followed by analysis of cell viability, lactate dehydrogenase release, and intracellular reactive oxygen species (ROS) production. The results showed an enhanced cell biocompatibility in a dose-dependent manner due to attenuated intracellular ROS production. Furthermore, a docking study indicated that the strong affinity of A. vera constituents to type I bone morphogenic protein receptor (BMPR1A) without the involvement of the BMPR1A chain B. The induction of osteogenesis prompts extracellular calcium deposition by osteoblasts, which affirms successful in vitro bone regeneration. However, injection of A. vera in rats with critical size calvarial defects induced Runx2, alkaline phosphatase (ALP), OCN, and BMP2 genes overexpression, which led to the formation of victorious bone with enhanced bone density and ALP activity. It is worthy to note that Aloin has the highest affinity to BMPR1A, whereas there are no reports regarding the impact of Aloenin, Aloesin, and γ-sitosterol on osteogenesis. Furthermore, some of them have antitumor potency, and it might be proposed that they are considered as a bone substitute in the osteotomy site of osteosarcoma with the aim of bone recovery and suppression of osteosarcoma. The whole consequences of this investigation manifests the plausibility of using A. vera as an antioxidant and osteoconductive substitute.
Collapse
Affiliation(s)
- Bita Rasoulian
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Almasi
- Department of Medical Nanotechnology, Pharmaceutical Sciences Branch, Islamic Azad University Pharmaceutical Sciences Branch, Tehran, Iran
| | - Elham Hoveizi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Zohre Bagher
- ENT and Head & Neck Research Center and Department, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Parisa Hayat
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Seyed Mahdi Rezayat
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Ma Y, Tang T, Sheng L, Wang Z, Tao H, Zhang Q, Zhang Y, Qi Z. Aloin suppresses lipopolysaccharide‑induced inflammation by inhibiting JAK1‑STAT1/3 activation and ROS production in RAW264.7 cells. Int J Mol Med 2018; 42:1925-1934. [PMID: 30066904 PMCID: PMC6108888 DOI: 10.3892/ijmm.2018.3796] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022] Open
Abstract
The anti-inflammatory effects of aloin, a bioactive ingredient extracted from Aloe vera, have been described previously. The present study aimed to assess these effects and explore the underlying molecular mechanisms. RAW264.7 cells were incubated with different doses of aloin (100, 150 and 200 µg/ml) and lipopolysaccharide (LPS; 100 ng/ml) for the indicated times. Then, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 expression levels were detected by western blot analysis and reverse transcription polymerase chain reaction (RT-PCR). The concentrations of inflammatory cytokines in the cell culture supernatant were determined by ELISA. Total nitric oxide (NO) assay and reactive oxygen species (ROS) kits were used to detect NO and ROS levels, respectively. Mitogen-activated protein kinase, nuclear factor κB and Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway activation were verified by western blot analysis. Confocal and nucleocytoplasmic separation experiments were used to detect STAT nuclear translocation. It was identified that aloin decreased the level of LPS-induced iNOS expression, inhibiting the release of interleukin (IL)-1β, IL-6, tumour necrosis factor-α and NO dose-dependently. Mechanistically, aloin suppressed LPS-induced JAK1-STAT1/3 activation and STAT1/3 nuclear translocation. Additionally, LPS-induced ROS production was inhibited by aloin. Collectively, these data suggest that aloin attenuated LPS-induced inflammation by inhibiting ROS-mediated activation of the JAK1-STAT1/3 signalling pathway, thereby inhibiting the nuclear translocation of STAT1/3 in RAW264.7 cells. The present study provides an experimental basis for the clinical application of aloin in inflammatory-associated diseases.
Collapse
Affiliation(s)
- Yunfei Ma
- Anhui Province Key Laboratory of Active Biological Macro‑Molecules, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Tuo Tang
- Anhui Province Key Laboratory of Active Biological Macro‑Molecules, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Lili Sheng
- Department of Oncology, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Ziqian Wang
- Anhui Province Key Laboratory of Active Biological Macro‑Molecules, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Hong Tao
- Anhui Province Key Laboratory of Active Biological Macro‑Molecules, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Qing Zhang
- Anhui Province Key Laboratory of Active Biological Macro‑Molecules, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Yao Zhang
- Anhui Province Key Laboratory of Active Biological Macro‑Molecules, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Zhilin Qi
- Anhui Province Key Laboratory of Active Biological Macro‑Molecules, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| |
Collapse
|
27
|
Tan H, Sonam T, Shimizu K. The Potential of Triterpenoids from Loquat Leaves (Eriobotrya japonica) for Prevention and Treatment of Skin Disorder. Int J Mol Sci 2017; 18:ijms18051030. [PMID: 28492484 PMCID: PMC5454942 DOI: 10.3390/ijms18051030] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 05/05/2017] [Accepted: 05/06/2017] [Indexed: 12/24/2022] Open
Abstract
The leaves of loquat (Eriobotrya japonica) possess high medicinal value and have been used as traditional medicines. However, there are no evidence-based studies on the skin-care effects of E. japonica leaves. To explore new biological activities of E. japonica leaves against skin disorder and to gain a better understanding of the chemical components associated with bioactivities, we evaluated 18 triterpenoids from E. japonica leaves on anti-melanogenesis, anti-acne, anti-allergy and anti-aging activities. Our results revealed that eight compounds showed anti-melanogenesis activity, of which ursolic acid (1) and maslinic acid (7) were the most potent with the similar selective index to that of arbutin. Structure–activity relationship and possible mechanism of active compounds were proposed. Twelve compounds exhibited anti-acne effect; ursolic acid (1), maslinic acid (7), corosolic acid (8) and euscaphic acid (12) showed highest activities against P. acnes. Four compounds displayed anti-allergy and anti-inflammatory activity; 3-epicorosolic acid (9) and euscaphic acid (12) showed marked activity against β-hexosaminidase release. Finally, ursolic acid (1), pomolic acid (10), colosolic acid (8) and its methylated derivative (6) exhibited the highest anti-aging activity by stimulating collagen and hyaluronic acid (HA) production. Our findings provide valuable evidence that E. japonica leaves have potential applications as ingredients of function foods or cosmetics for health benefits and a number of triterpenoids may play an important role in these bioactivities.
Collapse
Affiliation(s)
- Hui Tan
- Department of Agro-environmental Sciences, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| | - Tamrakar Sonam
- Department of Agro-environmental Sciences, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| | - Kuniyoshi Shimizu
- Department of Agro-environmental Sciences, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| |
Collapse
|
28
|
Guidetti G, Di Cerbo A, Giovazzino A, Rubino V, Palatucci AT, Centenaro S, Fraccaroli E, Cortese L, Bonomo MG, Ruggiero G, Canello S, Terrazzano G. In Vitro Effects of Some Botanicals with Anti-Inflammatory and Antitoxic Activity. J Immunol Res 2016; 2016:5457010. [PMID: 27597982 PMCID: PMC5002466 DOI: 10.1155/2016/5457010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/19/2016] [Accepted: 07/21/2016] [Indexed: 12/15/2022] Open
Abstract
Several extrinsic factors, like drugs and chemicals, can foster autoimmunity. Tetracyclines, in particular oxytetracycline (OTC), appear to correlate with the emergence of immune-mediated diseases. Accumulation of OTC, the elective drug for gastrointestinal and respiratory infectious disease treatment in broiler chickens, was reported in chicken edible tissues and could represent a potential risk for pets and humans that could assume this antibiotic as residue in meat or in meat-derived byproducts. We investigated the in vitro anti-inflammatory properties of a pool of thirteen botanicals as a part of a nutraceutical diet, with proven immunomodulatory activity. In addition, we evaluated the effect of such botanicals in contrasting the in vitro proinflammatory toxicity of OTC. Our results showed a significant reduction in interferon- (INF-) γ production by human and canine lymphocytes in presence of botanicals ((⁎) p < 0.05). Increased INF-γ production, dependent on 24-hour OTC-incubation of T lymphocytes, was significantly reduced by the coincubation with Haematococcus pluvialis, with Glycine max, and with the mix of all botanicals ((⁎) p < 0.05). In conclusion, the use of these botanicals was shown to be able to contrast OTC-toxicity and could represent a new approach for the development of functional foods useful to enhance the standard pharmacological treatment in infections as well as in preventing or reducing the emergence of inflammatory diseases.
Collapse
Affiliation(s)
- Gianandrea Guidetti
- Division of Research and Development, SANYpet SpA, 35023 Bagnoli di Sopra, Italy
| | - Alessandro Di Cerbo
- School of Specialization in Clinical Biochemistry, “G. d'Annunzio” University, 66100 Chieti, Italy
| | - Angela Giovazzino
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Valentina Rubino
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | | | - Sara Centenaro
- Division of Research and Development, SANYpet SpA, 35023 Bagnoli di Sopra, Italy
| | - Elena Fraccaroli
- Division of Research and Development, SANYpet SpA, 35023 Bagnoli di Sopra, Italy
| | - Laura Cortese
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80100 Naples, Italy
| | | | - Giuseppina Ruggiero
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Sergio Canello
- Division of Research and Development, SANYpet SpA, 35023 Bagnoli di Sopra, Italy
| | - Giuseppe Terrazzano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| |
Collapse
|
29
|
Chang R, Zhou R, Qi X, Wang J, Wu F, Yang W, Zhang W, Sun T, Li Y, Yu J. Protective effects of aloin on oxygen and glucose deprivation-induced injury in PC12 cells. Brain Res Bull 2016; 121:75-83. [PMID: 26772628 DOI: 10.1016/j.brainresbull.2016.01.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/28/2015] [Accepted: 01/04/2016] [Indexed: 01/11/2023]
Abstract
The present study aims to determine whether aloin could protect cells from ischemic and reperfusion injury in vitro and to elucidate the related mechanisms. Oxygen and glucose deprivation model in PC12 cells was used in the present study. 2-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH) assay and Hoechst 33342 nuclear staining were used to evaluate the protective effects of aloin, at concentrations of 10, 20, or 40 μg/mL in PC12 cells. PCR was applied to detect fluorescence caspase-3, Bax and Bcl-2 mRNA expression in PC12 cells. The contents of malondialdehyde (MDA), superoxide dismutase (SOD) activity were evaluated by biochemical method. The concentration of intracellular-free calcium [Ca(2+)]i, mitochondrial membrane potential (MMP) were determined to estimate the degree of neuronal damage. It was shown that aloin (10, 20, and 40 μg/mL) significantly attenuated PC12 cells damage with characteristics of an increased injured cells absorbance of MTT and releases of LDH, decreasing cell apoptosis, and antagonizing decreases in SOD activity and increase in MDA level induced by OGD-reoxygenation. Meanwhile pretreatment with aloin significantly reduced injury-induced intracellular ROS, increased MMP (P<0.01), but it inhibited [Ca(2+)]i (P<0.01) elevation in a dose-dependent manner. Furthermore, pre-treatment with aloin significantly up-regulated Bcl-2 mRNA expression, down-regulated Bax mRNA expression and consequently activated caspase-3 mRNA expression in a dose-dependent manner. The results indicated that the protection of aloin on OGD-induced apoptosis in PC12 cells is associated with its suppression on OGD-induced oxidative stress and protection on mitochondrial function and inhibition of caspase activity. Alion could be a promising candidate in the development of a novel class of anti-ischemic agent.
Collapse
Affiliation(s)
- Renyuan Chang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Ru Zhou
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Xue Qi
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jing Wang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Fan Wu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Wenli Yang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Wannian Zhang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Tao Sun
- Ningxia Key Lab of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Yuxiang Li
- College of Nursing, Ningxia Medical University, Yinchuan, China.
| | - Jianqiang Yu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, China; Ningxia Hui Medicine Modern Engineering Research Center, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|