1
|
Bespalov A, Lütjens R, Doller D. Dusting off old blueprints: Is it time to reconsider metabotropic glutamate receptor 2 for therapeutic drug development? Pharmacol Biochem Behav 2025; 247:173908. [PMID: 39571688 DOI: 10.1016/j.pbb.2024.173908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 01/28/2025]
Abstract
The metabotropic glutamate receptor 2 (mGlu2) is a heavily studied therapeutic target in neuropsychiatry for which we anticipate a renewed interest in the near future. We review the rationale and the outcome of clinical trials with mGlu2/3 receptor agonists in schizophrenia, a field of intense research since a seminal publication by Patel and colleagues (2007). We summarize evidence about selective, potent and safe agents with quantifiable CNS penetration that can be used to test hypotheses of mGlu2 receptors involvement in neuropsychiatric diseases. We summarize lessons learned from previous programs that should be considered to maximize the probability of success when targeting orthosteric and allosteric enhancement of mGlu2 receptor function in schizophrenia and beyond. First, we propose expanding our focus beyond presynaptic mGlu2 receptor stimulation in schizophrenia to novel hypotheses and that the choice of a therapeutic indication no longer be dictated by commercial opportunity but following science as a driver. Second, evidence on internal validity of preclinical studies supporting efficacy claims in the mGlu2 field is very limited. This gap will need to be closed when reviewing the rationale to re-initiate efforts in this field. Third, the pomaglumetad program was halted due to insufficient clinical efficacy, partly because of the inability to identify a treatment responder population. In preclinical studies, effects of mGlu2/3 receptor stimulation also seemed to vary significantly between laboratories. Definition of the responsive subject population and development of response-predicting biomarkers is therefore one of the main avenues of further research in the mGlu2 field.
Collapse
|
2
|
Burgos-Aguilar C, Ferris MJ, Sexton LL, Sun H, Xiao R, Chen R, Childers SR, Howlett AC. Metabotropic glutamate 2,3 receptor stimulation desensitizes agonist activation of G-protein signaling and alters transcription regulators in mesocorticolimbic brain regions. Synapse 2021; 75:e22190. [PMID: 33025628 PMCID: PMC8552243 DOI: 10.1002/syn.22190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/26/2020] [Accepted: 09/06/2020] [Indexed: 01/07/2023]
Abstract
Metabotropic glutamate (mGlu) receptors are regulators of glutamate release and targets for development of therapies for hyperactive glutamatergic signaling. However, the effects of long-term stimulation of mGlu receptors on cellular signaling in the brain have not been described. This study investigated the effects of 2-day and 14-day osmotic mini-pump administration of the mGlu2,3 agonist LY379268 (3.0 mg kg-1 day-1 ) to rats on receptor-mediated G-protein activation and signaling in mesocorticolimbic regions in rat brain sections. A significant reduction in LY379268-stimulated [35 S]GTPγS binding was observed in the 14-day group in some cortical regions, prefrontal cortex, nucleus accumbens, and ventral pallidum. The 14-day LY379268 treatment group exhibited mGlu2 mRNA levels significantly lower in hippocampus, nucleus accumbens, caudate, and ventral pallidum. In both 2-day and 14-day treatment groups immunodetectable phosphorylated cAMP Response Element-Binding protein (CREB) was significantly reduced across all brain regions. In the 2-day group, we observed significantly lower immunodetectable CREB protein across all brain regions, which was subsequently increased in the 14-day group but failed to achieve control values. Neither immunodetectable extracellular signal-regulated kinase (ERK) protein nor phosphorylated ERK from 2-day or 14-day treatment groups differed significantly from control across all brain regions. However, the ratio of phosphorylated ERK to total ERK protein was significantly greater in the 14-day treatment group compared with the control. These results identify compensatory changes to mGlu2,3 signal transduction in rat brains after chronic systemic administration of agonist, which could be predictive of the mechanism of action in human pharmacotherapies.
Collapse
Affiliation(s)
- Carolina Burgos-Aguilar
- Department of Physiology and Pharmacology and Center for the Neurobiology of Addiction Treatment, One Medical Center Blvd., Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Mark J. Ferris
- Department of Physiology and Pharmacology and Center for the Neurobiology of Addiction Treatment, One Medical Center Blvd., Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Lacey L. Sexton
- Department of Physiology and Pharmacology and Center for the Neurobiology of Addiction Treatment, One Medical Center Blvd., Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Haiguo Sun
- Department of Physiology and Pharmacology and Center for the Neurobiology of Addiction Treatment, One Medical Center Blvd., Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Ruoyu Xiao
- Department of Physiology and Pharmacology and Center for the Neurobiology of Addiction Treatment, One Medical Center Blvd., Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Rong Chen
- Department of Physiology and Pharmacology and Center for the Neurobiology of Addiction Treatment, One Medical Center Blvd., Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Steven R. Childers
- Department of Physiology and Pharmacology and Center for the Neurobiology of Addiction Treatment, One Medical Center Blvd., Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| | - Allyn C. Howlett
- Department of Physiology and Pharmacology and Center for the Neurobiology of Addiction Treatment, One Medical Center Blvd., Wake Forest School of Medicine, Winston-Salem, NC 27157 USA
| |
Collapse
|
3
|
Sweeten BL, Adkins AM, Wellman LL, Sanford LD. Group II metabotropic glutamate receptor activation in the basolateral amygdala mediates individual differences in stress-induced changes in rapid eye movement sleep. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110014. [PMID: 32534177 PMCID: PMC7483570 DOI: 10.1016/j.pnpbp.2020.110014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/19/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022]
Abstract
Group II metabotropic glutamate receptors (mGluR2/3s) have been implicated in stress and trauma related disorders including post-traumatic stress disorder (PTSD). PTSD is characterized by flashbacks, anxiety, and sleep disturbances. While many people are exposed to trauma in their lifetime, only a small percentage go on to develop PTSD, indicating individual differences in stress and emotional processing. Wistar strain rats display directionally different rapid-eye movement sleep (REM) responses to footshock stress, with resilient rats having no change or an increase in REM and vulnerable rats having a significant reduction in REM compared to baseline. The basolateral nucleus of the amygdala (BLA) is key in regulating individual differences in stress-induced alterations in sleep. Group II metabotropic glutamate receptors (mGluR2/3s) negatively modulate glutamate and are implicated in fear, fear memory, and sleep. The current study evaluated the effect of mGluR2/3 agonist LY379268 (LY37) in BLA on stress and fear memory induced changes in sleep, EEG spectra, behavioral fear expression and physiological stress. These data indicate that vulnerable rats treated with LY37 have an attenuation of the REM reductions generally seen in vulnerable rats. Furthermore, LY37 altered EEG spectra in the delta (0.5-4.5 Hz) and theta (5-9.5 Hz) frequency. LY37 did not impact behavioral fear expression or physiological stress. Therefore, mGluR2/3s within BLA are implicated in regulating individual differences in sleep responses to fear- and stress-related memories.
Collapse
Affiliation(s)
| | | | | | - Larry D. Sanford
- Corresponding authors at: Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Department of Pathology and Anatomy, Eastern Virginia Medical School, P.O. Box 1980, Norfolk, VA 23507,
| |
Collapse
|
4
|
Gregory KJ, Goudet C. International Union of Basic and Clinical Pharmacology. CXI. Pharmacology, Signaling, and Physiology of Metabotropic Glutamate Receptors. Pharmacol Rev 2021; 73:521-569. [PMID: 33361406 DOI: 10.1124/pr.119.019133] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors respond to glutamate, the major excitatory neurotransmitter in the mammalian brain, mediating a modulatory role that is critical for higher-order brain functions such as learning and memory. Since the first mGlu receptor was cloned in 1992, eight subtypes have been identified along with many isoforms and splice variants. The mGlu receptors are transmembrane-spanning proteins belonging to the class C G protein-coupled receptor family and represent attractive targets for a multitude of central nervous system disorders. Concerted drug discovery efforts over the past three decades have yielded a wealth of pharmacological tools including subtype-selective agents that competitively block or mimic the actions of glutamate or act allosterically via distinct sites to enhance or inhibit receptor activity. Herein, we review the physiologic and pathophysiological roles for individual mGlu receptor subtypes including the pleiotropic nature of intracellular signal transduction arising from each. We provide a comprehensive analysis of the in vitro and in vivo pharmacological properties of prototypical and commercially available orthosteric agonists and antagonists as well as allosteric modulators, including ligands that have entered clinical trials. Finally, we highlight emerging areas of research that hold promise to facilitate rational design of highly selective mGlu receptor-targeting therapeutics in the future. SIGNIFICANCE STATEMENT: The metabotropic glutamate receptors are attractive therapeutic targets for a range of psychiatric and neurological disorders. Over the past three decades, intense discovery efforts have yielded diverse pharmacological tools acting either competitively or allosterically, which have enabled dissection of fundamental biological process modulated by metabotropic glutamate receptors and established proof of concept for many therapeutic indications. We review metabotropic glutamate receptor molecular pharmacology and highlight emerging areas that are offering new avenues to selectively modulate neurotransmission.
Collapse
Affiliation(s)
- Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.) and Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Montpellier, France (C.G.)
| | - Cyril Goudet
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.) and Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Montpellier, France (C.G.)
| |
Collapse
|
5
|
Hellyer SD, Aggarwal S, Chen ANY, Leach K, Lapinsky DJ, Gregory KJ. Development of Clickable Photoaffinity Ligands for Metabotropic Glutamate Receptor 2 Based on Two Positive Allosteric Modulator Chemotypes. ACS Chem Neurosci 2020; 11:1597-1609. [PMID: 32396330 DOI: 10.1021/acschemneuro.0c00009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The metabotropic glutamate receptor 2 (mGlu2) is a transmembrane-spanning class C G protein-coupled receptor that is an attractive therapeutic target for multiple psychiatric and neurological disorders. A key challenge has been deciphering the contribution of mGlu2 relative to other closely related mGlu receptors in mediating different physiological responses, which could be achieved through the utilization of subtype selective pharmacological tools. In this respect, allosteric modulators that recognize ligand-binding sites distinct from the endogenous neurotransmitter glutamate offer the promise of higher receptor-subtype selectivity. We hypothesized that mGlu2-selective positive allosteric modulators could be derivatized to generate bifunctional pharmacological tools. Here we developed clickable photoaffinity probes for mGlu2 based on two different positive allosteric modulator scaffolds that retained similar pharmacological activity to parent compounds. We demonstrate successful probe-dependent incorporation of a commercially available clickable fluorophore using bioorthogonal conjugation. Importantly, we also show the limitations of using these probes to assess in situ fluorescence of mGlu2 in intact cells where significant nonspecific membrane binding is evident.
Collapse
Affiliation(s)
- Shane D. Hellyer
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia
| | - Shaili Aggarwal
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Amy N. Y. Chen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia
| | - Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia
| | - David J. Lapinsky
- Division of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Karen J. Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
6
|
Johnson KA, Lovinger DM. Allosteric modulation of metabotropic glutamate receptors in alcohol use disorder: Insights from preclinical investigations. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2020; 88:193-232. [PMID: 32416868 DOI: 10.1016/bs.apha.2020.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Metabotropic glutamate (mGlu) receptors are family C G protein-coupled receptors (GPCRs) that modulate neuronal excitability and synaptic transmission throughout the nervous system. Owing to recent advances in development of subtype-selective allosteric modulators of mGlu receptors, individual members of the mGlu receptor family have been proposed as targets for treating a variety of neurological and psychiatric disorders, including substance use disorders. In this chapter, we highlight preclinical evidence that allosteric modulators of mGlu receptors could be useful for reducing alcohol consumption and preventing relapse in alcohol use disorder (AUD). We begin with an overview of the preclinical models that are used to study mGlu receptor involvement in alcohol-related behaviors. Alcohol exposure causes adaptations in both expression and function of various mGlu receptor subtypes, and pharmacotherapies aimed at reversing these adaptations have the potential to reduce alcohol consumption and seeking. Positive allosteric modulators (PAMs) of mGlu2 and negative allosteric modulators of mGlu5 show particular promise for reducing alcohol intake and/or preventing relapse. Finally, this chapter discusses important considerations for translating preclinical findings toward the development of clinically useful drugs, including the potential for PAMs to avoid tolerance issues that are frequently observed with repeated administration of GPCR agonists.
Collapse
Affiliation(s)
- Kari A Johnson
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.
| | - David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
7
|
Smyk MK, van Luijtelaar G, Huysmans H, Drinkenburg WH. Spike-Wave Discharges and Sleep-Wake States during Circadian Desynchronization: No Effects of Agomelatine upon Re-Entrainment. Neuroscience 2019; 408:327-338. [PMID: 30978380 DOI: 10.1016/j.neuroscience.2019.03.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/12/2019] [Accepted: 03/29/2019] [Indexed: 10/27/2022]
Abstract
Rapid changes in the light-dark cycle cause circadian desynchronization between rhythms of spike-wave discharges (SWDs) and motor activity in genetic epileptic rats, and this is accompanied by an increase in epileptic activity. Given the close relationship between absence seizures and sleep-wake states, the present study assessed firstly a putative relationship between vigilance rhythms and SWDs during re-synchronization, and secondly sleep-wake patterns responsible for increased epileptic activity. Lastly, in a view of existing evidence that melatonin and its agonists accelerate re-synchronization, the effects of different doses of agomelatine upon the speed of re-synchronization of different sleep-wake states and SWDs were investigated. Simultaneous electroencephalographic and electromyographic recordings were made in symptomatic WAG/Rij rats, before, during and 10 days following an 8 h light phase delay. Agomelatine was orally administered acutely and sub-chronically, during 10 post-shift days. The magnitude of the advance after the shift and the speed of re-synchronization were specific for various rhythms. Most prominent change was the increase in REM sleep duration during the dark phase. A post-shift increase in passive wakefulness and a reduction in deep slow-wave sleep coincided with an aggravation of SWDs during the light phase. Agomelatine showed neither an effect on sleep-wake parameters and SWDs, nor affected re-synchronization. The same speed of re-synchronization of SWDs and light slow-wave sleep suggests that both are controlled by a common circadian mechanism. The redistribution of SWDs and their increase in the light phase after the shift may be of importance for patients with absence epilepsy planning long trans-meridian flight across time zones.
Collapse
Affiliation(s)
- Magdalena K Smyk
- Malopolska Centre of Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7A, 30-387 Krakow, Poland; Department of Neurophysiology and Chronobiology, Chair of Animal Physiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, 30-387 Krakow, Poland.
| | - Gilles van Luijtelaar
- Donders Centre for Cognition, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Montessorilaan 3, 6525, HR, Nijmegen, the Netherlands.
| | - Heidi Huysmans
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Wilhelmus H Drinkenburg
- Department of Neuroscience, Janssen Research & Development, a Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium.
| |
Collapse
|
8
|
Llinas Del Torrent C, Pérez-Benito L, Tresadern G. Computational Drug Design Applied to the Study of Metabotropic Glutamate Receptors. Molecules 2019; 24:molecules24061098. [PMID: 30897742 PMCID: PMC6470756 DOI: 10.3390/molecules24061098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 11/16/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors are a family of eight GPCRs that are attractive drug discovery targets to modulate glutamate action and response. Here we review the application of computational methods to the study of this family of receptors. X-ray structures of the extracellular and 7-transmembrane domains have played an important role to enable structure-based modeling approaches, whilst we also discuss the successful application of ligand-based methods. We summarize the literature and highlight the areas where modeling and experiment have delivered important understanding for mGlu receptor drug discovery. Finally, we offer suggestions of future areas of opportunity for computational work.
Collapse
Affiliation(s)
- Claudia Llinas Del Torrent
- Laboratori de Medicina Computacional Unitat de Bioestadistica, Facultat de Medicina, Universitat Autónoma de Barcelona, 08193 Bellaterra, Spain.
| | - Laura Pérez-Benito
- Computational Chemistry, Janssen Research & Development, Janssen Pharmaceutica N. V., Turnhoutseweg 30, B-2340 Beerse, Belgium.
| | - Gary Tresadern
- Computational Chemistry, Janssen Research & Development, Janssen Pharmaceutica N. V., Turnhoutseweg 30, B-2340 Beerse, Belgium.
| |
Collapse
|
9
|
Doornbos ML, Vermond SC, Lavreysen H, Tresadern G, IJzerman AP, Heitman LH. Impact of allosteric modulation: Exploring the binding kinetics of glutamate and other orthosteric ligands of the metabotropic glutamate receptor 2. Biochem Pharmacol 2018; 155:356-365. [DOI: 10.1016/j.bcp.2018.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/14/2018] [Indexed: 01/22/2023]
|
10
|
Lemos A, Melo R, Preto AJ, Almeida JG, Moreira IS, Cordeiro MNDS. In Silico Studies Targeting G-protein Coupled Receptors for Drug Research Against Parkinson's Disease. Curr Neuropharmacol 2018; 16:786-848. [PMID: 29521236 PMCID: PMC6080095 DOI: 10.2174/1570159x16666180308161642] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 02/16/2018] [Accepted: 02/02/2018] [Indexed: 11/22/2022] Open
Abstract
Parkinson's Disease (PD) is a long-term neurodegenerative brain disorder that mainly affects the motor system. The causes are still unknown, and even though currently there is no cure, several therapeutic options are available to manage its symptoms. The development of novel antiparkinsonian agents and an understanding of their proper and optimal use are, indeed, highly demanding. For the last decades, L-3,4-DihydrOxyPhenylAlanine or levodopa (L-DOPA) has been the gold-standard therapy for the symptomatic treatment of motor dysfunctions associated to PD. However, the development of dyskinesias and motor fluctuations (wearing-off and on-off phenomena) associated with long-term L-DOPA replacement therapy have limited its antiparkinsonian efficacy. The investigation for non-dopaminergic therapies has been largely explored as an attempt to counteract the motor side effects associated with dopamine replacement therapy. Being one of the largest cell membrane protein families, G-Protein-Coupled Receptors (GPCRs) have become a relevant target for drug discovery focused on a wide range of therapeutic areas, including Central Nervous System (CNS) diseases. The modulation of specific GPCRs potentially implicated in PD, excluding dopamine receptors, may provide promising non-dopaminergic therapeutic alternatives for symptomatic treatment of PD. In this review, we focused on the impact of specific GPCR subclasses, including dopamine receptors, adenosine receptors, muscarinic acetylcholine receptors, metabotropic glutamate receptors, and 5-hydroxytryptamine receptors, on the pathophysiology of PD and the importance of structure- and ligand-based in silico approaches for the development of small molecules to target these receptors.
Collapse
Affiliation(s)
- Agostinho Lemos
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007Porto, Portugal
- GIGA Cyclotron Research Centre In Vivo Imaging, University of Liège, 4000Liège, Belgium
| | - Rita Melo
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-517Coimbra, Portugal
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (ao km 139,7), 2695-066 Bobadela LRS, Portugal
| | - Antonio Jose Preto
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-517Coimbra, Portugal
| | - Jose Guilherme Almeida
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-517Coimbra, Portugal
| | - Irina Sousa Moreira
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-517Coimbra, Portugal
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Utrecht, 3584CH, The Netherlands
| | - Maria Natalia Dias Soeiro Cordeiro
- LAQV/REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007Porto, Portugal
| |
Collapse
|
11
|
Johnson MP, Muhlhauser MA, Nisenbaum ES, Simmons RMA, Forster BM, Knopp KL, Yang L, Morrow D, Li DL, Kennedy JD, Swanson S, Monn JA. Broad spectrum efficacy with LY2969822, an oral prodrug of metabotropic glutamate 2/3 receptor agonist LY2934747, in rodent pain models. Br J Pharmacol 2017; 174:822-835. [PMID: 28177520 DOI: 10.1111/bph.13740] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 01/27/2017] [Accepted: 01/31/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE A body of evidence suggests activation of metabotropic glutamate 2/3 (mGlu2/3 ) receptors would be an effective analgesic in chronic pain conditions. Thus, the analgesic properties of a novel mGlu2/3 receptor agonist prodrug were investigated. EXPERIMENTAL APPROACH After oral absorption, the prodrug LY2969822 rapidly converts to the brain penetrant, potent and subtype-selective mGlu2/3 receptor agonist LY2934747. Behavioural assessments of allodynia, hyperalgesia and nocifensive behaviours were determined in preclinical pain models after administration of LY2969822 0.3-10 mg·kg-1 . In addition, the ability of i.v. LY2934747 to modulate dorsal horn spinal cord wide dynamic range (WDR) neurons in spinal nerve ligated (SNL) rats was assessed. KEY RESULTS Following treatment with LY2934747, the spontaneous activity and electrically-evoked wind-up of WDR neurons in rats that had undergone spinal nerve ligation and developed mechanical allodynia were suppressed. In a model of sensitization, orally administered LY2969822 prevented the nociceptive behaviours induced by an intraplantar injection of formalin. The on-target nature of this effect was confirmed by blockade with an mGlu2/3 receptor antagonist. LY2969822 prevented capsaicin-induced tactile hypersensitivity, reversed the SNL-induced tactile hypersensitivity and reversed complete Freund's adjuvant - induced mechanical hyperalgesia. The mGlu2/3 receptor agonist prodrug demonstrated efficacy in visceral pain models, including a colorectal distension model and partially prevented the nocifensive behaviours in the mouse acetic acid writhing model. CONCLUSIONS AND IMPLICATIONS Following oral administration of the prodrug LY2969822, the mGlu2/3 receptor agonist LY2934747 was formed and this attenuated pain behaviours across a broad range of preclinical pain models.
Collapse
Affiliation(s)
- Michael P Johnson
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Mark A Muhlhauser
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Eric S Nisenbaum
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Rosa M A Simmons
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Beth M Forster
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Kelly L Knopp
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Lijuan Yang
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Denise Morrow
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Dominic L Li
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Jeffrey D Kennedy
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - Steven Swanson
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - James A Monn
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| |
Collapse
|
12
|
Metcalf CS, Klein BD, Smith MD, Pruess T, Ceusters M, Lavreysen H, Pype S, Van Osselaer N, Twyman R, White HS. Efficacy of mGlu 2 -positive allosteric modulators alone and in combination with levetiracetam in the mouse 6 Hz model of psychomotor seizures. Epilepsia 2017; 58:484-493. [PMID: 28166368 DOI: 10.1111/epi.13659] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2016] [Indexed: 01/20/2023]
Abstract
OBJECTIVE The metabotropic glutamate receptor subtype 2 (mGlu2 ) possesses both orthosteric and allosteric modulatory sites, are expressed in the frontal cortex and limbic structures, and can affect excitatory synaptic transmission. Therefore, mGlu2 is a potential therapeutic target in the treatment of epilepsy. The present study seeks to evaluate the anticonvulsant potential of mGlu2 -acting compounds. METHODS The anticonvulsant efficacy of two selective mGlu2 -positive allosteric modulators (PAMs) (JNJ-42153605 and JNJ-40411813/ADX71149) and one mGlu2/3 receptor agonist (LY404039) were evaluated alone and in combination with the antiseizure drug levetiracetam (LEV) in the mouse 6 Hz model. RESULTS In the 6 Hz (32 mA stimulus intensity) model, median effective dose (ED50 ) values were determined for JNJ-42153605 (3.8 mg/kg), JNJ-40411813 (12.2 mg/kg), and LY404039 (10.9 mg/kg). At the 44 mA stimulus intensity, ED50 values were determined for JNJ-42153605 (5.9 mg/kg), JNJ-40411813 (21.0 mg/kg), LY404039 (14.1 mg/kg), and LEV (345 mg/kg). In addition, subprotective doses of each mGlu2 -acting compound, administered in combination with various doses of LEV, were able to shift the 6 Hz 44 mA ED50 for LEV by >25-fold. When JNJ-42153605 was administered at varying doses in combination with a single dose of LEV (10 mg/kg), the potency of JNJ-42153605 was increased 3.7-fold. Similarly, when a moderately effective dose of LEV (350 mg/kg) was administered in combination with varying doses of JNJ-40411813, the potency of JNJ-40411813 was increased approximately 14-fold. Plasma levels of JNJ-40411813 and LEV were not different when administered alone or in combination, suggesting that increases in potency are not due to pharmacokinetic effects. SIGNIFICANCE These studies suggest a potential positive pharmacodynamic effect of mGlu2 -acting compounds in combination with LEV. If this effect is translated in a clinical setting, it can support a rational polypharmacy concept in treatment of epilepsy patients.
Collapse
Affiliation(s)
- Cameron S Metcalf
- NeuroAdjuvants, Inc., Salt Lake City, Utah, U.S.A.,Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, U.S.A
| | - Brian D Klein
- NeuroAdjuvants, Inc., Salt Lake City, Utah, U.S.A.,Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, U.S.A
| | - Misty D Smith
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, U.S.A
| | - Tim Pruess
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, U.S.A
| | | | | | | | - Nancy Van Osselaer
- Janssen Research and Development, Beerse, Belgium.,UCB Belgium, Anderlecht, Belgium, Belgium
| | - Roy Twyman
- Janssen Research and Development, Titusville, New Jersey, U.S.A
| | - H Steve White
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, U.S.A.,Department of Pharmacy, School of Pharmacy, University of Washington, Seattle, Washington, U.S.A
| |
Collapse
|
13
|
Selective agonism of mGlu8 receptors by (S)-3,4-dicarboxyphenylglycine does not affect sleep stages in the rat. Pharmacol Rep 2016; 69:97-104. [PMID: 27914294 DOI: 10.1016/j.pharep.2016.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/16/2016] [Accepted: 09/21/2016] [Indexed: 11/24/2022]
Abstract
BACKGROUND Metabotropic glutamate receptors (mGlu) play a role in a number of physiological processes and behaviors, as well as in certain pathological conditions and diseases. New drugs targetting mGlu receptors are being developed with treatment purposes. Recent data indicates that glutamate is involved in sleep, and pharmacological manipulation of distinct subtypes of mGlu receptors affect sleep. Here the consequences of selective pharmacological agonism of mGlu8 receptor upon sleep and wakefulness are explored for the first time. METHODS 32 male Wistar rats were stereotaxically prepared for polysomnography. (S)-3,4-dicarboxyphenylglycine (S)-3,4-DCPG (5, 10, and 20mg/kg, ip), a selective and potent mGlu8 receptor agonist, or physiological saline was administered one hour after the light period began. RESULTS Compared to control vehicle, (S)-3,4-DCPG, did not affect, at any of the doses given, the sleep and wakefulness parameters examined in the general analysis of the three hours of recording. Drug effects across time were studied analyzing three one-hour time blocks, control and experimental groups did not show any significant difference in the sleep and wakefulness parameters analyzed. Latency to sleep stages did not significantly vary between vehicle and treatment groups. CONCLUSIONS Results indicate that pharmacological activation of mGlu8 receptor by (S)-3,4-DCPG (5, 10, 20mg/kg, ip) does not affect sleep and wakefulness in the rat, suggesting that pharmacological agonism of these receptors may not influence sleep. Further research is needed to verify whether new drugs acting on these receptors lack of effect upon sleep and wakefulness.
Collapse
|
14
|
Cid JM, Tresadern G, Vega JA, de Lucas AI, Del Cerro A, Matesanz E, Linares ML, García A, Iturrino L, Pérez-Benito L, Macdonald GJ, Oehlrich D, Lavreysen H, Peeters L, Ceusters M, Ahnaou A, Drinkenburg W, Mackie C, Somers M, Trabanco AA. Discovery of 8-Trifluoromethyl-3-cyclopropylmethyl-7-[(4-(2,4-difluorophenyl)-1-piperazinyl)methyl]-1,2,4-triazolo[4,3-a]pyridine (JNJ-46356479), a Selective and Orally Bioavailable mGlu2 Receptor Positive Allosteric Modulator (PAM). J Med Chem 2016; 59:8495-507. [PMID: 27579727 DOI: 10.1021/acs.jmedchem.6b00913] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Positive allosteric modulators of the metabotropic glutamate 2 receptor have generated great interest in the past decade. There is mounting evidence of their potential as therapeutic agents in the treatment of multiple central nervous system disorders. We have previously reported substantial efforts leading to potent and selective mGlu2 PAMs. However, finding compounds with the optimal combination of in vitro potency and good druglike properties has remained elusive, in part because of the hydrophobic nature of the allosteric binding site. Herein, we report on the lead optimization process to overcome the poor solubility inherent to the advanced lead 6. Initial prototypes already showed significant improvements in solubility while retaining good functional activity but displayed new liabilities associated with metabolism and hERG inhibition. Subsequent subtle modifications efficiently addressed those issues leading to the identification of compound 27 (JNJ-46356479). This new lead represents a more balanced profile that offers a significant improvement on the druglike attributes compared to previously reported leads.
Collapse
Affiliation(s)
- Jose María Cid
- Janssen Research & Development, a Division of Janssen-Cilag, S.A., Toledo 45007, Spain
| | - Gary Tresadern
- Janssen Research & Development, a Division of Janssen-Cilag, S.A., Toledo 45007, Spain
| | - Juan Antonio Vega
- Janssen Research & Development, a Division of Janssen-Cilag, S.A., Toledo 45007, Spain
| | - Ana Isabel de Lucas
- Janssen Research & Development, a Division of Janssen-Cilag, S.A., Toledo 45007, Spain
| | - Alcira Del Cerro
- Janssen Research & Development, a Division of Janssen-Cilag, S.A., Toledo 45007, Spain
| | - Encarnación Matesanz
- Janssen Research & Development, a Division of Janssen-Cilag, S.A., Toledo 45007, Spain
| | - María Lourdes Linares
- Janssen Research & Development, a Division of Janssen-Cilag, S.A., Toledo 45007, Spain
| | - Aránzazu García
- Janssen Research & Development, a Division of Janssen-Cilag, S.A., Toledo 45007, Spain
| | - Laura Iturrino
- Janssen Research & Development, a Division of Janssen-Cilag, S.A., Toledo 45007, Spain
| | - Laura Pérez-Benito
- Laboratori de Medicina Computacional Unitat de Bioestadistica, Facultat de Medicina, Universitat Autonoma de Barcelona , Bellaterra 08193, Spain
| | - Gregor J Macdonald
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse B-2340, Belgium
| | - Daniel Oehlrich
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse B-2340, Belgium
| | - Hilde Lavreysen
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse B-2340, Belgium
| | - Luc Peeters
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse B-2340, Belgium
| | - Marc Ceusters
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse B-2340, Belgium
| | - Abdellah Ahnaou
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse B-2340, Belgium
| | | | - Claire Mackie
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse B-2340, Belgium
| | - Marijke Somers
- Janssen Research & Development, Janssen Pharmaceutica NV, Beerse B-2340, Belgium
| | - Andrés A Trabanco
- Janssen Research & Development, a Division of Janssen-Cilag, S.A., Toledo 45007, Spain
| |
Collapse
|
15
|
Ahnaou A, de Boer P, Lavreysen H, Huysmans H, Sinha V, Raeymaekers L, Van De Casteele T, Cid J, Van Nueten L, Macdonald G, Kemp J, Drinkenburg W. Translational neurophysiological markers for activity of the metabotropic glutamate receptor (mGluR2) modulator JNJ-40411813: Sleep EEG correlates in rodents and healthy men. Neuropharmacology 2016; 103:290-305. [DOI: 10.1016/j.neuropharm.2015.11.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/28/2015] [Accepted: 11/28/2015] [Indexed: 12/31/2022]
|