1
|
Wei W, Jiang Y, Hu G, He Y, Chen H. Recent Advances of Mitochondrial Alterations in Alzheimer's Disease: A Perspective of Mitochondrial Basic Events. J Alzheimers Dis 2024; 101:379-396. [PMID: 39213063 DOI: 10.3233/jad-240092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders and is characterized by a decrease in learning capacity, memory loss and behavioral changes. In addition to the well-recognized amyloid-β cascade hypothesis and hyperphosphorylated Tau hypothesis, accumulating evidence has led to the proposal of the mitochondrial dysfunction hypothesis as the primary etiology of AD. However, the predominant molecular mechanisms underlying the development and progression of AD have not been fully elucidated. Mitochondrial dysfunction is not only considered an early event in AD pathogenesis but is also involved in the whole course of the disease, with numerous pathophysiological processes, including disordered energy metabolism, Ca2+ homeostasis dysfunction and hyperactive oxidative stress. In the current review, we have integrated emerging evidence to summarize the main mitochondrial alterations- bioenergetic metabolism, mitochondrial inheritance, mitobiogenesis, fission- fusion dynamics, mitochondrial degradation, and mitochondrial movement- underlying AD pathogenesis; precisely identified the mitochondrial regulators; discussed the potential mechanisms and primary processes; highlighted the leading players; and noted additional incidental signaling pathway changes. This review may help to stimulate research exploring mitochondrial metabolically-oriented neuroprotection strategies in AD therapies, leading to a better understanding of the link between the mitochondrial dysfunction hypothesis and AD pathogenesis.
Collapse
Affiliation(s)
- Wenyan Wei
- Department of Gerontology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Ying Jiang
- Yuebei People's Hospital, Affiliated Hospital of Shantou University Medical College, Shaoguan, Guangdong Province, China
| | - Guizhen Hu
- Yuebei People's Hospital, Affiliated Hospital of Shantou University Medical College, Shaoguan, Guangdong Province, China
| | - Yanfang He
- Department of Blood Transfusion, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Huiyi Chen
- Yuebei People's Hospital, Affiliated Hospital of Shantou University Medical College, Shaoguan, Guangdong Province, China
| |
Collapse
|
2
|
Mangrulkar SV, Wankhede NL, Kale MB, Upaganlawar AB, Taksande BG, Umekar MJ, Anwer MK, Dailah HG, Mohan S, Behl T. Mitochondrial Dysfunction as a Signaling Target for Therapeutic Intervention in Major Neurodegenerative Disease. Neurotox Res 2023; 41:708-729. [PMID: 37162686 DOI: 10.1007/s12640-023-00647-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/29/2022] [Accepted: 04/08/2023] [Indexed: 05/11/2023]
Abstract
Neurodegenerative diseases (NDD) are incurable and the most prevalent cognitive and motor disorders of elderly. Mitochondria are essential for a wide range of cellular processes playing a pivotal role in a number of cellular functions like metabolism, intracellular signaling, apoptosis, and immunity. A plethora of evidence indicates the central role of mitochondrial functions in pathogenesis of many aging related NDD. Considering how mitochondria function in neurodegenerative diseases, oxidative stress, and mutations in mtDNA both contribute to aging. Many substantial reports suggested the involvement of numerous contributing factors including, mitochondrial dysfunction, oxidative stress, mitophagy, accumulation of somatic mtDNA mutations, compromised mitochondrial dynamics, and transport within axons in neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, Huntington's disease, and Amyotrophic Lateral Sclerosis. Therapies therefore target fundamental mitochondrial processes such as energy metabolism, free-radical generation, mitochondrial biogenesis, mitochondrial redox state, mitochondrial dynamics, mitochondrial protein synthesis, mitochondrial quality control, and metabolism hold great promise to develop pharmacological based therapies in NDD. By emphasizing the most efficient pharmacological strategies to target dysfunction of mitochondria in the treatment of neurodegenerative diseases, this review serves the scientific community engaged in translational medical science by focusing on the establishment of novel, mitochondria-targeted treatment strategies.
Collapse
Affiliation(s)
| | - Nitu L Wankhede
- Smt. Shantabai Patil College of Diploma in Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nasik, Maharashta, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, 16278, Saudi Arabia
| | - Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, Saudi Arabia
| | - Syam Mohan
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India.
| |
Collapse
|
3
|
Sousa T, Moreira PI, Cardoso S. Current Advances in Mitochondrial Targeted Interventions in Alzheimer's Disease. Biomedicines 2023; 11:2331. [PMID: 37760774 PMCID: PMC10525414 DOI: 10.3390/biomedicines11092331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Alzheimer's disease is the most prevalent neurodegenerative disorder and affects the lives not only of those who are diagnosed but also of their caregivers. Despite the enormous social, economic and political burden, AD remains a disease without an effective treatment and with several failed attempts to modify the disease course. The fact that AD clinical diagnosis is most often performed at a stage at which the underlying pathological events are in an advanced and conceivably irremediable state strongly hampers treatment attempts. This raises the awareness of the need to identify and characterize the early brain changes in AD, in order to identify possible novel therapeutic targets to circumvent AD's cascade of events. One of the most auspicious targets is mitochondria, powerful organelles found in nearly all cells of the body. A vast body of literature has shown that mitochondria from AD patients and model organisms of the disease differ from their non-AD counterparts. In view of this evidence, preserving and/or restoring mitochondria's health and function can represent the primary means to achieve advances to tackle AD. In this review, we will briefly assess and summarize the previous and latest evidence of mitochondria dysfunction in AD. A particular focus will be given to the recent updates and advances in the strategy options aimed to target faulty mitochondria in AD.
Collapse
Affiliation(s)
- Tiago Sousa
- Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal;
| | - Paula I. Moreira
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
| | - Susana Cardoso
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
4
|
Monroy-Cárdenas M, Andrades V, Almarza C, Vera MJ, Martínez J, Pulgar R, Amalraj J, Araya-Maturana R, Urra FA. A New Quinone-Based Inhibitor of Mitochondrial Complex I in D-Conformation, Producing Invasion Reduction and Sensitization to Venetoclax in Breast Cancer Cells. Antioxidants (Basel) 2023; 12:1597. [PMID: 37627592 PMCID: PMC10451541 DOI: 10.3390/antiox12081597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial Complex I plays a crucial role in the proliferation, chemoresistance, and metastasis of breast cancer (BC) cells. This highlights it as an attractive target for anti-cancer drugs. Using submitochondrial particles, we identified FRV-1, an ortho-carbonyl quinone, which inhibits NADH:duroquinone activity in D-active conformation and reduces the 3ADP state respiration dependent on Complex I, causing mitochondrial depolarization, ATP drop, increased superoxide levels, and metabolic remodeling towards glycolysis in BC cells. Introducing methyl groups at FRV-1 structure produced analogs that acted as electron acceptors at the Complex I level or increased the inhibitory effect of FCCP-stimulated oxygen consumption rate, which correlated with their redox potential, but increased toxicity on RMF-621 human breast fibroblasts was observed. FRV-1 was inactive in the naphthoquinone oxidoreductase 1 (NOQ1)-positive BC cell line, MCF7, but the sensitivity was recovered by dicoumarol, a NOQ1 inhibitor, suggesting that FRV-1 is a NOQ1 substrate. Importantly, FRV-1 selectively inhibited the proliferation, migration, and invasion of NQO1 negative BC cell, MDA-MB-231, in an OXPHOS- and ROS-dependent manner and sensitized it to the BH3 mimetic drug venetoclax. Overall, FRV-1 is a novel Complex I inhibitor in D-active conformation, blocking possibly the re-activation to A-state, producing selective anti-cancer effects in NQO1-negative BC cell lines.
Collapse
Affiliation(s)
- Matías Monroy-Cárdenas
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile
- Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, Talca 3480094, Chile
| | - Víctor Andrades
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, Casilla 7, Santiago 7810000, Chile
- Network for Snake Venom Research and Drug Discovery, Santiago 7810000, Chile
| | - Cristopher Almarza
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, Casilla 7, Santiago 7810000, Chile
- Network for Snake Venom Research and Drug Discovery, Santiago 7810000, Chile
| | - María Jesús Vera
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile
- Laboratorio de Biología Celular, Instituto de Nutrición y Tecnología de los Alimento (INTA), Universidad de Chile, Santiago 7830490, Chile
| | - Jorge Martínez
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile
- Laboratorio de Biología Celular, Instituto de Nutrición y Tecnología de los Alimento (INTA), Universidad de Chile, Santiago 7830490, Chile
| | - Rodrigo Pulgar
- Laboratorio de Genómica y Genética de Interacciones Biológicas (LG2IB), Instituto de Nutrición y Tecnología de los Alimento (INTA), Universidad de Chile, El Líbano 5524, Santiago 7830490, Chile
| | - John Amalraj
- Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, Talca 3480094, Chile
| | - Ramiro Araya-Maturana
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile
- Instituto de Química de Recursos Naturales, Universidad de Talca, Casilla 747, Talca 3480094, Chile
- Network for Snake Venom Research and Drug Discovery, Santiago 7810000, Chile
| | - Félix A. Urra
- Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca 3480094, Chile
- Laboratorio de Plasticidad Metabólica y Bioenergética, Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, Casilla 7, Santiago 7810000, Chile
- Network for Snake Venom Research and Drug Discovery, Santiago 7810000, Chile
| |
Collapse
|
5
|
The Antioxidant Potential of the Mediterranean Diet as a Predictor of Weight Loss after a Very Low-Calorie Ketogenic Diet (VLCKD) in Women with Overweight and Obesity. Antioxidants (Basel) 2022; 12:antiox12010018. [PMID: 36670880 PMCID: PMC9855093 DOI: 10.3390/antiox12010018] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Obesity involves a chronic state of low-grade inflammation, which is linked to the development of several comorbidities. Recently, the very low-calorie ketogenic diet (VLCKD) has gained great interest in the treatment of obesity, almost ousting the ancient and healthy Mediterranean diet (MD). However, because these dietary regimens exploit different pathophysiological mechanisms, we hypothesize that adherence to the MD may play a role in determining the efficacy of the VLCKD. We enrolled 318 women (age 38.84 ± 14.37 years; BMI 35.75 ± 5.18 kg/m²) and assessed their anthropometric parameters, body compositions, and adherence to the MD (with the PREvención con DIetaMEDiterránea (PREDIMED) questionnaire) at baseline. The anthropometric parameters and body composition were repeated at the end of the VLCKD. At the end of the VLCKD, the women with high adherence to the MD achieved the best results in terms of weight loss and improved body composition. Specifically, the women who were above the median of fat mass (FM)% reduction had the best MD pattern, characterized by a higher consumption of extra virgin olive oil (EVOO), fruits, vegetables, and red wine, as well as a higher adherence to the MD than the women who were below the same median. In a multiple regression analysis, the PREDIMED score was the main predictor of the FM% reduction score and came in first, followed by fruit, EVOO, and glasses of wine, in predicting the percentage reduction in FM. A PREDIMED score value of > 5 could serve as a threshold to identify patients who are more likely to lose FM at the end of the VLCKD. In conclusion, high adherence to the MD resulted in higher VLCKD efficacy. This could be due to the antioxidant and anti-inflammatory properties of the MD, which are capable of establishing a metabolic set-up that is favorable to the onset of more effective ketosis.
Collapse
|
6
|
Therapeutic Stimulation of Glycolytic ATP Production for Treating ROS-Mediated Cellular Senescence. Metabolites 2022; 12:metabo12121160. [PMID: 36557198 PMCID: PMC9781421 DOI: 10.3390/metabo12121160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Cellular senescence is conditioned through two interrelated processes, i.e., a reduction in adenosine triphosphate (ATP) and the enhancement of reactive oxygen species (ROS) production levels in mitochondria. ATP shortages primarily influence the energy-intensive synthesis of large biomolecules, such as deoxyribonucleic acid (DNA). In addition, as compared to small biomolecules, large biomolecules are more prone to ROS-mediated damaging effects. Based on the available evidence, we suggest that the stimulation of anaerobic glycolytic ROS-independent ATP production could restrain cellular senescence. Consistent with this notion, non-drug related intermittent hypoxia (IH)-based therapy could be effectively applied in sports medicine, as well as for supporting the physical activity of elderly patients and prophylactics of various age-related disorders. Moreover, drug therapy aiming to achieve the partial blockade of respiratory chain and downstream compensatory glycolysis enhancement could prove to be useful for treating cardiovascular, neurological and hormonal diseases. We maintain that non-drug/drug-related therapeutic interventions applied in combination over the entire lifespan could significantly rejuvenate and prolong a high quality of life for individuals.
Collapse
|
7
|
Cai M, Qu Y, Ren Z, Xu X, Ye C, Lu H, Zhang Y, Pan W, Shen H, Li H. Nutritional supplements formulated to prevent cognitive impairment in animals. Curr Res Food Sci 2022; 5:2294-2308. [DOI: 10.1016/j.crfs.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 10/08/2022] [Accepted: 11/02/2022] [Indexed: 11/20/2022] Open
|
8
|
Simões MS, Ames-Sibin AP, Lima EP, Pateis VO, Bersani-Amado CA, Mathias PCF, Peralta RM, Sá-Nakanishi AB, Bracht L, Bracht A, Comar JF. Resveratrol biotransformation and actions on the liver metabolism of healthy and arthritic rats. Life Sci 2022; 310:120991. [PMID: 36162485 DOI: 10.1016/j.lfs.2022.120991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 10/14/2022]
Abstract
AIMS To investigate the effects of resveratrol on glycogen catabolism and gluconeogenesis in perfused livers of healthy and arthritic rats. The actions of resveratrol-3-O-glucuronide (R3G) and the biotransformation of resveratrol into R3G was further evaluated in the livers. MAIN METHODS arthritis was induced with Freund's adjuvant. Resveratrol at concentrations of 10, 25, 50, 100 and 200 μM and 200 μM R3G were introduced in perfused livers. Resveratrol and metabolites were measured in the outflowing perfusate. Respiration of isolated mitochondria and activity of gluconeogenic enzymes were also evaluated in the livers. KEY FINDINGS resveratrol inhibited glycogen catabolism when infused at concentrations above 50 μM and gluconeogenesis even at 10 μM in both healthy and arthritic rat livers, but more sensitive in these latter. Resveratrol above 100 μM inhibited ADP-stimulated respiration and the activities of NADH- and succinate-oxidases in mitochondria, which were partially responsible for gluconeogenesis inhibition. Pyruvate carboxylase activity was inhibited by 25 μM resveratrol and should inhibit gluconeogenesis already at low concentrations. Resveratrol was significantly metabolized to R3G in healthy rat livers, however, R3G formation was lower in arthritic rat livers. The latter must be in part a consequence of a lower glucose disposal for glucuronidation. When compared to resveratrol, R3G inhibited gluconeogenesis in a lower extension and glycogen catabolism in a higher extension. SIGNIFICANCE the effects of resveratrol and R3G tended to be transitory and existed only when the resveratrol is present in the organ, however, they should be considered because significant serum concentrations of both are found after oral ingestion of resveratrol.
Collapse
Affiliation(s)
- Mellina S Simões
- Department of Biochemistry, State University of Maringa, PR, Brazil
| | | | - Emanuele P Lima
- Department of Biochemistry, State University of Maringa, PR, Brazil
| | - Vanesa O Pateis
- Department of Biochemistry, State University of Maringa, PR, Brazil
| | | | - Paulo C F Mathias
- Department of Cellular Biology, State University of Maringa, PR, Brazil
| | - Rosane M Peralta
- Department of Biochemistry, State University of Maringa, PR, Brazil
| | | | - Lívia Bracht
- Department of Biochemistry, State University of Maringa, PR, Brazil
| | - Adelar Bracht
- Department of Biochemistry, State University of Maringa, PR, Brazil
| | - Jurandir F Comar
- Department of Biochemistry, State University of Maringa, PR, Brazil.
| |
Collapse
|
9
|
Guo Y, Qu Y, Li W, Shen H, Cui J, Liu J, Li J, Wu D. Protective effect of Monarda didymaL. essential oil and its main component thymol on learning and memory impairment in aging mice. Front Pharmacol 2022; 13:992269. [PMID: 36105199 PMCID: PMC9464920 DOI: 10.3389/fphar.2022.992269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
The aging process of human beings is accompanied by the decline of learning and memory ability and progressive decline of brain function, which induces Alzheimer’s Disease (AD) in serious cases and seriously affects the quality of patient’s life. In recent years, more and more studies have found that natural plant antioxidants can help to improve the learning and memory impairment, reduce oxidative stress injury and aging lesions in tissues. This study aimed to investigate the effect of Monarda didymaL. essential oil and its main component thymol on learning and memory impairment in D-galactose-induced aging mice and its molecular mechanism. The composition of Monarda didymaL. essential oil was analyzed by Gas Chromatography-Mass Spectrometer (GC-MS). A mouse aging model was established by the subcutaneous injection of D-galactose in mice. The behavior changes of the mice were observed by feeding the model mice with essential oil, thymol and donepezil, and the histopathological changes of the hippocampus were observed by HE staining. And the changes of acetylcholinesterase (AchE), superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activities, and the content of malondialdehyde (MDA) in hippocampal tissues were detected by corresponding kits. The expression of mitogen activated protein kinase (MAPK) and nuclear factor E2 related factor 2 (Nrf2) pathways related proteins were detected by western blot. Animal experimental results showed that compared with model group, the above indexes in Monarda didymaL. essential oil and thymol groups improved significantly in a dose-dependent manner. Monarda didymaL. essential oil and its main active component thymol can improve the learning and memory impairment of aging mice to some extent, and Nrf2 and MAPK pathways may be involved in its action process.
Collapse
Affiliation(s)
- Yingxue Guo
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Yan Qu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
- College of Jiamusi, Heilongjiang University of Chinese Medicine, Jiamusi, Heilongjiang, China
| | - Wenpeng Li
- School of Stomatology, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Hongkuan Shen
- Jiamusi Inspection and Testing Center, Jiamusi, Heilongjiang, China
| | - Jiwen Cui
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Jiguang Liu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, China
- School of Stomatology, Jiamusi University, Jiamusi, Heilongjiang, China
- *Correspondence: Jiguang Liu, ; Jinlian Li, ; Dongmei Wu,
| | - Jinlian Li
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
- *Correspondence: Jiguang Liu, ; Jinlian Li, ; Dongmei Wu,
| | - Dongmei Wu
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, China
- *Correspondence: Jiguang Liu, ; Jinlian Li, ; Dongmei Wu,
| |
Collapse
|
10
|
Natural Polyphenols as SERCA Activators: Role in the Endoplasmic Reticulum Stress-Related Diseases. Molecules 2022; 27:molecules27165095. [PMID: 36014327 PMCID: PMC9415898 DOI: 10.3390/molecules27165095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) is a key protein responsible for transporting Ca2+ ions from the cytosol into the lumen of the sarco/endoplasmic reticulum (SR/ER), thus maintaining Ca2+ homeostasis within cells. Accumulating evidence suggests that impaired SERCA function is associated with disruption of intracellular Ca2+ homeostasis and induction of ER stress, leading to different chronic pathological conditions. Therefore, appropriate strategies to control Ca2+ homeostasis via modulation of either SERCA pump activity/expression or relevant signaling pathways may represent a useful approach to combat pathological states associated with ER stress. Natural dietary polyphenolic compounds, such as resveratrol, gingerol, ellagic acid, luteolin, or green tea polyphenols, with a number of health-promoting properties, have been described either to increase SERCA activity/expression directly or to affect Ca2+ signaling pathways. In this review, potential Ca2+-mediated effects of the most studied polyphenols on SERCA pumps or related Ca2+ signaling pathways are summarized, and relevant mechanisms of their action on Ca2+ regulation with respect to various ER stress-related states are depicted. All data were collected using scientific search tools (i.e., Science Direct, PubMed, Scopus, and Google Scholar).
Collapse
|
11
|
Khalil M, Shanmugam H, Abdallah H, John Britto JS, Galerati I, Gómez-Ambrosi J, Frühbeck G, Portincasa P. The Potential of the Mediterranean Diet to Improve Mitochondrial Function in Experimental Models of Obesity and Metabolic Syndrome. Nutrients 2022; 14:3112. [PMID: 35956289 PMCID: PMC9370259 DOI: 10.3390/nu14153112] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 01/27/2023] Open
Abstract
The abnormal expansion of body fat paves the way for several metabolic abnormalities including overweight, obesity, and diabetes, which ultimately cluster under the umbrella of metabolic syndrome (MetS). Patients with MetS are at an increased risk of cardiovascular disease, morbidity, and mortality. The coexistence of distinct metabolic abnormalities is associated with the release of pro-inflammatory adipocytokines, as components of low-to-medium grade systemic inflammation and increased oxidative stress. Adopting healthy lifestyles, by using appropriate dietary regimens, contributes to the prevention and treatment of MetS. Metabolic abnormalities can influence the function and energetic capacity of mitochondria, as observed in many obesity-related cardio-metabolic disorders. There are preclinical studies both in cellular and animal models, as well as clinical studies, dealing with distinct nutrients of the Mediterranean diet (MD) and dysfunctional mitochondria in obesity and MetS. The term "Mitochondria nutrients" has been adopted in recent years, and it depicts the adequate nutrients to keep proper mitochondrial function. Different experimental models show that components of the MD, including polyphenols, plant-derived compounds, and polyunsaturated fatty acids, can improve mitochondrial metabolism, biogenesis, and antioxidant capacity. Such effects are valuable to counteract the mitochondrial dysfunction associated with obesity-related abnormalities and can represent the beneficial feature of polyphenols-enriched olive oil, vegetables, nuts, fish, and plant-based foods, as the main components of the MD. Thus, developing mitochondria-targeting nutrients and natural agents for MetS treatment and/or prevention is a logical strategy to decrease the burden of disease and medications at a later stage. In this comprehensive review, we discuss the effects of the MD and its bioactive components on improving mitochondrial structure and activity.
Collapse
Affiliation(s)
- Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.K.); (H.S.); (H.A.); (J.S.J.B.); (I.G.)
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy
| | - Harshitha Shanmugam
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.K.); (H.S.); (H.A.); (J.S.J.B.); (I.G.)
| | - Hala Abdallah
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.K.); (H.S.); (H.A.); (J.S.J.B.); (I.G.)
| | - Jerlin Stephy John Britto
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.K.); (H.S.); (H.A.); (J.S.J.B.); (I.G.)
| | - Ilaria Galerati
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.K.); (H.S.); (H.A.); (J.S.J.B.); (I.G.)
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (J.G.-A.); (G.F.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 28029 Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, 31008 Pamplona, Spain; (J.G.-A.); (G.F.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, 28029 Pamplona, Spain
- Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Piazza Giulio Cesare 11, 70124 Bari, Italy; (M.K.); (H.S.); (H.A.); (J.S.J.B.); (I.G.)
| |
Collapse
|
12
|
Fisetin attenuates renal ischemia/reperfusion injury by improving mitochondrial quality, reducing apoptosis and oxidative stress. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:547-561. [PMID: 35133446 DOI: 10.1007/s00210-022-02204-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/10/2022] [Indexed: 02/08/2023]
Abstract
Renal ischemic reperfusion (IR) injury is one of the major source of mortality and morbidity associated with acute kidney injury (AKI). Several flavonoids have shown to be renal protective against many nephrotoxic agents causing AKI. Fisetin, a promising flavonoid, is effective in the management of septic AKI, expected to ameliorate renal IR injury. The present study aimed to generate evidence for fisetin-mediated renal protection against IR injury. Male Wistar rats of 200-250 g were subjected to IR protocol by performing bilateral clamping for 45 min and reperfusion for 24 h. Fisetin was administrated 30 min (20 mg/kg b.wt, ip) before the surgery. Renal injury was evaluated by measuring the biomarkers in plasma, examining the ultra-structure of the kidney, and analyzing the apoptotic changes. Oxidative stress, antioxidant levels, and mitochondrial function were analyzed in the renal tissue. Fisetin administration significantly reduced the renal damages associated with IR by improving estimated glomerular filtration rate (eGFR: IR-0.35 ml/min, F_IR-9.03 ml/min), reducing plasma creatinine level (IR-2.2 mg/dl, F_IR-0.92 mg/dl), and lowering urinary albumin/creatinine ratio (IR-6.09 F_IR-2.16), caspase activity, decreased DNA fragmentation and reduced tubular injury score (IR- 11 F_IR-6.5). At the cellular level, fisetin significantly reduced renal oxidative stress and augmented the antioxidant levels. Fisetin was found to preserve mitochondrial electron transport chain activities and improved the ATP producing capacity in the renal tissue upon IR injury. Fisetin pretreatment attenuates renal IR injury by improving renal function, reducing the renal injury mediated by apoptosis, reducing free radical release, and augmenting mitochondrial function.
Collapse
|
13
|
Jayatunga DPW, Hone E, Fernando WMADB, Garg ML, Verdile G, Martins RN. Mitoprotective Effects of a Synergistic Nutraceutical Combination: Basis for a Prevention Strategy Against Alzheimer’s Disease. Front Aging Neurosci 2022; 13:781468. [PMID: 35264941 PMCID: PMC8899513 DOI: 10.3389/fnagi.2021.781468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/21/2021] [Indexed: 11/29/2022] Open
Abstract
Evidence to date suggests the consumption of food rich in bioactive compounds, such as polyphenols, flavonoids, omega-3 fatty acids may potentially minimize age-related cognitive decline. For neurodegenerative diseases, such as Alzheimer’s disease (AD), which do not yet have definitive treatments, the focus has shifted toward using alternative approaches, including prevention strategies rather than disease reversal. In this aspect, certain nutraceuticals have become promising compounds due to their neuroprotective properties. Moreover, the multifaceted AD pathophysiology encourages the use of multiple bioactive components that may be synergistic in their protective roles when combined. The objective of the present study was to determine mechanisms of action underlying the inhibition of Aβ1–42-induced toxicity by a previously determined, three-compound nutraceutical combination D5L5U5 for AD. In vitro experiments were carried out in human neuroblastoma BE(2)-M17 cells for levels of ROS, ATP mitophagy, and mitobiogenesis. The component compounds luteolin (LUT), DHA, and urolithin A (UA) were independently protective of mitochondria; however, the D5L5U5 preceded its single constituents in all assays used. Overall, it indicated that D5L5U5 had potent inhibitory effects against Aβ1–42-induced toxicity through protecting mitochondria. These mitoprotective activities included minimizing oxidative stress, increasing ATP and inducing mitophagy and mitobiogenesis. However, this synergistic nutraceutical combination warrants further investigations in other in vitro and in vivo AD models to confirm its potential to be used as a preventative therapy for AD.
Collapse
Affiliation(s)
- Dona P. W. Jayatunga
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Eugene Hone
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - W. M. A. D. Binosha Fernando
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Manohar L. Garg
- Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Giuseppe Verdile
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Faculty of Health Sciences, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Ralph N. Martins
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
- *Correspondence: Ralph N. Martins,
| |
Collapse
|
14
|
Trushina E, Trushin S, Hasan MF. Mitochondrial complex I as a therapeutic target for Alzheimer's disease. Acta Pharm Sin B 2022; 12:483-495. [PMID: 35256930 PMCID: PMC8897152 DOI: 10.1016/j.apsb.2021.11.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/01/2021] [Accepted: 10/25/2021] [Indexed: 02/08/2023] Open
Abstract
Alzheimer's disease (AD), the most prominent form of dementia in the elderly, has no cure. Strategies focused on the reduction of amyloid beta or hyperphosphorylated Tau protein have largely failed in clinical trials. Novel therapeutic targets and strategies are urgently needed. Emerging data suggest that in response to environmental stress, mitochondria initiate an integrated stress response (ISR) shown to be beneficial for healthy aging and neuroprotection. Here, we review data that implicate mitochondrial electron transport complexes involved in oxidative phosphorylation as a hub for small molecule-targeted therapeutics that could induce beneficial mitochondrial ISR. Specifically, partial inhibition of mitochondrial complex I has been exploited as a novel strategy for multiple human conditions, including AD, with several small molecules being tested in clinical trials. We discuss current understanding of the molecular mechanisms involved in this counterintuitive approach. Since this strategy has also been shown to enhance health and life span, the development of safe and efficacious complex I inhibitors could promote healthy aging, delaying the onset of age-related neurodegenerative diseases.
Collapse
Key Words
- AD, Alzheimer's disease
- ADP, adenosine diphosphate
- AIDS, acquired immunodeficiency syndrome
- AMP, adenosine monophosphate
- AMPK, AMP-activated protein kinase
- APP/PS1, amyloid precursor protein/presenilin 1
- ATP, adenosine triphosphate
- Alzheimer's disease
- Aβ, amyloid beta
- BBB, blood‒brain barrier
- BDNF, brain-derived neurotrophic factor
- CP2, tricyclic pyrone compound two
- Complex I inhibitors
- ER, endoplasmic reticulum
- ETC, electron transport chain
- FADH2, flavin adenine dinucleotide
- FDG-PET, fluorodeoxyglucose-positron emission tomography
- GWAS, genome-wide association study
- HD, Huntington's disease
- HIF-1α, hypoxia induced factor 1 α
- Healthy aging
- ISR, integrated stress response
- Integrated stress response
- LTP, long term potentiation
- MCI, mild cognitive impairment
- MPTP, 1-methyl 4-phenyl-1,2,3,6-tetrahydropyridine
- Mitochondria
- Mitochondria signaling
- Mitochondria targeted therapeutics
- NAD+ and NADH, nicotinamide adenine dinucleotide
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NRF2, nuclear factor E2-related factor 2
- Neuroprotection
- OXPHOS, oxidative phosphorylation
- PD, Parkinson's disease
- PGC1α, peroxisome proliferator-activated receptor gamma coactivator 1 alpha
- PMF, proton-motive force
- RNAi, RNA interference
- ROS, reactive oxygen species
- T2DM, type II diabetes mellitus
- TCA, the tricarboxylic acid cycle
- mtDNA, mitochondrial DNA
- mtUPR, mitochondrial unfolded protein response
- pTau, hyper-phosphorylated Tau protein
- ΔpH, proton gradient
- Δψm, mitochondrial membrane potential
Collapse
Affiliation(s)
- Eugenia Trushina
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Sergey Trushin
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Md Fayad Hasan
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
15
|
Visioli F, Ingram A, Beckman JS, Magnusson KR, Hagen TM. Strategies to protect against age-related mitochondrial decay: Do natural products and their derivatives help? Free Radic Biol Med 2022; 178:330-346. [PMID: 34890770 DOI: 10.1016/j.freeradbiomed.2021.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/24/2021] [Accepted: 12/04/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria serve vital roles critical for overall cellular function outside of energy transduction. Thus, mitochondrial decay is postulated to be a key factor in aging and in age-related diseases. Mitochondria may be targets of their own decay through oxidative damage. However, treating animals with antioxidants has been met with only limited success in rejuvenating mitochondrial function or in increasing lifespan. A host of nutritional strategies outside of using traditional antioxidants have been devised to promote mitochondrial function. Dietary compounds are under study that induce gene expression, enhance mitochondrial biogenesis, mitophagy, or replenish key metabolites that decline with age. Moreover, redox-active compounds may now be targeted to mitochondria which improve their effectiveness. Herein we review the evidence that representative dietary effectors modulate mitochondrial function by stimulating their renewal or reversing the age-related loss of key metabolites. While in vitro evidence continues to accumulate that many of these compounds benefit mitochondrial function and/or prevent their decay, the results using animal models and, in some instances human clinical trials, are more mixed and sometimes even contraindicated. Thus, further research on optimal dosage and age of intervention are warranted before recommending potential mitochondrial rejuvenating compounds for human use.
Collapse
Affiliation(s)
- Francesco Visioli
- Department of Molecular Medicine, University of Padova, Italy; IMDEA-Food, Madrid, Spain
| | - Avery Ingram
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| | - Joseph S Beckman
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA
| | - Kathy R Magnusson
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA
| | - Tory M Hagen
- Linus Pauling Institute, Oregon State University, Corvallis, OR, 97331, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
16
|
Xu Y, Xu Y, Biby S, Bai P, Liu Y, Zhang C, Wang C, Zhang S. Novel Positron Emission Tomography Radiotracers for Imaging Mitochondrial Complex I. ACS Chem Neurosci 2021; 12:4491-4499. [PMID: 34812607 PMCID: PMC10071493 DOI: 10.1021/acschemneuro.1c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mitochondrial dysfunction has been indicated in neurodegenerative and other disorders. The mitochondrial complex I (MC-I) of the electron transport chain (ETC) on the inner membrane is the electron entry point of the ETC and is essential for the production of reactive oxygen species. Based on a recently identified β-keto-amide type MC-I modulator from our laboratory, an 18F-labeled positron emission tomography (PET) tracer, 18F-2, was prepared. PET/CT imaging studies demonstrated that 18F-2 exhibited rapid brain uptake without significant wash out during the 60 min scanning time. In addition, the binding of 18F-2 was higher in the regions of the brain stem, cerebellum, and midbrain. The uptake of 18F-2 can be significantly blocked by its parent compound. Collectively, the results strongly suggest successful development of MC-I PET tracers from this chemical scaffold that can be used in future mitochondrial dysfunction studies of the central nervous system.
Collapse
Affiliation(s)
- Yulong Xu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Yiming Xu
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Savannah Biby
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Ping Bai
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Yan Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Can Zhang
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Charlestown, Massachusetts 02129, United States
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, United States
| | - Shijun Zhang
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
17
|
Targetable Pathways for Alleviating Mitochondrial Dysfunction in Neurodegeneration of Metabolic and Non-Metabolic Diseases. Int J Mol Sci 2021; 22:ijms222111444. [PMID: 34768878 PMCID: PMC8583882 DOI: 10.3390/ijms222111444] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 02/08/2023] Open
Abstract
Many neurodegenerative and inherited metabolic diseases frequently compromise nervous system function, and mitochondrial dysfunction and oxidative stress have been implicated as key events leading to neurodegeneration. Mitochondria are essential for neuronal function; however, these organelles are major sources of endogenous reactive oxygen species and are vulnerable targets for oxidative stress-induced damage. The brain is very susceptible to oxidative damage due to its high metabolic demand and low antioxidant defence systems, therefore minimal imbalances in the redox state can result in an oxidative environment that favours tissue damage and activates neuroinflammatory processes. Mitochondrial-associated molecular pathways are often compromised in the pathophysiology of neurodegeneration, including the parkin/PINK1, Nrf2, PGC1α, and PPARγ pathways. Impairments to these signalling pathways consequently effect the removal of dysfunctional mitochondria, which has been suggested as contributing to the development of neurodegeneration. Mitochondrial dysfunction prevention has become an attractive therapeutic target, and there are several molecular pathways that can be pharmacologically targeted to remove damaged mitochondria by inducing mitochondrial biogenesis or mitophagy, as well as increasing the antioxidant capacity of the brain, in order to alleviate mitochondrial dysfunction and prevent the development and progression of neurodegeneration in these disorders. Compounds such as natural polyphenolic compounds, bioactive quinones, and Nrf2 activators have been reported in the literature as novel therapeutic candidates capable of targeting defective mitochondrial pathways in order to improve mitochondrial function and reduce the severity of neurodegeneration in these disorders.
Collapse
|
18
|
Holthaus L, Sharma V, Brandt D, Ziegler AG, Jastroch M, Bonifacio E. Functional and metabolic fitness of human CD4 + T lymphocytes during metabolic stress. Life Sci Alliance 2021; 4:4/12/e202101013. [PMID: 34580176 PMCID: PMC8500231 DOI: 10.26508/lsa.202101013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Human T-cell activation, expansion, and effector function is grossly impaired in conditions that combine glucose deprivation and mild mitochondrial stress. Human CD4+ T cells are essential mediators of immune responses. By altering the mitochondrial and metabolic states, we defined metabolic requirements of human CD4+ T cells for in vitro activation, expansion, and effector function. T-cell activation and proliferation were reduced by inhibiting oxidative phosphorylation, whereas early cytokine production was maintained by either OXPHOS or glycolytic activity. Glucose deprivation in the presence of mild mitochondrial stress markedly reduced all three T-cell functions, contrasting the exposure to resveratrol, an antioxidant and sirtuin-1 activator, which specifically inhibited cytokine production and T-cell proliferation, but not T-cell activation. Conditions that inhibited T-cell activation were associated with the down-regulation of 2′,5′-oligoadenylate synthetase genes via interferon response pathways. Our findings indicate that T-cell function is grossly impaired by stressors combined with nutrient deprivation, suggesting that correcting nutrient availability, metabolic stress, and/or the function of T cells in these conditions will improve the efficacy of T-cell–based therapies.
Collapse
Affiliation(s)
- Lisa Holthaus
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany.,Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| | - Virag Sharma
- German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.,Center for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine of TU Dresden, Dresden, Germany
| | - Daniel Brandt
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Anette-Gabriele Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.,Forschergruppe Diabetes e.V. at Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Martin Jastroch
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Ezio Bonifacio
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany .,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.,Center for Regenerative Therapies Dresden, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.,Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital and Faculty of Medicine of TU Dresden, Dresden, Germany
| |
Collapse
|
19
|
FIsetin Preserves Interfibrillar Mitochondria to Protect Against Myocardial Ischemia-Reperfusion Injury. Cell Biochem Biophys 2021; 80:123-137. [PMID: 34392494 DOI: 10.1007/s12013-021-01026-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
According to our previous study, fisetin (3,3',4',7-tetrahydroxyflavone), a bioactive phytochemical (flavonol), reportedly showed cardioprotection against ischemia-reperfusion injury (IRI) by reducing oxidative stress and inhibiting glycogen synthase kinase 3β (GSK3β) [1]. GSK3β is said to exert a non-mitochondrial mediated cardioprotection; therefore, distinct mechanisms of GSK3β on the regulatory effect of mitochondria need to be addressed. The two distinct mitochondrial subpopulations in the heart, namely interfibrillar mitochondria (IFM) and subsarcolemmal mitochondria (SSM), respond differently to disease states. The current study aimed to understand the effect of fisetin on the subpopulation-specific preservation of IFM and SSM while rendering cardioprotection against ischemia reperfusion (I/R). Rats were pre-treated with fisetin (20 mg/kg) intraperitoneally, and IRI was induced using Langendorff isolated heart perfusion technique. Hemodynamic parameters were recorded, and the cardiac injury was assessed using infarct size (IS), lactate dehydrogenase (LDH), and creatine kinase (CK) levels. Subpopulation-specific mitochondrial preservation was evaluated by electron transport chain (ETC), catalase, superoxide dismutase (SOD), and glutathione (GSH) activities. The bioavailability of fisetin in IFM and SSM was measured using the fluorescence method. The ability of fisetin to bind directly to the mitochondrial complex-1 and activating it through donating electrons to FMN was studied using molecular docking studies and further validated by in vitro rotenone sensitivity assay. Cardioprotective effects exhibited by fisetin were mainly mediated through IFM preservation. Mitochondrial bioavailability of fisetin is more in IFM than SSM in both ex vivo and in vitro conditions. Fisetin increased mitochondrial ATP production in I/R insult hearts by activating ETC complex 1. Inhibition of complex 1 prevents the ATP-producing capacity of fisetin. Our results provide evidence that fisetin plays a protective role in myocardial IRI, possibly by preserving the functional activities of IFM.
Collapse
|
20
|
Chodari L, Dilsiz Aytemir M, Vahedi P, Alipour M, Vahed SZ, Khatibi SMH, Ahmadian E, Ardalan M, Eftekhari A. Targeting Mitochondrial Biogenesis with Polyphenol Compounds. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4946711. [PMID: 34336094 PMCID: PMC8289611 DOI: 10.1155/2021/4946711] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022]
Abstract
Appropriate mitochondrial physiology is an essential for health and survival. Cells have developed unique mechanisms to adapt to stress circumstances and changes in metabolic demands, by meditating mitochondrial function and number. In this context, sufficient mitochondrial biogenesis is necessary for efficient cell function and haemostasis, which is dependent on the regulation of ATP generation and maintenance of mitochondrial DNA (mtDNA). These procedures play a primary role in the processes of inflammation, aging, cancer, metabolic diseases, and neurodegeneration. Polyphenols have been considered as the main components of plants, fruits, and natural extracts with proven therapeutic effects during the time. These components regulate the intracellular pathways of mitochondrial biogenesis. Therefore, the current review is aimed at representing an updated review which determines the effects of different natural polyphenol compounds from various plant kingdoms on modulating signaling pathways of mitochondrial biogenesis that could be a promising alternative for the treatment of several disorders.
Collapse
Affiliation(s)
- Leila Chodari
- Physiology Department, Faculty of Medicine, Urmia University of Medical Sciences, Urmia 571478334, Iran
| | - Mutlu Dilsiz Aytemir
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 06100, Sıhhiye, Ankara, Turkey
- İzmir Katip Çelebi University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 35620, Çiğli, İzmir, Turkey
| | - Parviz Vahedi
- Department of Anatomical Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mahdieh Alipour
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Elham Ahmadian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Aziz Eftekhari
- Pharmacology and Toxicology Department, Maragheh University of Medical Sciences, Maragheh, Iran
| |
Collapse
|
21
|
August PM, Klein CP, Grings M, Sagini JP, Rodrigues PIDL, Stocher DP, Stone V, Silva YD, Couto PRG, Salomon TB, Benfato MDS, Leipnitz G, Matté C. Maternal polyphenol intake impairs cerebellar redox homeostasis in newborn rats. Nutr Neurosci 2021; 25:2066-2076. [PMID: 34076555 DOI: 10.1080/1028415x.2021.1933330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Polyphenols are compounds found in plants that have been extensively studied due to the health benefits of its consumption in adulthood. Meanwhile, recent evidence suggests that polyphenol consumption during pregnancy may not be safe for the fetus. OBJECTIVE The goal of this study was to evaluate the effect of naringenin supplementation during pregnancy on brain redox homeostasis and mitochondrial activity of the newborn rat. METHODS Adult female Wistar rats were divided into two groups: (1) vehicle (1 mL/Kg p.o.) or (2) naringenin (50 mg/Kg p.o.). Naringenin was administered once a day during pregnancy. The offspring were euthanized on postnatal day 7, as well the dams, and brain regions were dissected. RESULTS The offspring cerebellum was the most affected region, presenting increased activity of the mitochondrial electron transport system, allied to increased reactive species levels, lipid peroxidation, and glutathione concentration. The nitric oxide levels suffered structure-dependent alteration, with decreased levels in the pups' cerebellum and increased in the hippocampus. The offspring parietal cortex was not affected, as well as the parameters evaluated in the dams' brains. CONCLUSION Maternal consumption of naringenin alters offspring cerebellar redox homeostasis, which could be related to adverse effects on the motor and cognitive development in the descendants.
Collapse
Affiliation(s)
- Pauline Maciel August
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Caroline Peres Klein
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mateus Grings
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - João Pedro Sagini
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Daniela Pereira Stocher
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Vinicius Stone
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Yasmini Dandara Silva
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Pablo Ribeiro Gonçalves Couto
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tiago Boeira Salomon
- Programa de Pós-graduação em Biologia Molecular e Celular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mara da Silveira Benfato
- Programa de Pós-graduação em Biologia Molecular e Celular, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Biofísica, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Cristiane Matté
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-graduação em Ciências Biológicas: Fisiologia, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
22
|
Jhanji M, Rao CN, Sajish M. Towards resolving the enigma of the dichotomy of resveratrol: cis- and trans-resveratrol have opposite effects on TyrRS-regulated PARP1 activation. GeroScience 2021; 43:1171-1200. [PMID: 33244652 PMCID: PMC7690980 DOI: 10.1007/s11357-020-00295-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
Unlike widely perceived, resveratrol (RSV) decreased the average lifespan and extended only the replicative lifespan in yeast. Similarly, although not widely discussed, RSV is also known to evoke neurite degeneration, kidney toxicity, atherosclerosis, premature senescence, and genotoxicity through yet unknown mechanisms. Nevertheless, in vivo animal models of diseases and human clinical trials demonstrate inconsistent protective and beneficial effects. Therefore, the mechanism of action of RSV that elicits beneficial effects remains an enigma. In a previously published work, we demonstrated structural similarities between RSV and tyrosine amino acid. RSV acts as a tyrosine antagonist and competes with it to bind to human tyrosyl-tRNA synthetase (TyrRS). Interestingly, although both isomers of RSV bind to TyrRS, only the cis-isomer evokes a unique structural change at the active site to promote its interaction with poly-ADP-ribose polymerase 1 (PARP1), a major determinant of cellular NAD+-dependent stress response. However, retention of trans-RSV in the active site of TyrRS mimics its tyrosine-bound conformation that inhibits the auto-poly-ADP-ribos(PAR)ylation of PARP1. Therefore, we proposed that cis-RSV-induced TyrRS-regulated auto-PARylation of PARP1 would contribute, at least in part, to the reported health benefits of RSV through the induction of protective stress response. This observation suggested that trans-RSV would inhibit TyrRS/PARP1-mediated protective stress response and would instead elicit an opposite effect compared to cis-RSV. Interestingly, most recent studies also confirmed the conversion of trans-RSV and its metabolites to cis-RSV in the physiological context. Therefore, the finding that cis-RSV and trans-RSV induce two distinct conformations of TyrRS with opposite effects on the auto-PARylation of PARP1 provides a potential molecular basis for the observed dichotomic effects of RSV under different experimental paradigms. However, the fact that natural RSV exists as a diastereomeric mixture of its cis and trans isomers and cis-RSV is also a physiologically relevant isoform has not yet gained much scientific attention.
Collapse
Affiliation(s)
- Megha Jhanji
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Chintada Nageswara Rao
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Mathew Sajish
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
23
|
Leite JA, Ghirotto B, Targhetta VP, de Lima J, Câmara NOS. Sirtuins as pharmacological targets in neurodegenerative and neuropsychiatric disorders. Br J Pharmacol 2021; 179:1496-1511. [PMID: 34029375 DOI: 10.1111/bph.15570] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
Histone deacetylases (HDACs) are enzymes that regulate several processes, such as transcription, cell proliferation, differentiation and development. HDACs are classified as either Zn2+ -dependent or NAD+ -dependent enzymes. Over the years, experimental and clinical evidence has demonstrated that HDAC modulation is a critical process in neurodegenerative and psychiatric disorders. Nevertheless, most of the studies have focused on the role of Zn2+ -dependent HDACs in the development of these diseases, although there is growing evidence showing that the NAD+ -dependent HDACs, known as sirtuins, are also very promising targets. This possibility has been strengthened by reports of decreased levels of NAD+ in CNS disorders, which can lead to alterations in sirtuin activation and therefore result in increased pathology. In this review, we discuss the role of sirtuins in neurodegenerative and neuropsychiatric disorders as well the possible rationale for them to be considered as pharmacological targets in future therapeutic interventions.
Collapse
Affiliation(s)
- Jefferson A Leite
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Bruno Ghirotto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vitor P Targhetta
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jean de Lima
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Niels O S Câmara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Division of Nephrology, School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
24
|
Differential role of SIRT1/MAPK pathway during cerebral ischemia in rats and humans. Sci Rep 2021; 11:6339. [PMID: 33737560 PMCID: PMC7973546 DOI: 10.1038/s41598-021-85577-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Cerebral ischemia (CI) is a severe cause of neurological dysfunction and mortality. Sirtuin-1 (Silent information regulator family protein 1, SIRT1), an oxidized nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylase, plays an important role in protection against several neurodegenerative disorders. The present study aims to investigate the protective role of SIRT1 after CI in experimental young and aged rats and humans. Also, the study examines the possible regulatory mechanisms of neuronal death in CI settings. Immunoblotting and immunohistochemistry were used to evaluate changes in the expression of SIRT1, JNK/ERK/MAPK/AKT signaling, and pro-apoptotic caspase-3 in experimental rats and CI patients. The study findings demonstrated that, in aged experimental rats, SIRT1 activation positively influenced JNK and ERK phosphorylation and modulated neuronal survival in AKT-dependent manner. Further, the protection conferred by SIRT1 was effectively reversed by JNK inhibition and increased pro-apoptotic caspase-3 expression. In young experimental rats, SIRT1 activation decreased the phosphorylation of stress-induced JNK, ERK, caspase-3, and increased the phosphorylation of AKT after CI. Inhibition of SIRT1 reversed the protective effect of resveratrol. More importantly, in human patients, SIRT1 expression, phosphorylation of JNK/ERK/MAPK/AKT signaling and caspase-3 were up-regulated. In conclusion, SIRT1 could possibly be involved in the modulation of JNK/ERK/MAPK/AKT signaling pathway in experimental rats and humans after CI.
Collapse
|
25
|
Carvalho C, Cardoso S. Diabetes-Alzheimer's Disease Link: Targeting Mitochondrial Dysfunction and Redox Imbalance. Antioxid Redox Signal 2021; 34:631-649. [PMID: 32098477 DOI: 10.1089/ars.2020.8056] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: It is of common sense that the world population is aging and life expectancy is increasing. However, as the population ages, there is also an exponential risk to live into the ages where the brain-related frailties and neurodegenerative diseases develop. Hand in hand with those events, the world is witnessing a major upsurge in diabetes diagnostics. Remarkably, all of this seems to be narrowly related, and clinical and research communities highlight for the upcoming threat that it will represent for the present and future generations. Recent Advances: It is of utmost importance to clarify the influence of diabetes-related metabolic features on brain health and the mechanisms underlying the increased likelihood of developing neurodegenerative diseases, in particular Alzheimer's disease. Thereupon, a wealth of evidence suggests that mitochondria and associated oxidative stress are at the root of the link between diabetes and co-occurring disorders in the brain. Critical Issues: The scientific community has been challenged with constant failures of clinical trials raising major issues in the advance of the therapeutic field to fight chronic diseases epidemics. Thus, a change of paradigms is urgently needed. Future Directions: It has become urgent to identify new and solid candidates able to clinically reproduce the positive outcomes obtained in preclinical studies. On this basis, strategies settled to counteract diabetes-induced neurodegeneration encompassing mitochondrial dysfunction, redox status imbalance, and/or insulin dysregulation seem worth to follow. Hopefully, ongoing innovative research based on reliable experimental tools will soon bring the desired answers allowing pharmaceutical industry to apply such knowledge to human medicine.
Collapse
Affiliation(s)
- Cristina Carvalho
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,IIIUC-Interdisciplinarie Institute of Investigation, University of Coimbra, Coimbra, Portugal
| | - Susana Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,IIIUC-Interdisciplinarie Institute of Investigation, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
26
|
Stojakovic A, Trushin S, Sheu A, Khalili L, Chang SY, Li X, Christensen T, Salisbury JL, Geroux RE, Gateno B, Flannery PJ, Dehankar M, Funk CC, Wilkins J, Stepanova A, O'Hagan T, Galkin A, Nesbitt J, Zhu X, Tripathi U, Macura S, Tchkonia T, Pirtskhalava T, Kirkland JL, Kudgus RA, Schoon RA, Reid JM, Yamazaki Y, Kanekiyo T, Zhang S, Nemutlu E, Dzeja P, Jaspersen A, Kwon YIC, Lee MK, Trushina E. Partial inhibition of mitochondrial complex I ameliorates Alzheimer's disease pathology and cognition in APP/PS1 female mice. Commun Biol 2021; 4:61. [PMID: 33420340 PMCID: PMC7794523 DOI: 10.1038/s42003-020-01584-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's Disease (AD) is a devastating neurodegenerative disorder without a cure. Here we show that mitochondrial respiratory chain complex I is an important small molecule druggable target in AD. Partial inhibition of complex I triggers the AMP-activated protein kinase-dependent signaling network leading to neuroprotection in symptomatic APP/PS1 female mice, a translational model of AD. Treatment of symptomatic APP/PS1 mice with complex I inhibitor improved energy homeostasis, synaptic activity, long-term potentiation, dendritic spine maturation, cognitive function and proteostasis, and reduced oxidative stress and inflammation in brain and periphery, ultimately blocking the ongoing neurodegeneration. Therapeutic efficacy in vivo was monitored using translational biomarkers FDG-PET, 31P NMR, and metabolomics. Cross-validation of the mouse and the human transcriptomic data from the NIH Accelerating Medicines Partnership-AD database demonstrated that pathways improved by the treatment in APP/PS1 mice, including the immune system response and neurotransmission, represent mechanisms essential for therapeutic efficacy in AD patients.
Collapse
Affiliation(s)
- Andrea Stojakovic
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Sergey Trushin
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Anthony Sheu
- Institute for Translational Neuroscience, University of Minnesota Twin Cities, 2101 6th Street SE, Minneapolis, MN, 55455, USA
| | - Layla Khalili
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Su-Youne Chang
- Department of Neurologic Surgery, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Xing Li
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Trace Christensen
- Microscopy and Cell Analysis Core, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Jeffrey L Salisbury
- Microscopy and Cell Analysis Core, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Rachel E Geroux
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Benjamin Gateno
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Padraig J Flannery
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Mrunal Dehankar
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Cory C Funk
- Institute for Systems Biology, Seattle, WA, 98109-5263, USA
| | - Jordan Wilkins
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Anna Stepanova
- Division of Neonatology, Department of Pediatrics, Columbia University, 116th St & Broadway, New York, NY, 10027, USA
| | - Tara O'Hagan
- Division of Neonatology, Department of Pediatrics, Columbia University, 116th St & Broadway, New York, NY, 10027, USA
| | - Alexander Galkin
- Division of Neonatology, Department of Pediatrics, Columbia University, 116th St & Broadway, New York, NY, 10027, USA
| | - Jarred Nesbitt
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Xiujuan Zhu
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Utkarsh Tripathi
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Slobodan Macura
- Department of Biochemistry and Molecular Biology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Tamar Pirtskhalava
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Rachel A Kudgus
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Renee A Schoon
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Joel M Reid
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Yu Yamazaki
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL, 32224, USA
| | - Song Zhang
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Emirhan Nemutlu
- Faculty of Pharmacy, Department of Analytical Chemistry, Hacettepe University, Sihhiye, Ankara, 06100, Turkey
| | - Petras Dzeja
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Adam Jaspersen
- Microscopy and Cell Analysis Core, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Ye In Christopher Kwon
- Institute for Translational Neuroscience, University of Minnesota Twin Cities, 2101 6th Street SE, Minneapolis, MN, 55455, USA
| | - Michael K Lee
- Institute for Translational Neuroscience, University of Minnesota Twin Cities, 2101 6th Street SE, Minneapolis, MN, 55455, USA
| | - Eugenia Trushina
- Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| |
Collapse
|
27
|
Stojakovic A, Chang SY, Nesbitt J, Pichurin NP, Ostroot MA, Aikawa T, Kanekiyo T, Trushina E. Partial Inhibition of Mitochondrial Complex I Reduces Tau Pathology and Improves Energy Homeostasis and Synaptic Function in 3xTg-AD Mice. J Alzheimers Dis 2021; 79:335-353. [PMID: 33285637 PMCID: PMC7902954 DOI: 10.3233/jad-201015] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Accumulation of hyperphosphorylated tau (pTau) protein is associated with synaptic dysfunction in Alzheimer’s disease (AD). We previously demonstrated that neuroprotection in familial mouse models of AD could be achieved by targeting mitochondria complex I (MCI) and activating the adaptive stress response. Efficacy of this strategy on pTau-related pathology remained unknown. Objective: To investigate the effect of specific MCI inhibitor tricyclic pyrone compound CP2 on levels of human pTau, memory function, long term potentiation (LTP), and energy homeostasis in 18-month-old 3xTg-AD mice and explore the potential mechanisms. Methods: CP2 was administered to male and female 3xTg-AD mice from 3.5–18 months of age. Cognitive function was assessed using the Morris water maze. Glucose metabolism was measured in periphery using a glucose tolerance test and in the brain using fluorodeoxyglucose F18 positron-emission tomography (FDG-PET). LTP was evaluated using electrophysiology in the hippocampus. The expression of key proteins associated with neuroprotective mechanisms were assessed by western blotting. Results: Chronic CP2 treatment restored synaptic activity in female 3xTg-AD mice; cognitive function, levels of synaptic proteins, glucose metabolism, and energy homeostasis were improved in male and female 3xTg-AD mice. Significant reduction of human pTau in the brain was associated with increased activity of protein phosphatase of type 2A (PP2A), and reduced activity of cyclin-dependent kinase 5 (CDK5) and glycogen synthase kinase 3β (GSK3β). Conclusion: CP2 treatment protected against synaptic dysfunction and memory impairment in symptomatic 3xTg-AD mice, and reduced levels of human pTau, indicating that targeting mitochondria with small molecule specific MCI inhibitors represents a promising strategy for treating AD.
Collapse
Affiliation(s)
| | - Su-Youne Chang
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, USA.,Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Jarred Nesbitt
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | - Mark A Ostroot
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Tomonori Aikawa
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Eugenia Trushina
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
28
|
Pitceathly RD, Keshavan N, Rahman J, Rahman S. Moving towards clinical trials for mitochondrial diseases. J Inherit Metab Dis 2021; 44:22-41. [PMID: 32618366 PMCID: PMC8432143 DOI: 10.1002/jimd.12281] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022]
Abstract
Primary mitochondrial diseases represent some of the most common and severe inherited metabolic disorders, affecting ~1 in 4,300 live births. The clinical and molecular diversity typified by mitochondrial diseases has contributed to the lack of licensed disease-modifying therapies available. Management for the majority of patients is primarily supportive. The failure of clinical trials in mitochondrial diseases partly relates to the inefficacy of the compounds studied. However, it is also likely to be a consequence of the significant challenges faced by clinicians and researchers when designing trials for these disorders, which have historically been hampered by a lack of natural history data, biomarkers and outcome measures to detect a treatment effect. Encouragingly, over the past decade there have been significant advances in therapy development for mitochondrial diseases, with many small molecules now transitioning from preclinical to early phase human interventional studies. In this review, we present the treatments and management strategies currently available to people with mitochondrial disease. We evaluate the challenges and potential solutions to trial design and highlight the emerging pharmacological and genetic strategies that are moving from the laboratory to clinical trials for this group of disorders.
Collapse
Affiliation(s)
- Robert D.S. Pitceathly
- Department of Neuromuscular DiseasesUCL Queen Square Institute of Neurology and The National Hospital for Neurology and NeurosurgeryLondonUK
| | - Nandaki Keshavan
- Mitochondrial Research GroupUCL Great Ormond Street Institute of Child HealthLondonUK
- Metabolic UnitGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Joyeeta Rahman
- Mitochondrial Research GroupUCL Great Ormond Street Institute of Child HealthLondonUK
| | - Shamima Rahman
- Mitochondrial Research GroupUCL Great Ormond Street Institute of Child HealthLondonUK
- Metabolic UnitGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| |
Collapse
|
29
|
Evaluation of Toxic Effects of Novel Platinum (IV) Complexes in Female Rat Liver: Potential Protective Role of Resveratrol. Cell Biochem Biophys 2020; 79:141-152. [PMID: 33094405 DOI: 10.1007/s12013-020-00953-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2020] [Indexed: 10/23/2022]
Abstract
The use of cisplatin in chemotherapy may provoke a deteriorating impact in many vital organs, suggesting the need for more selective derivatives and effective protective cotreatments. This study assesses the effects of three novel Pt(IV) complexes containing ethyl-, propyl- and butyl-esters of the ethylenediamine-N, N'-di-S, S- (2,2'-dibenzyl) acetic acid on liver injury markers, redox parameters, and cell morphology of female rat liver tissue in comparison to cisplatin. In addition, the study evaluates the possible protective effects of resveratrol as well. The rats were divided into ten groups and were administered intraperitoneally with a single dose of cisplatin (7.5 mg/kg) or Pt(IV) complexes (10 mg/kg) and/or resveratrol (25 mg/kg). All treatments caused changes in body weight, food intake, and liver/bw ratio. Acute treatment with novel complexes decreased the levels of TB and TP while elevated the activity of ALT, AST, GGT, ALP which subsequently indicated on the liver damage. All three complexes significantly reduced the levels of LPO, O2.-, NO2- and activity of CAT, while increasing the activity of SOD, GSH-Px, GR, GST, and level of GSH, implying that these compounds could provoke redox balance disruption in liver cells. Moreover, according to the histopathological observations, the novel Pt(IV) complexes exerted stronger hepatotoxicity than cisplatin. Possible protective effects of resveratrol were not detected and even combined with examined compounds it abolished the activity of the antioxidative system of the liver cells causing more intense toxicity. Further investigation is required to elucidate the effects of Pt-based drugs and resveratrol in the estradiol-rich environment of female rats as well their influence on male rats' tissues.
Collapse
|
30
|
Cole LK, Mejia EM, Sparagna GC, Vandel M, Xiang B, Han X, Dedousis N, Kaufman BA, Dolinsky VW, Hatch GM. Cardiolipin deficiency elevates susceptibility to a lipotoxic hypertrophic cardiomyopathy. J Mol Cell Cardiol 2020; 144:24-34. [PMID: 32418915 DOI: 10.1016/j.yjmcc.2020.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 02/08/2023]
Abstract
Cardiolipin (CL) is a unique tetra-acyl phospholipid localized to the inner mitochondrial membrane and essential for normal respiratory function. It has been previously reported that the failing human heart and several rodent models of cardiac pathology have a selective loss of CL. A rare genetic disease, Barth syndrome (BTHS), is similarly characterized by a cardiomyopathy due to reduced levels of cardiolipin. A mouse model of cardiolipin deficiency was recently developed by knocking-down the cardiolipin biosynthetic enzyme tafazzin (TAZ KD). These mice develop an age-dependent cardiomyopathy due to mitochondrial dysfunction. Since reduced mitochondrial capacity in the heart may promote the accumulation of lipids, we examined whether cardiolipin deficiency in the TAZ KD mice promotes the development of a lipotoxic cardiomyopathy. In addition, we investigated whether treatment with resveratrol, a small cardioprotective nutraceutical, attenuated the aberrant lipid accumulation and associated cardiomyopathy. Mice deficient in tafazzin and the wildtype littermate controls were fed a low-fat diet, or a high-fat diet with or without resveratrol for 16 weeks. In the absence of obesity, TAZ KD mice developed a hypertrophic cardiomyopathy characterized by reduced left-ventricle (LV) volume (~36%) and 30-50% increases in isovolumetric contraction (IVCT) and relaxation times (IVRT). The progression of cardiac hypertrophy with tafazzin-deficiency was associated with several underlying pathological processes including altered mitochondrial complex I mediated respiration, elevated oxidative damage (~50% increase in reactive oxygen species, ROS), the accumulation of triglyceride (~250%) as well as lipids associated with lipotoxicity (diacylglyceride ~70%, free-cholesterol ~44%, ceramide N:16-35%) compared to the low-fat fed controls. Treatment of TAZ KD mice with resveratrol maintained normal LV volumes and preserved systolic function of the heart. The beneficial effect of resveratrol on cardiac function was accompanied by a significant improvement in mitochondrial respiration, ROS production and oxidative damage to the myocardium. Resveratrol treatment also attenuated the development of cardiac steatosis in tafazzin-deficient mice through reduced de novo fatty acid synthesis. These results indicate for the first time that cardiolipin deficiency promotes the development of a hypertrophic lipotoxic cardiomyopathy. Furthermore, we determined that dietary resveratrol attenuates the cardiomyopathy by reducing ROS, cardiac steatosis and maintaining mitochondrial function.
Collapse
Affiliation(s)
- Laura K Cole
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Department of Pharmacology & Therapeutics, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Edgard M Mejia
- Department of Immunology, University of Manitoba, Winnipeg, Canada
| | - Genevieve C Sparagna
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Center Denver, Aurora, USA
| | - Marilyne Vandel
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Department of Pharmacology & Therapeutics, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Bo Xiang
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Department of Pharmacology & Therapeutics, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies and the Department of Medicine-Diabetes, University of Texas Health Science Center at San Antonio, San Antonia, TX, USA
| | - Nikolaos Dedousis
- Center for Metabolism and Mitochondrial Medicine and the Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brett A Kaufman
- Center for Metabolism and Mitochondrial Medicine and the Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vernon W Dolinsky
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Department of Pharmacology & Therapeutics, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Grant M Hatch
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme, Children's Hospital Research Institute of Manitoba, Department of Pharmacology & Therapeutics, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Center for Research and Treatment of Atherosclerosis, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
31
|
Zhang Y, Li Y, Feng Q, Shao M, Yuan F, Liu F. Polydatin attenuates cadmium-induced oxidative stress via stimulating SOD activity and regulating mitochondrial function in Musca domestica larvae. CHEMOSPHERE 2020; 248:126009. [PMID: 32000039 DOI: 10.1016/j.chemosphere.2020.126009] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) is a widespread environment contaminant due to the development of electroplating and metallurgical industry. Cd can be enriched by organisms via food chain, causing the enlarged environmental problems and posing threats to the health of humans. Polydatin (PD), a natural stilbenoid compound derived from Polygonum cuspidatum, shows pronouncedly curative effect on oxidative damage. In this work, the protective effects of PD on oxidative damage induced by Cd in Musca domestica (housefly) larvae were evaluated. The larvae were exposed to Cd and/or PD, subsequently, the oxidative stress status, mitochondria activity, oxidative phosphorylation efficiency, and survival rate were assessed. Cd exposure generated significant increases of malondialdehyde (MDA), reactive oxygen species (ROS) and 8-hydroxy-2-deoxyguanosine (8-oxoG) in the housefly larvae, causing mitochondrial dysfunction and survival rate decline. Interestingly, pretreatment with PD exhibited obviously mitochondrial protective effects in the Cd-exposed larvae, as evidenced by reduced MDA, ROS and 8-oxoG levels, and increased activities of superoxide dismutase (SOD), mitochondrial electron transfer chain, and mitochondrial membrane potential, as well as respiratory control ratio. These results suggested that PD could attenuate Cd-induced damage via maintaining redox balance, stimulating SOD activity, and regulating mitochondria activity in housefly larvae. As a natural polyphenolic chemical, PD can act as a potential candidate compounds to relieve Cd injury.
Collapse
Affiliation(s)
- Yuming Zhang
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Yajing Li
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Qin Feng
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Menghua Shao
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Fengyu Yuan
- Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Fengsong Liu
- The International Centre for Precision Environmental Health and Governance, College of Life Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071002, China.
| |
Collapse
|
32
|
Cheng CK, Luo J, Lau CW, Chen Z, Tian XY, Huang Y. Pharmacological basis and new insights of resveratrol action in the cardiovascular system. Br J Pharmacol 2020; 177:1258-1277. [PMID: 31347157 PMCID: PMC7056472 DOI: 10.1111/bph.14801] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 07/10/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022] Open
Abstract
Resveratrol (trans-3,4',5-trihydroxystilbene) belongs to the family of natural phytoalexins. Resveratrol first came to our attention in 1992, following reports of the cardioprotective effects of red wine. Thereafter, resveratrol was shown to exert antioxidant, anti-inflammatory, anti-proliferative, and angio-regulatory effects against atherosclerosis, ischaemia, and cardiomyopathy. This article critically reviews the current findings on the molecular basis of resveratrol-mediated cardiovascular benefits, summarizing the broad effects of resveratrol on longevity regulation, energy metabolism, stress resistance, exercise mimetics, circadian clock, and microbiota composition. In addition, this article also provides an update, both preclinically and clinically, on resveratrol-induced cardiovascular protection and discusses the adverse and inconsistent effects of resveratrol reported in both preclinical and clinical studies. Although resveratrol has been claimed as a master anti-aging agent against several age-associated diseases, further detailed mechanistic investigation is still required to thoroughly unravel the therapeutic value of resveratrol against cardiovascular diseases at different stages of disease development. LINKED ARTICLES: This article is part of a themed section on The Pharmacology of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.6/issuetoc.
Collapse
Affiliation(s)
- Chak Kwong Cheng
- Heart and Vascular Institute, Shenzhen Research Institute and Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongSARChina
| | - Jiang‐Yun Luo
- Heart and Vascular Institute, Shenzhen Research Institute and Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongSARChina
| | - Chi Wai Lau
- Heart and Vascular Institute, Shenzhen Research Institute and Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongSARChina
| | - Zhen‐Yu Chen
- Food and Nutritional Sciences Programme, School of Life SciencesThe Chinese University of Hong KongHong KongSARChina
| | - Xiao Yu Tian
- Heart and Vascular Institute, Shenzhen Research Institute and Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongSARChina
| | - Yu Huang
- Heart and Vascular Institute, Shenzhen Research Institute and Li Ka Shing Institute of Health SciencesThe Chinese University of Hong KongHong KongSARChina
| |
Collapse
|
33
|
Madrid Gaviria S, Morado SA, López Herrera A, Restrepo Betancur G, Urrego Álvarez RA, Echeverri Zuluaga J, Cética PD. Resveratrol supplementation promotes recovery of lower oxidative metabolism after vitrification and warming of in vitro-produced bovine embryos. Reprod Fertil Dev 2019; 31:521-528. [PMID: 30373704 DOI: 10.1071/rd18216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 09/04/2018] [Indexed: 12/23/2022] Open
Abstract
Although vitrification is the current method of choice for oocyte and embryo cryopreservation, it may have detrimental effects on reduction-oxidation status and mitochondrial activity. The aim of this study was to evaluate the effect of supplementing invitro culture (IVC) media and/or vitrification solutions with the antioxidant resveratrol on active mitochondria, mitochondrial superoxide production and lipid peroxidation. Abattoir-derived oocytes were matured and fertilised invitro using standard procedures. Following IVF (21h later), zygotes were cultured in IVC medium supplemented with 0 or 0.5µM resveratrol. On Day 7, blastocysts were vitrified using the Cryotech Vitrification Kit (Cryo Tech Laboratory) with or without 0.5µM resveratrol. After warming, active mitochondria, mitochondrial superoxide production and lipid peroxidation were evaluated using Mito Tracker Green FM, MitoSOX Red and BODIPY581/591 C11 staining respectively. The vitrification-warming process significantly increased active mitochondria and mitochondrial superoxide production in bovine embryos (P<0.05, ANOVA). The addition of 0.5µM resveratrol to the IVC medium or vitrification solutions significantly attenuated the increase in active mitochondria (P<0.05), but not in mitochondrial superoxide production, whereas embryos cultured and vitrified with resveratrol showed the highest values for both parameters (P<0.05). Regarding lipid peroxidation, no significant differences were detected between treatments. In conclusion, resveratrol supplementation of IVC medium or vitrification solutions contributes to recovery of an embryo's 'quieter' state (i.e. lower oxidative metabolism) after vitrification. However, supplementation of both solutions with resveratrol seemed to have a pro-oxidant effect.
Collapse
Affiliation(s)
- Stephania Madrid Gaviria
- Grupo de investigación en Biodiversidad y Genética Molecular (BIOGEM), Departamento de Producción Animal, Universidad Nacional de Colombia, Sede Medellín, Carrera 65 No. 59A-110, Código Postal 050034, Colombia
| | - Sergio A Morado
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal, Chorroarin 280, Código Postal C1427CWO, Buenos Aires, Argentina
| | - Albeiro López Herrera
- Grupo de investigación en Biodiversidad y Genética Molecular (BIOGEM), Departamento de Producción Animal, Universidad Nacional de Colombia, Sede Medellín, Carrera 65 No. 59A-110, Código Postal 050034, Colombia
| | - Giovanni Restrepo Betancur
- Grupo de Investigación en Biotecnología Animal (GIBA), Departamento de Producción Animal, Universidad Nacional de Colombia, Sede Medellín, Colombia
| | - Rodrigo A Urrego Álvarez
- Grupo de Investigación INCA-CES, Facultad de Medicina Veterinaria y Zootecnia, Universidad CES, Calle 10A No. 22-04, Código Postal 050021, Colombia
| | - Julián Echeverri Zuluaga
- Grupo de investigación en Biodiversidad y Genética Molecular (BIOGEM), Departamento de Producción Animal, Universidad Nacional de Colombia, Sede Medellín, Carrera 65 No. 59A-110, Código Postal 050034, Colombia
| | - Pablo D Cética
- Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal, Chorroarin 280, Código Postal C1427CWO, Buenos Aires, Argentina
| |
Collapse
|
34
|
Olivares-Marin IK, González-Hernández JC, Madrigal-Perez LA. Resveratrol cytotoxicity is energy-dependent. J Food Biochem 2019; 43:e13008. [PMID: 31385323 DOI: 10.1111/jfbc.13008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/03/2019] [Accepted: 07/21/2019] [Indexed: 12/16/2022]
Abstract
Resveratrol is a phytochemical that may promote health. However, it has also been reported to be a toxic compound. The molecular mechanism by which resveratrol acts remains unclear. The inhibition of the oxidative phosphorylation (OXPHOS) pathway appears to be the molecular mechanism of resveratrol. Taking this into account, we propose that the cytotoxic properties of resveratrol depend on the energy (e.g., carbohydrates, lipids, and proteins) availability in the cells. In this regard, in a condition with low energy accessibility, resveratrol could enhance ATP starvation to lethal levels. In contrast, when cells are supplemented with high quantities of energy and resveratrol, the inhibition of OXPHOS might produce a low-energy environment, mimicking the beneficial effects of caloric restriction. This review suggests that investigating a possible complex relationship between caloric intake and the differential effects of resveratrol on OXPHOS may be justified. PRACTICAL APPLICATIONS: A low-calorie diet accompanied by significant levels of resveratrol might modify cellular bioenergetics, which could impact cellular viability and enhance the anti-cancer properties of resveratrol.
Collapse
Affiliation(s)
| | | | - Luis Alberto Madrigal-Perez
- Laboratorio de Biotecnología Microbiana, Instituto Tecnológico Superior de Ciudad Hidalgo, Ciudad Hidalgo, Mexico
| |
Collapse
|
35
|
Dobrek Ł, Arent Z, Nalik-Iwaniak K, Fic K, Kopańska M. Osteopontin and Fatty Acid Binding Protein in Ifosfamide-treated Rats. Open Med (Wars) 2019; 14:561-571. [PMID: 31410367 PMCID: PMC6689207 DOI: 10.1515/med-2019-0063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/07/2019] [Indexed: 01/04/2023] Open
Abstract
Introduction Ifosfamide (IF) is a cytostatic that exhibits adverse nephrotoxic properties. Clinically, IF-induced nephrotoxicity takes various forms, depending on applied dose and length of treatment. Objectives The aim of the study was to evaluate the two proteins: osteopontin (OP) and fatty acid binding protein (FABP), as markers of kidney function in rats treated with ifosfamide. Material and Methods Rats receiving a single IF dose (250 mg/kg b.w.; group 1) or treated with five consecutive IF doses administrated on following days (50mg/kg b.w.; group 3), compared with control groups 2 and 4, respectively, were studied. Kidney function was assessed using classical (urea, creatinine) and novel (FABP, OP) laboratory parameters and by histopathology. Results Single IF dose administration resulted in significant total proteinuria with urinary concentrations and 24-hour excretions of both FABP and OP comparable to the appropriate control. In rats treated with five consecutive IF doses, the urinary concentrations and 24-hour excretion of both FABP and OP were significantly higher compared to the appropriate control. The development of cystitis was revealed in groups 1 and 3, which was not accompanied by significant histopathological kidney damage. Conclusions Both OP and FABP may be useful laboratory markers of tubulopathy in the early stage of chronic nephrotoxicity of ifosfamide.
Collapse
Affiliation(s)
- Łukasz Dobrek
- Independent Researcher cooperating with Experimental and Innovative Medicine Centre, University Centre of Veterinary Medicine UJ-UR, University of Agriculture in Krakow, Krakow Poland
| | - Zbigniew Arent
- Independent Researcher cooperating with Experimental and Innovative Medicine Centre, University Centre of Veterinary Medicine UJ-UR, University of Agriculture in Krakow, Krakow Poland
| | - Klaudia Nalik-Iwaniak
- Independent Researcher cooperating with Experimental and Innovative Medicine Centre, University Centre of Veterinary Medicine UJ-UR, University of Agriculture in Krakow, Krakow Poland
| | - Kinga Fic
- Independent Researcher cooperating with Experimental and Innovative Medicine Centre, University Centre of Veterinary Medicine UJ-UR, University of Agriculture in Krakow, Krakow Poland
| | - Marta Kopańska
- Department of Human Physiology, Faculty of Medicine, University of Rzeszow, Rzeszow Poland
| |
Collapse
|
36
|
Flannery PJ, Trushina E. Mitochondrial dynamics and transport in Alzheimer's disease. Mol Cell Neurosci 2019; 98:109-120. [PMID: 31216425 DOI: 10.1016/j.mcn.2019.06.009] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/03/2019] [Accepted: 06/13/2019] [Indexed: 01/18/2023] Open
Abstract
Mitochondrial dysfunction is now recognized as a contributing factor to the early pathology of multiple human conditions including neurodegenerative diseases. Mitochondria are signaling organelles with a multitude of functions ranging from energy production to a regulation of cellular metabolism, energy homeostasis, stress response, and cell fate. The success of these complex processes critically depends on the fidelity of mitochondrial dynamics that include the ability of mitochondria to change shape and location in the cell, which is essential for the maintenance of proper function and quality control, particularly in polarized cells such as neurons. This review highlights several aspects of alterations in mitochondrial dynamics in Alzheimer's disease, which may contribute to the etiology of this debilitating condition. We also discuss therapeutic strategies to improve mitochondrial dynamics and function that may provide an alternative approach to failed amyloid-directed interventions.
Collapse
Affiliation(s)
| | - Eugenia Trushina
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
37
|
Mitochondria in Neuroprotection by Phytochemicals: Bioactive Polyphenols Modulate Mitochondrial Apoptosis System, Function and Structure. Int J Mol Sci 2019; 20:ijms20102451. [PMID: 31108962 PMCID: PMC6566187 DOI: 10.3390/ijms20102451] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/11/2019] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
In aging and neurodegenerative diseases, loss of distinct type of neurons characterizes disease-specific pathological and clinical features, and mitochondria play a pivotal role in neuronal survival and death. Mitochondria are now considered as the organelle to modulate cellular signal pathways and functions, not only to produce energy and reactive oxygen species. Oxidative stress, deficit of neurotrophic factors, and multiple other factors impair mitochondrial function and induce cell death. Multi-functional plant polyphenols, major groups of phytochemicals, are proposed as one of most promising mitochondria-targeting medicine to preserve the activity and structure of mitochondria and neurons. Polyphenols can scavenge reactive oxygen and nitrogen species and activate redox-responsible transcription factors to regulate expression of genes, coding antioxidants, anti-apoptotic Bcl-2 protein family, and pro-survival neurotrophic factors. In mitochondria, polyphenols can directly regulate the mitochondrial apoptosis system either in preventing or promoting way. Polyphenols also modulate mitochondrial biogenesis, dynamics (fission and fusion), and autophagic degradation to keep the quality and number. This review presents the role of polyphenols in regulation of mitochondrial redox state, death signal system, and homeostasis. The dualistic redox properties of polyphenols are associated with controversial regulation of mitochondrial apoptosis system involved in the neuroprotective and anti-carcinogenic functions. Mitochondria-targeted phytochemical derivatives were synthesized based on the phenolic structure to develop a novel series of neuroprotective and anticancer compounds, which promote the bioavailability and effectiveness. Phytochemicals have shown the multiple beneficial effects in mitochondria, but further investigation is required for the clinical application.
Collapse
|
38
|
Effect of resveratrol on vitrified in vitro produced bovine embryos: Recovering the initial quality. Cryobiology 2019; 89:42-50. [PMID: 31103673 DOI: 10.1016/j.cryobiol.2019.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/25/2022]
Abstract
Although vitrification is the current routine method for human embryo cryopreservation, it may cause detrimental effects. The aim of this study was to evaluate the effect of supplementing in vitro culture (IVC) media and/or vitrification solutions (VS) with Resveratrol on the presence of apoptotic markers, reactive oxygen species (ROS) level, glutathione (GSH) content and relative gene abundance. Abattoir-derived oocytes were matured and fertilized in vitro according to a standard procedure. Zygotes were cultured in IVC medium supplemented with or without 0.5 μM Resveratrol (CR, C- respectively). On day 7, blastocysts were vitrified using the minimum volume vitrification method supplementing VS with (C-VR, CRVR) or without (C-V-, CRV-) 0.5 μM Resveratrol. After warming, embryonic quality parameters were evaluated. Survival rates were significantly lower in CRVR group compared with CRV- group, but no differences in hatching rate were observed between groups. Vitrification/warming process did not alter total cell number or the presence of apoptotic or dead cells, but CRV- and CRVR groups presented a significant increase in dead cells (P < 0.05 by ANOVA). Resveratrol supplementation in VS (C-VR) restored GSH content (P < 0.05) to the level found in the CR group. Vitrification/warming process significantly increased the expression of FOXO3A, PNPLA2, BCL2L1 and BAX genes (P < 0.05). Resveratrol addition to IVC medium or VS partially compensated this increase for FOXO3A and PNPLA2 (P < 0.05) but not for BCL2L1 and BAX. In conclusion, supplementation of IVC media or VS with 0.5 μM resveratrol may help embryos to partially restore the initial quality they had before the cryopreservation process.
Collapse
|
39
|
Xu K, Bai M, Bin P, Duan Y, Wu X, Liu H, Yin Y. Negative effects on newborn piglets caused by excess dietary tryptophan in the morning in sows. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3005-3016. [PMID: 30478950 DOI: 10.1002/jsfa.9514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/22/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND This study investigated the effect of dynamic feeding models of dietary tryptophan on sows' performance during late pregnancy. RESULTS The average piglet birth weight and live farrowing rate from sows consuming a high-low tryptophan diet (0.39% Trp in the morning and 0.13% Trp in the afternoon) were decreased compared with those fed a 2×tryptophan diet (0.26% Trp in the morning and afternoon). Compared with the 2×tryptophan group, sow serum kynurenic acid and the newborn liver n-6:n-3 polyunsaturated fatty acid ratio were significantly higher, and sow serum taurine and newborn serum taurine, phosphoserine, cysteine and proline were lower in the high-low tryptophan diet group. Eighty-eight genes were differentially expressed in newborn piglets' livers between the 2×tryptophan and high-low groups. Genes related to cytotoxic effector regulation (major histocompatibility complex class I proteins), NADH oxidation, reactive oxygen species (ROS) metabolism and tissue development were differentially expressed between these two groups. CONCLUSION Together, the results provide information on new biomarkers in serum or liver and provide novel insights into variations in the fetal liver during exogenous stimulus response and biological processes of ROS metabolism in fetuses during late pregnancy caused by a single excessive tryptophan ingestion daily in the morning. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kang Xu
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha, China
- Hangzhou King Techina Technology Company Academician Expert Workstation, Hangzhou King Techina Technology Co., Ltd., Hangzhou, China
| | - Miaomiao Bai
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha, China
- Hangzhou King Techina Technology Company Academician Expert Workstation, Hangzhou King Techina Technology Co., Ltd., Hangzhou, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Peng Bin
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha, China
- Hangzhou King Techina Technology Company Academician Expert Workstation, Hangzhou King Techina Technology Co., Ltd., Hangzhou, China
| | - Yehui Duan
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha, China
- Hangzhou King Techina Technology Company Academician Expert Workstation, Hangzhou King Techina Technology Co., Ltd., Hangzhou, China
| | - Xin Wu
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha, China
- Hangzhou King Techina Technology Company Academician Expert Workstation, Hangzhou King Techina Technology Co., Ltd., Hangzhou, China
| | - Hongnan Liu
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha, China
- Hangzhou King Techina Technology Company Academician Expert Workstation, Hangzhou King Techina Technology Co., Ltd., Hangzhou, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha, China
| | - Yulong Yin
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha, China
- Hangzhou King Techina Technology Company Academician Expert Workstation, Hangzhou King Techina Technology Co., Ltd., Hangzhou, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, China
- College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Kondarl Agro-pastoral Technology Co., Ltd., Dongguan, China
- Academician Workstation of Changsha Medical University, Changsha, China
| |
Collapse
|
40
|
Lee SH, Min KJ. Drosophila melanogaster as a model system in the study of pharmacological interventions in aging. TRANSLATIONAL MEDICINE OF AGING 2019. [DOI: 10.1016/j.tma.2019.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
41
|
Liu S, Zhao M, Zhou Y, Wang C, Yuan Y, Li L, Bresette W, Chen Y, Cheng J, Lu Y, Liu J. Resveratrol exerts dose-dependent anti-fibrotic or pro-fibrotic effects in kidneys: A potential risk to individuals with impaired kidney function. PHYTOMEDICINE 2018; 57:223-235. [PMID: 30785018 DOI: 10.1016/j.phymed.2018.12.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/13/2018] [Accepted: 12/16/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND Renal fibrosis is the pathological feature of chronic kidney disease (CKD) which leads to end-stage renal disease (ESRD) and renal failure. Resveratrol [3,5,4'-trihydroxy-trans-stilbene (RSV)] has shown benefits for metabolic diseases and anti-cancer therapy, but its potential risk on renal health has not been fully evaluated. PURPOSE To investigate the global effects of RSV on renal fibrosis in human tubular epithelial cell (TEC) line HK-2, and in mice with unilateral ureteral obstruction (UUO). METHODS A TGF-β-induced in vitro model of epithelial-mesenchymal transition (EMT) in TEC was established. The effects of RSV on cell viability, pro-fibrotic factors, oxidative stress, mitochondria function, and underlying pathway proteins were analyzed. In vivo, the effects of RSV on renal function and fibrosis were assayed in UUO mice. RESULTS Our results showed that low concentrations of RSV (5-20 μM) decreased TGF-β-induced EMT via Sirt1-dependent deacetylation of Smad3/Smad4 mechanism. By contrast, long-term (72 h) exposure to high concentrations of RSV (≥ 40 μM) promoted EMT in HK-2 cells via mitochondrial oxidative stress and ROCK1-mediated disordered cytoskeleton remodeling. In vivo, low-dose treatment of RSV (≤ 25 mg/kg) partly improved renal function, whereas high-dose treatment of RSV (≥ 50 mg/kg) lost its anti-fibrotic role and even aggravated renal fibrosis. However, mice with UUO were more susceptible to high RSV-induced renal injury than normal mice. CONCLUSION Dependent on dose, RSV activated either anti-fibrotic or pro-fibrotic effects in kidneys. The risk of RSV consumption in individuals with impaired kidney function should be carefully considered.
Collapse
Affiliation(s)
- Shuyun Liu
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Zhao
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yijie Zhou
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chengshi Wang
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yujia Yuan
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lan Li
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - William Bresette
- Center for Metabolic and Vascular Biology, School for Nutrition and Health Promotion, College of Health Solutions, Arizona State University, Scottsdale, AZ, United States
| | - Younan Chen
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Jingping Liu
- Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China; Center for Metabolic and Vascular Biology, School for Nutrition and Health Promotion, College of Health Solutions, Arizona State University, Scottsdale, AZ, United States.
| |
Collapse
|
42
|
Stevens JF, Revel JS, Maier CS. Mitochondria-Centric Review of Polyphenol Bioactivity in Cancer Models. Antioxid Redox Signal 2018; 29:1589-1611. [PMID: 29084444 PMCID: PMC6207154 DOI: 10.1089/ars.2017.7404] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 10/28/2017] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Humans are exposed daily to polyphenols in milligram-to-gram amounts through dietary consumption of fruits and vegetables. Polyphenols are also available as components of dietary supplements for improving general health. Although polyphenols are often advertised as antioxidants to explain health benefits, experimental evidence shows that their beneficial cancer preventing and controlling properties are more likely due to stimulation of pro-oxidant and proapoptotic pathways. Recent Advances: The understanding of the biological differences between cancer and normal cell, and especially the role that mitochondria play in carcinogenesis, has greatly advanced in recent years. These advances have resulted in a wealth of new information on polyphenol bioactivity in cell culture and animal models of cancer. Polyphenols appear to target oxidative phosphorylation and regulation of the mitochondrial membrane potential (MMP), glycolysis, pro-oxidant pathways, and antioxidant (adaptive) stress responses with greater selectivity in tumorigenic cells. CRITICAL ISSUES The ability of polyphenols to dissipate the MMP (Δψm) by a protonophore mechanism has been known for more than 50 years. However, researchers focus primarily on the downstream molecular effects of Δψm dissipation and mitochondrial uncoupling. We argue that the physicochemical properties of polyphenols are responsible for their anticancer properties by virtue of their protonophoric and pro-oxidant properties rather than their specific effects on downstream molecular targets. FUTURE DIRECTIONS Polyphenol-induced dissipation of Δψm is a physicochemical process that cancer cells cannot develop resistance against by gene mutation. Therefore, polyphenols should receive more attention as agents for cotherapy with cancer drugs to gain synergistic activity. Antioxid. Redox Signal.
Collapse
Affiliation(s)
- Jan F. Stevens
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon
| | - Johana S. Revel
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon
- Department of Chemistry, Oregon State University, Corvallis, Oregon
| | - Claudia S. Maier
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon
- Department of Chemistry, Oregon State University, Corvallis, Oregon
| |
Collapse
|
43
|
Effects of Polyphenols on Thermogenesis and Mitochondrial Biogenesis. Int J Mol Sci 2018; 19:ijms19092757. [PMID: 30217101 PMCID: PMC6164046 DOI: 10.3390/ijms19092757] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 02/05/2023] Open
Abstract
Obesity is a health problem worldwide, and energy imbalance has been pointed out as one of the main factors responsible for its development. As mitochondria are a key element in energy homeostasis, the development of obesity has been strongly associated with mitochondrial imbalance. Polyphenols are the largest group of phytochemicals, widely distributed in the plant kingdom, abundant in fruits and vegetables, and have been classically described as antioxidants owing to their well-established ability to eliminate free radicals and reactive oxygen species (ROS). During the last decade, however, growing evidence reports the ability of polyphenols to perform several important biological activities in addition to their antioxidant activity. Special attention has been given to the ability of polyphenols to modulate mitochondrial processes. Thus, some polyphenols are now recognized as molecules capable of modulating pathways that regulate mitochondrial biogenesis, ATP synthesis, and thermogenesis, among others. The present review reports the main benefits of polyphenols in modulating mitochondrial processes that favor the regulation of energy expenditure and offer benefits in the management of obesity, especially thermogenesis and mitochondrial biogenesis.
Collapse
|
44
|
Salehi B, Mishra AP, Nigam M, Sener B, Kilic M, Sharifi-Rad M, Fokou PVT, Martins N, Sharifi-Rad J. Resveratrol: A Double-Edged Sword in Health Benefits. Biomedicines 2018; 6:E91. [PMID: 30205595 PMCID: PMC6164842 DOI: 10.3390/biomedicines6030091] [Citation(s) in RCA: 546] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/03/2018] [Accepted: 09/07/2018] [Indexed: 12/18/2022] Open
Abstract
Resveratrol (3,5,4'-trihydroxy-trans-stilbene) belongs to polyphenols' stilbenoids group, possessing two phenol rings linked to each other by an ethylene bridge. This natural polyphenol has been detected in more than 70 plant species, especially in grapes' skin and seeds, and was found in discrete amounts in red wines and various human foods. It is a phytoalexin that acts against pathogens, including bacteria and fungi. As a natural food ingredient, numerous studies have demonstrated that resveratrol possesses a very high antioxidant potential. Resveratrol also exhibit antitumor activity, and is considered a potential candidate for prevention and treatment of several types of cancer. Indeed, resveratrol anticancer properties have been confirmed by many in vitro and in vivo studies, which shows that resveratrol is able to inhibit all carcinogenesis stages (e.g., initiation, promotion and progression). Even more, other bioactive effects, namely as anti-inflammatory, anticarcinogenic, cardioprotective, vasorelaxant, phytoestrogenic and neuroprotective have also been reported. Nonetheless, resveratrol application is still being a major challenge for pharmaceutical industry, due to its poor solubility and bioavailability, as well as adverse effects. In this sense, this review summarized current data on resveratrol pharmacological effects.
Collapse
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran 88777539, Iran.
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran 22439789, Iran.
| | - Abhay Prakash Mishra
- Department of Pharmaceutical Chemistry, H. N. B. Garhwal (A Central) University, Srinagar Garhwal 246174, Uttarakhand, India.
| | - Manisha Nigam
- Department of Biochemistry, H. N. B. Garhwal (A Central) University, Srinagar Garhwal 246174, Uttarakhand, India.
| | - Bilge Sener
- Gazi University Faculty of Pharmacy Department of Pharmacognosy, Ankara 06330, Turkey.
| | - Mehtap Kilic
- Gazi University Faculty of Pharmacy Department of Pharmacognosy, Ankara 06330, Turkey.
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology, Zabol University of Medical Sciences, Zabol 61663335, Iran.
| | - Patrick Valere Tsouh Fokou
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde 1, Ngoa Ekelle, Annex Fac. Sci, P.O. Box. 812, Yaounde-Cameroon.
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, Porto 4200-319, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto 4200-135, Portugal.
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran 11369, Iran.
- Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, Winnipeg, MB R3B 2G3, Canada.
| |
Collapse
|
45
|
Ulakcsai Z, Bagaméry F, Szökő É, Tábi T. The role of autophagy induction in the mechanism of cytoprotective effect of resveratrol. Eur J Pharm Sci 2018; 123:135-142. [PMID: 30036580 DOI: 10.1016/j.ejps.2018.07.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023]
Abstract
We aimed at studying the potential mechanisms in the preventive effect of resveratrol on serum deprivation induced caspase 3 activation on non-transformed cells. METHODS Apoptosis was induced by serum deprivation in primary mouse embryonic fibroblasts. Caspase 3 activation, reactive oxygen species production and depolarization of the mitochondrial membrane were measured by fluorescence methods. The involvement of intracellular receptors and autophagy in the effect of resveratrol were analyzed by using specific agonists and antagonists. The role of autophagy was further examined by Western Blot analysis of its protein markers, LC3-II and p62 as well as by acridine orange staining of acidic vacuoles. RESULTS We found that neither aromatic hydrocarbon receptors nor estrogen receptors play an important role in the cytoprotective effect of resveratrol. Reactive oxygen species production was not significantly altered by either serum deprivation or resveratrol treatment. In the presence of serum deprivation resveratrol however, induced a significant depolarization in mitochondrial membrane potential. The autophagy inhibitor, chloroquine not only eliminated the preventive effect of resveratrol, but also turned it to deleterious suggesting the prominent role of autophagy induction in the cytoprotective effect. Resveratrol did not alter LC3-II expression, but facilitated p62 degradation in serum deprived cells, suggesting its ability to augment the late phase of autophagy and thus promote the autophagic flux. CONCLUSION We have demonstrated that resveratrol can protect primary fibroblasts against serum deprivation induced apoptosis by provoking mild mitochondrial stress and consequent up-regulation of autophagic flux.
Collapse
Affiliation(s)
- Zsófia Ulakcsai
- Department of Pharmacodynamics, Semmelweis University, Üllői út 26., Budapest 1085, Hungary
| | - Fruzsina Bagaméry
- Department of Pharmacodynamics, Semmelweis University, Üllői út 26., Budapest 1085, Hungary.
| | - Éva Szökő
- Department of Pharmacodynamics, Semmelweis University, Üllői út 26., Budapest 1085, Hungary.
| | - Tamás Tábi
- Department of Pharmacodynamics, Semmelweis University, Üllői út 26., Budapest 1085, Hungary.
| |
Collapse
|
46
|
Espinoza JL, Kurokawa Y, Takami A. Rationale for assessing the therapeutic potential of resveratrol in hematological malignancies. Blood Rev 2018; 33:43-52. [PMID: 30005817 DOI: 10.1016/j.blre.2018.07.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 03/27/2018] [Accepted: 07/03/2018] [Indexed: 02/05/2023]
Abstract
Promising results from pre-clinical studies on the naturally-occurring polyphenol resveratrol have generated considerable interest and somewhat excessive expectations regarding the therapeutic potential of this compound for treating or preventing various diseases, including cardiovascular and neurodegenerative disorders and cancer. Resveratrol has potent inhibitory activity in vitro against various tumor types, including cell lines derived from virtually all blood malignancies. Pharmacological studies have shown that resveratrol is safe for humans but has poor bioavailability, due to its extensive hepatic metabolism. Curiously, a substantial proportion of the orally administered resveratrol can reach the bone marrow compartment. Notably, various pathways dysregulated in blood cancers are known to be molecular targets of resveratrol, thus substantiating the potential utility of this agent in blood malignancies. In this review, we primarily focus on the scientific evidence that supports the potential utility of resveratrol for the management of select hematological malignancies. In addition, potential clinical trials with resveratrol are suggested.
Collapse
Affiliation(s)
- J Luis Espinoza
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan.
| | - Yu Kurokawa
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Akiyoshi Takami
- Department of Internal Medicine, Division of Hematology, School of Medicine, Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
47
|
Di Benedetto A, Posa F, De Maria S, Ravagnan G, Ballini A, Porro C, Trotta T, Grano M, Muzio LL, Mori G. Polydatin, Natural Precursor of Resveratrol, Promotes Osteogenic Differentiation of Mesenchymal Stem Cells. Int J Med Sci 2018; 15:944-952. [PMID: 30008608 PMCID: PMC6036093 DOI: 10.7150/ijms.24111] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/09/2018] [Indexed: 12/18/2022] Open
Abstract
Bone loss and fractures are consequences of aging, diseases or traumas. Furthermore the increased number of aged people, due to the rise of life expectancy, needs more strategies to limit the bone loss and regenerate the lost tissue, ameliorating the life quality of patients. A great interest for non-pharmacological therapies based on natural compounds is emerging and focusing on the oligostilbene Polydatin, present in many kinds of fruits and vegetables, when resveratrol particularly in red wines. These molecules have been extensively studied due to their antioxidant and anti-inflammatory effects, showing more recently Resveratrol the ability to enhance osteogenic differentiation and bone formation. However, the clinical applications of Resveratrol are limited due to its low bioavailability and rapid metabolism, while its natural glycosilated precursor Polydatin shows better metabolic stability and major abundance in fresh fruits and vegetables. Nevertheless the role of Polydatin on osteogenic differentiation is still unexplored. Mesenchymal stem cells (MSCs) from dental tissues, such as dental bud stem cells (DBSCs), are able to differentiate toward osteogenic lineage: thus we investigated how Resveratrol and Polydatin influence the differentiation of DBSCs, eventually affecting bone formation. Our results showed that Polydatin increases MSCs osteogenic differentiation sharing similar properties with Resveratrol. These results encourage to deepen the effects of this molecule on bone health and its associated mechanisms of action, wishing for the future a successful use in bone loss prevention and therapy.
Collapse
Affiliation(s)
- Adriana Di Benedetto
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Francesca Posa
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- Max Planck Institute for Medical Research and Institute of Physical Chemistry, Department of Biophysical Chemistry, University of Heidelberg, Germany
| | - Salvatore De Maria
- Glures srl. Unità Operativa di Napoli, spin off accademico dell'Università di Venezia Cà Foscari, Italy
| | - Giampietro Ravagnan
- Glures srl. Unità Operativa di Napoli, spin off accademico dell'Università di Venezia Cà Foscari, Italy
| | - Andrea Ballini
- Department of Basic Medical Sciences, Neurosciences and Organs of Senses, University of Bari, Bari, Italy
| | - Chiara Porro
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Teresa Trotta
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Maria Grano
- Department of Emergency and Organ Transplantation, Section of Human Anatomy and Histology, University of Bari, Bari, Italy
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
48
|
Abe J, Yamada Y, Takeda A, Harashima H. Cardiac progenitor cells activated by mitochondrial delivery of resveratrol enhance the survival of a doxorubicin-induced cardiomyopathy mouse model via the mitochondrial activation of a damaged myocardium. J Control Release 2018; 269:177-188. [DOI: 10.1016/j.jconrel.2017.11.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/24/2017] [Accepted: 11/13/2017] [Indexed: 12/13/2022]
|
49
|
Pan MH, Wu JC, Ho CT, Lai CS. Antiobesity molecular mechanisms of action: Resveratrol and pterostilbene. Biofactors 2018; 44:50-60. [PMID: 29315906 DOI: 10.1002/biof.1409] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/29/2017] [Accepted: 12/10/2017] [Indexed: 12/25/2022]
Abstract
Obesity is a current global epidemic that has led to a marked increase in metabolic diseases. However, its treatment remains a challenge. Obesity is a multifactorial disease, which involves the dysfunction of neuropeptides, hormones, and inflammatory adipokines from the brain, gut, and adipose tissue. An understanding of the mechanisms and signal interactions in the crosstalk between organs and tissue in the coordination of whole-body energy metabolism would be helpful to provide therapeutic and putative approaches to the treatment and prevention of obesity and related complications. Resveratrol and pterostilbene are well-known stilbenes that provide various potential benefits to human health. In particular, their potential anti-obesity effects have been proven in numerous cell culture and animal studies. Both compounds act to regulate energy intake, adipocyte life cycle and function, white adipose tissue (WAT) inflammation, energy expenditure, and gut microbiota by targeting multiple molecules and signaling pathways as an intervention for obesity. Although the efficacy of both compounds in humans requires further investigation with respect to their oral bioavailability, promising scientific findings have highlighted their potential as candidates for the treatment of obesity and the improvement of obesity-related metabolic diseases. © 2018 BioFactors, 44(1):50-60, 2018.
Collapse
Affiliation(s)
- Min-Hsiung Pan
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Jia-Ching Wu
- Department of Environmental and Occupational Health, National Cheng Kung University Medical College, Tainan, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| | - Ching-Shu Lai
- Department of Seafood Science, National Kaohsiung Marine University, Kaohsiung, Taiwan
| |
Collapse
|
50
|
Madreiter-Sokolowski CT, Sokolowski AA, Graier WF. Dosis Facit Sanitatem-Concentration-Dependent Effects of Resveratrol on Mitochondria. Nutrients 2017; 9:nu9101117. [PMID: 29027961 PMCID: PMC5691733 DOI: 10.3390/nu9101117] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/20/2017] [Accepted: 10/07/2017] [Indexed: 01/04/2023] Open
Abstract
The naturally occurring polyphenol, resveratrol (RSV), is known for a broad range of actions. These include a positive impact on lifespan and health, but also pro-apoptotic anti-cancer properties. Interestingly, cell culture experiments have revealed a strong impact of RSV on mitochondrial function. The compound was demonstrated to affect mitochondrial respiration, structure and mass of mitochondria as well as mitochondrial membrane potential and, ultimately, mitochondria-associated cell death pathways. Notably, the mitochondrial effects of RSV show a very strict and remarkable concentration dependency: At low concentrations, RSV (<50 μM) fosters cellular antioxidant defense mechanisms, activates AMP-activated protein kinase (AMPK)- and sirtuin 1 (SIRT1)-linked pathways and enhances mitochondrial network formation. These mechanisms crucially contribute to the cytoprotective effects of RSV against toxins and disease-related damage, in vitro and in vivo. However, at higher concentrations, RSV (>50 μM) triggers changes in (sub-)cellular Ca2+ homeostasis, disruption of mitochondrial membrane potential and activation of caspases selectively yielding apoptotic cancer cell death, in vitro and in vivo. In this review, we discuss the promising therapeutic potential of RSV, which is most probably related to the compound’s concentration-dependent manipulation of mitochondrial function and structure.
Collapse
Affiliation(s)
- Corina T Madreiter-Sokolowski
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.
| | - Armin A Sokolowski
- Department of Dentistry and Maxillofacial Surgery, Medical University of Graz, Billrothgasse 4, 8010 Graz, Austria.
| | - Wolfgang F Graier
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria.
| |
Collapse
|