1
|
Krushkal J, Zhao Y, Roney K, Zhu W, Brooks A, Wilsker D, Parchment RE, McShane LM, Doroshow JH. Association of changes in expression of HDAC and SIRT genes after drug treatment with cancer cell line sensitivity to kinase inhibitors. Epigenetics 2024; 19:2309824. [PMID: 38369747 PMCID: PMC10878021 DOI: 10.1080/15592294.2024.2309824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/14/2024] [Indexed: 02/20/2024] Open
Abstract
Histone deacetylases (HDACs) and sirtuins (SIRTs) are important epigenetic regulators of cancer pathways. There is a limited understanding of how transcriptional regulation of their genes is affected by chemotherapeutic agents, and how such transcriptional changes affect tumour sensitivity to drug treatment. We investigated the concerted transcriptional response of HDAC and SIRT genes to 15 approved antitumor agents in the NCI-60 cancer cell line panel. Antitumor agents with diverse mechanisms of action induced upregulation or downregulation of multiple HDAC and SIRT genes. HDAC5 was upregulated by dasatinib and erlotinib in the majority of the cell lines. Tumour cell line sensitivity to kinase inhibitors was associated with upregulation of HDAC5, HDAC1, and several SIRT genes. We confirmed changes in HDAC and SIRT expression in independent datasets. We also experimentally validated the upregulation of HDAC5 mRNA and protein expression by dasatinib in the highly sensitive IGROV1 cell line. HDAC5 was not upregulated in the UACC-257 cell line resistant to dasatinib. The effects of cancer drug treatment on expression of HDAC and SIRT genes may influence chemosensitivity and may need to be considered during chemotherapy.
Collapse
Affiliation(s)
- Julia Krushkal
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, USA
| | - Yingdong Zhao
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, USA
| | - Kyle Roney
- Department of Biostatistics and Bioinformatics, George Washington University, Washington, DC, USA
| | - Weimin Zhu
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Alan Brooks
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Deborah Wilsker
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ralph E. Parchment
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Lisa M. McShane
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, USA
| | - James H. Doroshow
- Division of Cancer Treatment and Diagnosis and Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
2
|
Cristalli C, Scotlandi K. Targeting DNA Methylation Machinery in Pediatric Solid Tumors. Cells 2024; 13:1209. [PMID: 39056791 PMCID: PMC11275080 DOI: 10.3390/cells13141209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
DNA methylation is a key epigenetic regulatory mechanism that plays a critical role in a variety of cellular processes, including the regulation of cell fate during development, maintenance of cell identity, and genome stability. DNA methylation is tightly regulated by enzymatic reactions and its deregulation plays an important role in the development of cancer. Specific DNA methylation alterations have been found in pediatric solid tumors, providing new insights into the development of these tumors. In addition, DNA methylation profiles have greatly contributed to tune the diagnosis of pediatric solid tumors and to define subgroups of patients with different risks of progression, leading to the reduction in unwanted toxicity and the improvement of treatment efficacy. This review highlights the dysregulated DNA methylome in pediatric solid tumors and how this information provides promising targets for epigenetic therapies, particularly inhibitors of DNMT enzymes (DNMTis). Opportunities and limitations are considered, including the ability of DNMTis to induce viral mimicry and immune signaling by tumors. Besides intrinsic action against cancer cells, DNMTis have the potential to sensitize immune-cold tumors to immunotherapies and may represent a remarkable option to improve the treatment of challenging pediatric solid tumors.
Collapse
Affiliation(s)
- Camilla Cristalli
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy
| |
Collapse
|
3
|
Selim O, Song C, Kumar A, Phelan R, Singh A, Federman N. A review of the therapeutic potential of histone deacetylase inhibitors in rhabdomyosarcoma. Front Oncol 2023; 13:1244035. [PMID: 37664028 PMCID: PMC10471891 DOI: 10.3389/fonc.2023.1244035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
This review aims to summarize the putative role of histone deacetylases (HDACs) in rhabdomyosarcoma (RMS) and the effects of HDAC inhibitors (HDACi) on RMS by elucidating and highlighting known oncogenic pathways, mechanisms of resistance, and the synergistic potential of histone deacetylase inhibitors. We searched two databases (PubMed and Google Scholar) for the keywords "Rhabdomyosarcoma, histone deacetylase, histone deacetylase inhibitors." We excluded three publications that did not permit access to the full text to review and those that focus exclusively on pleiomorphic RMS in adults. Forty-seven papers met the inclusion criteria. This review highlights that HDACi induce cytotoxicity, cell-cycle arrest, and oxidative stress in RMS cells. Ultimately, HDACi have been shown to increase apoptosis and the cessation of embryonal and alveolar RMS proliferation in vivo and in vitro, both synergistically and on its own. HDACi contain potent therapeutic potential against RMS. This review discusses the significant findings and the biological mechanisms behind the anti-cancer effects of HDACi. Additionally, this review highlights important clinical trials assessing the efficacy of HDACi in sarcomas.
Collapse
Affiliation(s)
- Omar Selim
- Clinical and Translational Science Institute, University of California, Los Angeles, CA, United States
| | - Clara Song
- Clinical and Translational Science Institute, University of California, Los Angeles, CA, United States
| | - Amy Kumar
- Clinical and Translational Science Institute, University of California, Los Angeles, CA, United States
| | - Rebecca Phelan
- Clinical and Translational Science Institute, University of California, Los Angeles, CA, United States
| | - Arun Singh
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Noah Federman
- Clinical and Translational Science Institute, University of California, Los Angeles, CA, United States
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| |
Collapse
|
4
|
Mae H, Outani H, Imura Y, Chijimatsu R, Inoue A, Kotani Y, Yasuda N, Nakai S, Nakai T, Takenaka S, Okada S. Targeting the Clear Cell Sarcoma Oncogenic Driver Fusion Gene EWSR1::ATF1 by HDAC Inhibition. CANCER RESEARCH COMMUNICATIONS 2023; 3:1152-1165. [PMID: 37405123 PMCID: PMC10317042 DOI: 10.1158/2767-9764.crc-22-0518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/13/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023]
Abstract
Clear cell sarcoma (CCS), a rare but extremely aggressive malignancy with no effective therapy, is characterized by the expression of the oncogenic driver fusion gene EWSR1::ATF1. In this study, we performed a high-throughput drug screening, finding that the histone deacetylase inhibitor vorinostat exerted an antiproliferation effect with the reduced expression of EWSR1::ATF1. We expected the reduced expression of EWSR1::ATF1 to be due to the alteration of chromatin accessibility; however, assay for transposase-accessible chromatin using sequencing and a cleavage under targets and release using nuclease assay revealed that chromatin structure was only slightly altered, despite histone deacetylation at the EWSR1::ATF1 promoter region. Alternatively, we found that vorinostat treatment reduced the level of BRD4, a member of the bromodomain and extraterminal motif protein family, at the EWSR1::ATF1 promoter region. Furthermore, the BRD4 inhibitor JQ1 downregulated EWSR1::ATF1 according to Western blotting and qPCR analyses. In addition, motif analysis revealed that vorinostat treatment suppressed the transcriptional factor SOX10, which directly regulates EWSR1::ATF1 expression and is involved in CCS proliferation. Importantly, we demonstrate that a combination therapy of vorinostat and JQ1 synergistically enhances antiproliferation effect and EWSR1::ATF1 suppression. These results highlight a novel fusion gene suppression mechanism achieved using epigenetic modification agents and provide a potential therapeutic target for fusion gene-related tumors. Significance This study reveals the epigenetic and transcriptional suppression mechanism of the fusion oncogene EWSR1::ATF1 in clear cell sarcoma by histone deacetylase inhibitor treatment as well as identifying SOX10 as a transcription factor that regulates EWSR1::ATF1 expression.
Collapse
Affiliation(s)
- Hirokazu Mae
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hidetatsu Outani
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshinori Imura
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryota Chijimatsu
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Akitomo Inoue
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuki Kotani
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naohiro Yasuda
- Department of Orthopedic Surgery, Osaka National Hospital, Osaka, Japan
| | - Sho Nakai
- Musculoskeletal Oncology Service, Osaka International Cancer Institute, Osaka, Japan
| | - Takaaki Nakai
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satoshi Takenaka
- Musculoskeletal Oncology Service, Osaka International Cancer Institute, Osaka, Japan
| | - Seiji Okada
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
5
|
Fritzke M, Chen K, Tang W, Stinson S, Pham T, Wang Y, Xu L, Chen EY. The MYC-YBX1 Circuit in Maintaining Stem-like Vincristine-Resistant Cells in Rhabdomyosarcoma. Cancers (Basel) 2023; 15:2788. [PMID: 37345125 DOI: 10.3390/cancers15102788] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is a pediatric soft tissue sarcoma that causes significant devastation, with no effective therapy for relapsed disease. The mechanisms behind treatment failures are poorly understood. Our study showed that treatment of RMS cells with vincristine led to an increase in CD133-positive stem-like resistant cells. Single cell RNAseq analysis revealed that MYC and YBX1 were among the top-scoring transcription factors in CD133-high expressing cells. Targeting MYC and YBX1 using CRISPR/Cas9 reduced stem-like characteristics and viability of the vincristine-resistant cells. MYC and YBX1 showed mutual regulation, with MYC binding to the YBX1 promoter and YBX1 binding to MYC mRNA. The MYC inhibitor MYC361i synergized with vincristine to reduce tumor growth and stem-like cells in a zebrafish model of RMS. MYC and YBX expression showed a positive correlation in RMS patients, and high MYC expression correlated with poor survival. Targeting the MYC-YBX1 axis holds promise for improving survival in RMS patients.
Collapse
Affiliation(s)
- Madeline Fritzke
- Department of Laboratory Pathology and Medicine, University of Washington, Seattle, WA 98195, USA
| | - Kenian Chen
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Weiliang Tang
- Department of Laboratory Pathology and Medicine, University of Washington, Seattle, WA 98195, USA
| | - Spencer Stinson
- Department of Laboratory Pathology and Medicine, University of Washington, Seattle, WA 98195, USA
| | - Thao Pham
- Department of Laboratory Pathology and Medicine, University of Washington, Seattle, WA 98195, USA
- Astellas US Technologies, Universal Cells, Inc., Seattle, WA 98121, USA
| | - Yadong Wang
- Department of Laboratory Pathology and Medicine, University of Washington, Seattle, WA 98195, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eleanor Y Chen
- Department of Laboratory Pathology and Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
6
|
Harrison V, Khan SF, Damerell V, Bleloch J, ArulJothi KN, Sinkala M, Lennard K, Mulder N, Calder B, Blackburn J, Prince S. Strongylopus grayii tadpole blastema extract exerts cytotoxic effects on embryonal rhabdomyosarcoma cells. In Vitro Cell Dev Biol Anim 2022; 58:679-692. [PMID: 35947290 DOI: 10.1007/s11626-022-00714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/21/2022] [Indexed: 11/26/2022]
Abstract
Amphibians have regenerative capacity and are resistant to developing cancer. This suggests that the developing blastema, located at the tissue regeneration site, may secrete anti-cancer factors. Here, we investigate the anti-cancer potential of tadpole tail blastema extracts (TAD) from the stream frog, Strongylopus grayii, in embryonal rhabdomyosarcoma (ERMS) cells. ERMS originates in skeletal muscle tissue and is a common pediatric soft tissue sarcoma. We show using MTT assays that TAD inhibited ERMS cell viability in a concentration-dependent manner, and phase contrast/fluorescent microscopy revealed that it induced morphological markers of senescence and apoptosis. Western blotting showed that this was associated with DNA damage (γH2AX) and activation of the p38/MAPK stress signaling pathway as well as molecular markers of senescence (p16INK4a), apoptosis (cleaved PARP), and inhibition of cell cycle promoters (cyclin A, CDK2, and cyclin B1). Furthermore, proteomics followed by gene ontology analyses showed that TAD treatment inhibited known tumor promoters and proteins required for cancer cell survival. Lastly, using the LINCS drug perturbation library, we show that there is an overlap between the proteomics signature induced by TAD and common anti-cancer drugs. Taken together, this study provides novel evidence that TAD exhibits cytotoxicity in ERMS cells.
Collapse
Affiliation(s)
| | - Saif F Khan
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Victoria Damerell
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Jenna Bleloch
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - K N ArulJothi
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, India
| | - Musalula Sinkala
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Katie Lennard
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Nicola Mulder
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Bridget Calder
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Jonathan Blackburn
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| | - Sharon Prince
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa.
| |
Collapse
|
7
|
Hadjimichael AC, Pergaris A, Kaspiris A, Foukas AF, Kokkali S, Tsourouflis G, Theocharis S. The EPH/Ephrin System in Bone and Soft Tissue Sarcomas' Pathogenesis and Therapy: New Advancements and a Literature Review. Int J Mol Sci 2022; 23:ijms23095171. [PMID: 35563562 PMCID: PMC9100911 DOI: 10.3390/ijms23095171] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/04/2022] Open
Abstract
Musculoskeletal sarcomas represent rare heterogenous malignancies of mesenchymal origin that can be divided in two distinct subtypes, bone and soft tissue sarcomas. Current treatment options combine the surgical excision of local tumors and multidrug chemotherapy to prevent metastatic widespread disease. Due to the grim prognosis that usually accompanies such tumors, researchers have attempted to shed light on the molecular pathways implicated in their pathogenesis in order to develop novel, innovative, personalized therapeutic strategies. Erythropoietin-producing human hepatocellular receptors (EPHs) are tyrosine-kinase transmembrane receptors that, along with their ligands, ephrins, participate in both tumor-suppressive or tumor-promoting signaling pathways in bone and soft tissue sarcomas. The EPH/ephrin axis orchestrates cancerous processes such as cell–cell and cell–substrate adhesion and enhances the remodeling of the intracellular cytoskeleton to stimulate the motility and invasiveness of sarcoma cells. The purpose of our study was to review published PubMed literature to extract results from in vitro, in vivo and clinical trials indicative of the role of EPH/ephrin signaling in bone and soft tissue sarcomas. Based on these reports, significant interactions between the EPH/ephrin signaling pathway and a plethora of normal and abnormal cascades contribute to molecular mechanisms enhancing malignancy during sarcoma progression. In addition, EPHs and ephrins are prospective candidates for diagnostic, monitoring and therapeutic purposes in the clinical setting against bone and soft tissue sarcomas.
Collapse
Affiliation(s)
- Argyris C. Hadjimichael
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (A.C.H.); (A.P.); (S.K.); (G.T.)
- Department of Orthopaedics, St Mary’s Hospital, Imperial College Healthcare NHS Trust, Praed Street, London W2 1NY, UK
| | - Alexandros Pergaris
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (A.C.H.); (A.P.); (S.K.); (G.T.)
| | - Angelos Kaspiris
- Laboratory of Molecular Pharmacology, Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece;
| | - Athanasios F. Foukas
- Third Department of Orthopaedic Surgery, “KAT” General Hospital of Athens, Nikis 2, 14561 Kifissia, Greece;
| | - Stefania Kokkali
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (A.C.H.); (A.P.); (S.K.); (G.T.)
| | - Gerasimos Tsourouflis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (A.C.H.); (A.P.); (S.K.); (G.T.)
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (A.C.H.); (A.P.); (S.K.); (G.T.)
- Correspondence:
| |
Collapse
|
8
|
Marchesi I, Fais M, Fiorentino FP, Bordoni V, Sanna L, Zoroddu S, Bagella L. Bromodomain Inhibitor JQ1 Provides Novel Insights and Perspectives in Rhabdomyosarcoma Treatment. Int J Mol Sci 2022; 23:ijms23073581. [PMID: 35408939 PMCID: PMC8998669 DOI: 10.3390/ijms23073581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/24/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common type of pediatric soft tissue sarcoma. It is classified into two main subtypes: embryonal (eRMS) and alveolar (aRMS). MYC family proteins are frequently highly expressed in RMS tumors, with the highest levels correlated with poor prognosis. A pharmacological approach to inhibit MYC in cancer cells is represented by Bromodomain and Extra-Terminal motif (BET) protein inhibitors. In this paper, we evaluated the effects of BET inhibitor (+)-JQ1 (JQ1) on the viability of aRMS and eRMS cells. Interestingly, we found that the drug sensitivity of RMS cell lines to JQ1 was directly proportional to the expression of MYC. JQ1 induces G1 arrest in cells with the highest steady-state levels of MYC, whereas apoptosis is associated with MYC downregulation. These findings suggest BET inhibition as an effective strategy for the treatment of RMS alone or in combination with other drugs.
Collapse
Affiliation(s)
- Irene Marchesi
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (I.M.); (M.F.); (F.P.F.); (V.B.); (L.S.); (S.Z.)
- Kitos Biotech Srls, Tramariglio, 07041 Alghero, Italy
| | - Milena Fais
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (I.M.); (M.F.); (F.P.F.); (V.B.); (L.S.); (S.Z.)
| | - Francesco Paolo Fiorentino
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (I.M.); (M.F.); (F.P.F.); (V.B.); (L.S.); (S.Z.)
- Kitos Biotech Srls, Tramariglio, 07041 Alghero, Italy
| | - Valentina Bordoni
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (I.M.); (M.F.); (F.P.F.); (V.B.); (L.S.); (S.Z.)
| | - Luca Sanna
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (I.M.); (M.F.); (F.P.F.); (V.B.); (L.S.); (S.Z.)
| | - Stefano Zoroddu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (I.M.); (M.F.); (F.P.F.); (V.B.); (L.S.); (S.Z.)
| | - Luigi Bagella
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (I.M.); (M.F.); (F.P.F.); (V.B.); (L.S.); (S.Z.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Centre for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Correspondence:
| |
Collapse
|
9
|
Chelsky ZL, Paulson VA, Chen EY. Molecular analysis of 10 pleomorphic rhabdomyosarcomas reveals potential prognostic markers and druggable targets. Genes Chromosomes Cancer 2021; 61:138-147. [PMID: 34773670 DOI: 10.1002/gcc.23013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 02/04/2023] Open
Abstract
Pleomorphic rhabdomyosarcoma (PRMS) is a rare and aggressive adult sarcoma with a median overall survival of less than 2 years. Most PRMS do not respond to conventional chemotherapy and/or radiation, and targeted therapies are nonexistent as few PRMS have undergone the molecular characterization necessary to identify therapeutic options. To date, complex structural and few recurrent regional copy alterations have been reported in the PRMS cases evaluated by cytogenetic and comparative genomic hybridization. Thus, there remains an urgent need for more comprehensive molecular profiling to both understand disease pathogenesis and to identify potentially actionable targets. Ten PRMS resection cases were retrieved from institutional archives and clinicopathologic demographics were recorded. All tumors were subjected to DNA-based targeted next-generation sequencing (NGS) of 340 cancer-related genes while a subset (six cases) underwent gene-expression profiling of 770 genes. Alterations identified by NGS included genes involved in cell cycle regulation (90%), the RAS/MAPK and AKT pathways (80%), telomere maintenance (40%), chromatin remodeling (40%), and DNA repair (20%), as well as the cAMP-signaling pathway (10%). Microsatellite instability was absent in all cases, and tumor mutational burden was predominantly low. Gene expression profiling revealed up-regulation of many of the same pathways, including the RTK/MAPK, AKT/PIK3CA/mTOR, Wnt, Hedgehog and JAK/STAT pathways. Survival analysis demonstrated patients with concurrent biallelic inactivation of CDKN2A and TP53 showed significantly shorter overall survival (median: 2 vs. 50 months). Our integrated molecular characterization identified not only potentially targetable alterations, but also prognostic markers for stratification of PRMS patients.
Collapse
Affiliation(s)
- Zachary L Chelsky
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA.,Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Vera A Paulson
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Eleanor Y Chen
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
10
|
MS-275 (Entinostat) Promotes Radio-Sensitivity in PAX3-FOXO1 Rhabdomyosarcoma Cells. Int J Mol Sci 2021; 22:ijms221910671. [PMID: 34639012 PMCID: PMC8508838 DOI: 10.3390/ijms221910671] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/26/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood. About 25% of RMS expresses fusion oncoproteins such as PAX3/PAX7-FOXO1 (fusion-positive, FP) while fusion-negative (FN)-RMS harbors RAS mutations. Radiotherapy (RT) plays a crucial role in local control but metastatic RMS is often radio-resistant. HDAC inhibitors (HDACi) radio-sensitize different cancer cells types. Thus, we evaluated MS-275 (Entinostat), a Class I and IV HDACi, in combination with RT on RMS cells in vitro and in vivo. MS-275 reversibly hampered cell survival in vitro in FN-RMS RD (RASmut) and irreversibly in FP-RMS RH30 cell lines down-regulating cyclin A, B, and D1, up-regulating p21 and p27 and reducing ERKs activity, and c-Myc expression in RD and PI3K/Akt/mTOR activity and N-Myc expression in RH30 cells. Further, MS-275 and RT combination reduced colony formation ability of RH30 cells. In both cell lines, co-treatment increased DNA damage repair inhibition and reactive oxygen species formation, down-regulated NRF2, SOD, CAT and GPx4 anti-oxidant genes and improved RT ability to induce G2 growth arrest. MS-275 inhibited in vivo growth of RH30 cells and completely prevented the growth of RT-unresponsive RH30 xenografts when combined with radiation. Thus, MS-275 could be considered as a radio-sensitizing agent for the treatment of intrinsically radio-resistant PAX3-FOXO1 RMS.
Collapse
|
11
|
Rossetti A, Petragnano F, Milazzo L, Vulcano F, Macioce G, Codenotti S, Cassandri M, Pomella S, Cicchetti F, Fasciani I, Antinozzi C, Di Luigi L, Festuccia C, De Felice F, Vergine M, Fanzani A, Rota R, Maggio R, Polimeni A, Tombolini V, Gravina GL, Marampon F. Romidepsin (FK228) fails in counteracting the transformed phenotype of rhabdomyosarcoma cells but efficiently radiosensitizes, in vitro and in vivo, the alveolar phenotype subtype. Int J Radiat Biol 2021; 97:943-957. [PMID: 33979259 DOI: 10.1080/09553002.2021.1928786] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/13/2021] [Accepted: 05/05/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE Herein we describe the in vitro and in vivo activity of FK228 (Romidepsin), an inhibitor of class I HDACs, in counteracting and radiosensitizing embryonal (ERMS, fusion-negative) and alveolar (ARMS, fusion-positive) rhabdomyosarcoma (RMS). METHODS RH30 (ARMS, fusion-positive) and RD (ERMS, fusion-negative) cell lines and human multipotent mesenchymal stromal cells (HMSC) were used. Flow cytometry analysis, RT-qPCR, western blotting and enzymatic assays were performed. Irradiation was delivered by using an x-6 MV photon linear accelerator. FK228 (1.2 mg/kg) in vivo activity, combined or not with radiation therapy (2 Gy), was assessed in murine xenografts. RESULTS Compared to HMSC, RMS expressed low levels of class I HDACs. In vitro, FK228, as single agents, reversibly downregulated class I HDACs expression and activity and induced oxidative stress, DNA damage and a concomitant growth arrest associated with PARP-1-mediated transient non-apoptotic cell death. Surviving cells upregulated the expression of cyclin A, B, D1, p27, Myc and activated PI3K/Akt/mTOR and MAPK signaling, known to be differently involved in cancer chemoresistance. Interestingly, while no radiosensitizing effects were detected, in vitro or in vivo, on RD cells, FK228 markedly radiosensitized RH30 cells by impairing antioxidant and DSBs repair pathways in vitro. Further, FK228 when combined with RT in vivo significantly reduced tumor mass in mouse RH30 xenografts. CONCLUSION FK228 did not show antitumor activity as a single agent whilst its combination with RT resulted in radiosensitization of fusion-positive RMS cells, thus representing a possible strategy for the treatment of the most aggressive RMS subtype.
Collapse
Affiliation(s)
- Alessandra Rossetti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesco Petragnano
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Luisa Milazzo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Vulcano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giampiero Macioce
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Silvia Codenotti
- Division of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Matteo Cassandri
- Group of Epigenetics of Pediatric Sarcomas, Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Silvia Pomella
- Group of Epigenetics of Pediatric Sarcomas, Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Irene Fasciani
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Cristina Antinozzi
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Luigi Di Luigi
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Claudio Festuccia
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesca De Felice
- Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Massimo Vergine
- Department of Surgical Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Alessandro Fanzani
- Division of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Rossella Rota
- Group of Epigenetics of Pediatric Sarcomas, Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Roberto Maggio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Antonella Polimeni
- Department of Oral and Maxillo-Facial Sciences, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Tombolini
- Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Giovanni Luca Gravina
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesco Marampon
- Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
12
|
Lentscher JA, Colburn ZT, Ortogero N, Gillette L, Leonard GT, Burney RO, Chow GE. An intrauterine genomic classifier reliably delineates the location of nonviable pregnancies. Fertil Steril 2021; 116:138-146. [PMID: 33771330 DOI: 10.1016/j.fertnstert.2021.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To compare the intrauterine gene expression signatures of women with surgically confirmed ectopic pregnancy (ECT) and those of women with miscarriage to inform the development of a genomic classifier for the reliable delineation of pregnancy location in women with clinically nonviable pregnancies of unknown location (NV-PULs). DESIGN Discovery-based prospective cohort study. SETTING Academic medical center. PATIENT(S) Women with clinically nonviable early pregnancy to include abnormal intrauterine pregnancy (AIUP), ECT, or NV-PUL. INTERVENTION(S) Endometrial (EM) pipelle sampling of the uterus was conducted at the time of scheduled surgery for clinically nonviable early pregnancy (dilation and curettage, manual vacuum aspiration, or laparoscopy). All pregnancy locations were surgically and/or histologically confirmed as intrauterine or ectopic. MAIN OUTCOME MEASURE(S) Gene expression profiles as determined by array hybridization, quantitative real-time polymerase chain reaction, and nCounter technology. RESULT(S) Intrauterine samples were obtained by EM pipelle from 27 women undergoing surgery for a clinically nonviable early pregnancy. Comparison of array-based global gene expression signatures from women with histologically confirmed ECT versus AIUP revealed 61 differentially expressed genes from which the 5 most informative were included in the pregnancy location classifier. All 5 genes (C20orf85, LRRC46, RSPH4A, WDR49, and ZBBX) were cilia-associated and showed increased expression in pipelle samples from women with ECT relative to expression in samples from women with AIUP. The 5-gene classifier demonstrated an average area under the receiver operator characteristic curve of 0.97 for the detection of ECT. In an external test set composed of publicly available EM pipelle-based gene expression data from a study with similar ECT and AIUP cohorts (n = 19), the classifier revealed an average area under the receiver operator characteristic curve of 0.84. CONCLUSION(S) Consistently increased expression of cilia-associated genes in the uterine cavity of women with ECT provides a reliable molecular signal for the delineation of pregnancy location in women with clinically assessed NV-PUL. A classifier consisting of the 5 most informative cilia-associated genes demonstrated 91% (42/46) accuracy in predicting the pregnancy location.
Collapse
Affiliation(s)
- Jessica A Lentscher
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Madigan Army Medical Center, Tacoma, Washington.
| | - Zachary T Colburn
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, Washington
| | - Nicole Ortogero
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, Washington
| | - Laurel Gillette
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, Washington
| | - George T Leonard
- Department of Pathology, Madigan Army Medical Center, Tacoma, Washington
| | - Richard O Burney
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Madigan Army Medical Center, Tacoma, Washington; Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, Washington
| | - Gregory E Chow
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Madigan Army Medical Center, Tacoma, Washington
| |
Collapse
|
13
|
Carraro U, Yablonka-Reuveni Z. Translational research on Myology and Mobility Medicine: 2021 semi-virtual PDM3 from Thermae of Euganean Hills, May 26 - 29, 2021. Eur J Transl Myol 2021; 31:9743. [PMID: 33733717 PMCID: PMC8056169 DOI: 10.4081/ejtm.2021.9743] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 02/08/2023] Open
Abstract
On 19-21 November 2020, the meeting of the 30 years of the Padova Muscle Days was virtually held while the SARS-CoV-2 epidemic was hitting the world after a seemingly quiet summer. During the 2020-2021 winter, the epidemic is still active, despite the start of vaccinations. The organizers hope to hold the 2021 Padua Days on Myology and Mobility Medicine in a semi-virtual form (2021 S-V PDM3) from May 26 to May 29 at the Thermae of Euganean Hills, Padova, Italy. Here the program and the Collection of Abstracts are presented. Despite numerous world problems, the number of submitted/selected presentations (lectures and oral presentations) has increased, prompting the organizers to extend the program to four dense days.
Collapse
Affiliation(s)
- Ugo Carraro
- Department of Biomedical Sciences of the University of Padova, Italy; CIR-Myo - Myology Centre, University of Padova, Italy; A-C Mioni-Carraro Foundation for Translational Myology, Padova.
| | - Zipora Yablonka-Reuveni
- Department of Biological Structure, University of Washington School of Medicine, Seattle, WA.
| |
Collapse
|
14
|
Heske CM, Mascarenhas L. Relapsed Rhabdomyosarcoma. J Clin Med 2021; 10:804. [PMID: 33671214 PMCID: PMC7922213 DOI: 10.3390/jcm10040804] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/02/2021] [Accepted: 02/13/2021] [Indexed: 12/14/2022] Open
Abstract
Relapsed rhabdomyosarcoma (RMS) represents a significant therapeutic challenge. Nearly one-third of patients diagnosed with localized RMS and over two-thirds of patients with metastatic RMS will experience disease recurrence following primary treatment, generally within three years. Clinical features at diagnosis, including primary site, tumor invasiveness, size, stage, and histology impact likelihood of relapse and prognosis post-relapse. Aspects of initial treatment, including extent of surgical resection, use of radiotherapy, and chemotherapy regimen, are also associated with post-relapse outcomes, as are features of the relapse itself, including time to relapse and extent of disease involvement. Although there is no standard treatment for patients with relapsed RMS, several general principles, including tissue biopsy confirmation of diagnosis, assessment of post-relapse prognosis, determination of the feasibility of additional local control measures, and discussion of patient goals, should all be part of the approach to care. Patients with features suggestive of a favorable prognosis, which include those with botryoid RMS or stage 1 or group I embryonal RMS (ERMS) who have had no prior treatment with cyclophosphamide, have the highest chance of achieving long-term cure when treated with a multiagent chemotherapy regimen at relapse. Unfortunately, patients who do not meet these criteria represent the majority and have poor outcomes when treated with such regimens. For this group, strong consideration should be given for enrollment on a clinical trial.
Collapse
Affiliation(s)
- Christine M. Heske
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Leo Mascarenhas
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Division of Hematology/Oncology, Department of Pediatrics and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA;
| |
Collapse
|
15
|
Pal A, Leung JY, Ang GCK, Rao VK, Pignata L, Lim HJ, Hebrard M, Chang KT, Lee VK, Guccione E, Taneja R. EHMT2 epigenetically suppresses Wnt signaling and is a potential target in embryonal rhabdomyosarcoma. eLife 2020; 9:57683. [PMID: 33252038 PMCID: PMC7728445 DOI: 10.7554/elife.57683] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/27/2020] [Indexed: 12/19/2022] Open
Abstract
Wnt signaling is downregulated in embryonal rhabdomyosarcoma (ERMS) and contributes to the block of differentiation. Epigenetic mechanisms leading to its suppression are unknown and could pave the way toward novel therapeutic modalities. We demonstrate that EHMT2 suppresses canonical Wnt signaling by activating expression of the Wnt antagonist DKK1. Inhibition of EHMT2 expression or activity in human ERMS cell lines reduced DKK1 expression and elevated canonical Wnt signaling resulting in myogenic differentiation in vitro and in mouse xenograft models in vivo. Mechanistically, EHMT2 impacted Sp1 and p300 enrichment at the DKK1 promoter. The reduced tumor growth upon EHMT2 deficiency was reversed by recombinant DKK1 or LGK974, which also inhibits Wnt signaling. Consistently, among 13 drugs targeting chromatin modifiers, EHMT2 inhibitors were highly effective in reducing ERMS cell viability. Our study demonstrates that ERMS cells are vulnerable to EHMT2 inhibitors and suggest that targeting the EHMT2-DKK1-β-catenin node holds promise for differentiation therapy.
Collapse
Affiliation(s)
- Ananya Pal
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jia Yu Leung
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Gareth Chin Khye Ang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Vinay Kumar Rao
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Luca Pignata
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Huey Jin Lim
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Maxime Hebrard
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Kenneth Te Chang
- Department of Pathology, KK Women and Children's Hospital, Singapore, Singapore
| | - Victor Km Lee
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ernesto Guccione
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
16
|
HDAC6 promotes growth, migration/invasion, and self-renewal of rhabdomyosarcoma. Oncogene 2020; 40:578-591. [PMID: 33199827 PMCID: PMC7855743 DOI: 10.1038/s41388-020-01550-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 10/21/2020] [Accepted: 10/30/2020] [Indexed: 01/20/2023]
Abstract
Rhabdomyosarcoma (RMS) is a devastating pediatric sarcoma. The survival outcomes remain poor for patients with relapsed or metastatic disease. Effective targeted therapy is lacking due to our limited knowledge of the underlying cellular and molecular mechanisms leading to disease progression. In this study, we used functional assays in vitro and in vivo (zebrafish and xenograft mouse models) to demonstrate the crucial role of HDAC6, a cytoplasmic histone deacetylase, in driving RMS tumor growth, self-renewal, and migration/invasion. Treatment with HDAC6-selective inhibitors recapitulates the HDAC6 loss-of-function phenotypes. HDAC6 regulates cytoskeletal dynamics to promote tumor cell migration and invasion. RAC1, a Rho family GTPase, is an essential mediator of HDAC6 function, and is necessary and sufficient for RMS cell migration and invasion. High expression of RAC1 correlates with poor clinical prognosis in RMS patients. Targeting the HDAC6-RAC1 axis represents a promising therapeutic option for improving survival outcomes of RMS patients.
Collapse
|
17
|
Manzella G, Schreck LD, Breunis WB, Molenaar J, Merks H, Barr FG, Sun W, Römmele M, Zhang L, Tchinda J, Ngo QA, Bode P, Delattre O, Surdez D, Rekhi B, Niggli FK, Schäfer BW, Wachtel M. Phenotypic profiling with a living biobank of primary rhabdomyosarcoma unravels disease heterogeneity and AKT sensitivity. Nat Commun 2020; 11:4629. [PMID: 32934208 PMCID: PMC7492191 DOI: 10.1038/s41467-020-18388-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
Cancer therapy is currently shifting from broadly used cytotoxic drugs to patient-specific precision therapies. Druggable driver oncogenes, identified by molecular analyses, are present in only a subset of patients. Functional profiling of primary tumor cells could circumvent these limitations, but suitable platforms are unavailable for most cancer entities. Here, we describe an in vitro drug profiling platform for rhabdomyosarcoma (RMS), using a living biobank composed of twenty RMS patient-derived xenografts (PDX) for high-throughput drug testing. Optimized in vitro conditions preserve phenotypic and molecular characteristics of primary PDX cells and are compatible with propagation of cells directly isolated from patient tumors. Besides a heterogeneous spectrum of responses of largely patient-specific vulnerabilities, profiling with a large drug library reveals a strong sensitivity towards AKT inhibitors in a subgroup of RMS. Overall, our study highlights the feasibility of in vitro drug profiling of primary RMS for patient-specific treatment selection in a co-clinical setting. Patient-specific precision medicine approaches are important for future cancer therapies. Here, the authors show that functional drug profiling with Rhabdomyosarcoma cells isolated from PDX and primary patient tumors uncovers patient-specific vulnerabilities.
Collapse
Affiliation(s)
- Gabriele Manzella
- University Children's Hospital, Department of Oncology and Children's Research Center, Steinwiesstrasse 75, CH-8032, Zurich, Switzerland
| | - Leonie D Schreck
- University Children's Hospital, Department of Oncology and Children's Research Center, Steinwiesstrasse 75, CH-8032, Zurich, Switzerland
| | - Willemijn B Breunis
- University Children's Hospital, Department of Oncology and Children's Research Center, Steinwiesstrasse 75, CH-8032, Zurich, Switzerland.,Princess Máxima Center for Pediatric Oncology, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands
| | - Jan Molenaar
- Princess Máxima Center for Pediatric Oncology, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands
| | - Hans Merks
- Princess Máxima Center for Pediatric Oncology, Uppsalalaan 8, 3584, CT, Utrecht, The Netherlands
| | - Frederic G Barr
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Wenyue Sun
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Michaela Römmele
- University Children's Hospital, Department of Oncology and Children's Research Center, Steinwiesstrasse 75, CH-8032, Zurich, Switzerland
| | - Luduo Zhang
- University Children's Hospital, Department of Oncology and Children's Research Center, Steinwiesstrasse 75, CH-8032, Zurich, Switzerland
| | - Joelle Tchinda
- University Children's Hospital, Department of Oncology and Children's Research Center, Steinwiesstrasse 75, CH-8032, Zurich, Switzerland
| | - Quy A Ngo
- University Children's Hospital, Department of Oncology and Children's Research Center, Steinwiesstrasse 75, CH-8032, Zurich, Switzerland
| | - Peter Bode
- University Hospital Zurich, Institute of Surgical Pathology, Schmelzbergstrasse 12, CH-8091, Zurich, Switzerland
| | - Olivier Delattre
- France INSERM U830, Équipe Labellisé LNCC, PSL Université, SIREDO Oncology Centre, Institut Curie, Paris, France
| | - Didier Surdez
- France INSERM U830, Équipe Labellisé LNCC, PSL Université, SIREDO Oncology Centre, Institut Curie, Paris, France
| | - Bharat Rekhi
- Tata Memorial Hospital, Department of Pathology, Dr E.B. road, Parel, Mumbai, 400012, India
| | - Felix K Niggli
- University Children's Hospital, Department of Oncology and Children's Research Center, Steinwiesstrasse 75, CH-8032, Zurich, Switzerland
| | - Beat W Schäfer
- University Children's Hospital, Department of Oncology and Children's Research Center, Steinwiesstrasse 75, CH-8032, Zurich, Switzerland.
| | - Marco Wachtel
- University Children's Hospital, Department of Oncology and Children's Research Center, Steinwiesstrasse 75, CH-8032, Zurich, Switzerland
| |
Collapse
|
18
|
Sin Y, Yoshimatsu Y, Noguchi R, Tsuchiya R, Sei A, Ono T, Toki S, Kobayashi E, Arakawa A, Sugiyama M, Yoshida A, Kawai A, Kondo T. Establishment and characterization of a novel alveolar rhabdomyosarcoma cell line, NCC-aRMS1-C1. Hum Cell 2020; 33:1311-1320. [PMID: 32715445 DOI: 10.1007/s13577-020-00403-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023]
Abstract
Alveolar rhabdomyosarcoma (aRMS) is a histological subtype of RMS, which is the most common pediatric and adolescent soft-tissue sarcoma, accounting for 3-4% of all pediatric malignancies. Patient-derived cells are essential tools for understanding the molecular mechanisms of poor prognosis and developing novel anti-cancer drugs. However, only a limited number of well-characterized cell lines for rhabdomyosarcoma from public cell banks is available. Therefore, we aimed to establish a novel cell line of aRMS from the tumor tissue of a patient with aRMS. The cell line was established from surgically resected tumor tissue from a 4-year-old male patient diagnosed with stage III, T2bN1M0 aRMS and was named as NCC-aRMS1-C1. The cells were maintained for more than 3 months under tissue culture conditions and passaged more than 20 times. We confirmed the presence of identical fusion gene such as PAX7-FOXO1 in both the original tumor and NCC-aRMS1-C1. The cells exhibited spheroid formation and invasion. We found that docetaxel, vincristine, ifosfamide, dacarbazine, and romidepsin showed remarkable growth-suppressive effects on the NCC-aRMS1-C1 cells. In conclusion, the NCC-aRMS1-C1 cell line exhibited characteristics that may correspond to the lymph node metastasis in aRMS and mirror its less aggressive features. Thus, it may be useful for innovative seeds for novel therapeutic strategies.
Collapse
Affiliation(s)
- Yooksil Sin
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yuki Yoshimatsu
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Rei Noguchi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Ryuto Tsuchiya
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Akane Sei
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takuya Ono
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shunichi Toki
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Eisuke Kobayashi
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Ayumu Arakawa
- Department of Pediatric Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Masanaka Sugiyama
- Department of Pediatric Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akihiko Yoshida
- Department of Diagnosis Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
19
|
Mastoraki A, Schizas D, Vlachou P, Melissaridou NM, Charalampakis N, Fioretzaki R, Kole C, Savvidou O, Vassiliu P, Pikoulis E. Assessment of Synergistic Contribution of Histone Deacetylases in Prognosis and Therapeutic Management of Sarcoma. Mol Diagn Ther 2020; 24:557-569. [PMID: 32696211 DOI: 10.1007/s40291-020-00487-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sarcomas are a rare group of neoplasms with a mesenchymal origin that are mainly characterized by the abnormal growth of connective tissue cells. The standard treatment for local control of sarcomas includes surgery and radiation, while for adjuvant and palliative therapy, chemotherapy has been strongly recommended. Despite the availability of multimodal therapies, the survival rate for patients with sarcoma is still not satisfactory. In recent decades, there has been a considerable effort to overcome chemotherapy resistance in sarcoma cells. This has led to the investigation of more cellular compounds implicated in gene expression and transcription processes. Furthermore, it has been discovered that histone acetylation/deacetylation equilibrium is affected in carcinogenesis, leading to a modified chromatin structure and therefore changes in gene expression. In addition, histone deacetylase inhibition is found to play a key role in limiting the tumor burden in sarcomas, as histone deacetylase inhibitors act on well-described oncogenic signaling pathways. Histone deacetylase inhibitors disrupt the increased cell motility and invasiveness of sarcoma cells, undermining their metastatic potential. Moreover, their activity on evoking cell arrest has been extensively described, with histone deacetylase inhibitors regulating the reactivation of tumor suppressor genes and induction of apoptosis. Promoting autophagy and increasing cellular reactive oxygen species are also included in the antitumor activity of histone deacetylase inhibitors. It should be noted that many studies revealed the synergy between histone deacetylase inhibitors and other drugs, leading to the enhancement of an antitumor effect in sarcomas. Therefore, there is an urgent need for therapeutic interventions modulated according to the distinct clinical and molecular characteristics of each sarcoma subtype. It is concluded that a better understanding of histone deacetylase and histone deacetylase inhibitors could provide patients with sarcoma with more targeted and efficient therapies, which may contribute to significant improvement of their survival potential.
Collapse
Affiliation(s)
- Aikaterini Mastoraki
- Third Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 1 Rimini Street, Chaidari, Athens, Greece.
| | - Dimitrios Schizas
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Pigi Vlachou
- Third Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 1 Rimini Street, Chaidari, Athens, Greece
| | - Nikoleta Maria Melissaridou
- Third Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 1 Rimini Street, Chaidari, Athens, Greece
| | | | | | - Christo Kole
- First Department of Surgery, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Olga Savvidou
- First Department of Orthopedics, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Pantelis Vassiliu
- Fourth Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Emmanouil Pikoulis
- Third Department of Surgery, Attikon University Hospital, National and Kapodistrian University of Athens, 1 Rimini Street, Chaidari, Athens, Greece
| |
Collapse
|
20
|
Casey MJ, Stewart RA. Pediatric Cancer Models in Zebrafish. Trends Cancer 2020; 6:407-418. [PMID: 32348736 PMCID: PMC7194396 DOI: 10.1016/j.trecan.2020.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 12/31/2022]
Abstract
Pediatric cancer is a leading cause of death in children and adolescents. Improvements in pediatric cancer treatment that include the alleviation of long-term adverse effects require a deeper understanding of the genetic, epigenetic, and developmental factors driving these cancers. Here, we review how the unique attributes of the zebrafish model system in embryology, imaging, and scalability have been used to identify new mechanisms of tumor initiation, progression, and relapse and for drug discovery. We focus on zebrafish models of leukemias, neural tumors and sarcomas - the most common and difficult childhood cancers to treat.
Collapse
Affiliation(s)
- Mattie J Casey
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Rodney A Stewart
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
21
|
Pham T, Robinson K, Vleeshouwer-Neumann T, Annis JE, Chen EY. Characterization of GRK5 as a novel regulator of rhabdomyosarcoma tumor cell growth and self-renewal. Oncotarget 2020; 11:1448-1461. [PMID: 32363002 PMCID: PMC7185065 DOI: 10.18632/oncotarget.27562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/03/2020] [Indexed: 12/24/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft-tissue pediatric sarcoma. Clinical outcomes for RMS patients with relapsed or metastatic disease remain poor. Treatment options remain limited, presenting an urgent need for novel therapeutic targets. Using a high-throughput siRNA screen against the human kinome, we identified GRK5, a G-protein receptor kinase, as a novel regulator of RMS tumor cell growth and self-renewal. Through functional assays in vitro and in vivo, we show that GRK5 regulates cell cycle in a kinase-independent manner to promote RMS tumor cell growth. NFAT1 expression is regulated by GRK5 in a kinase independent manner, and loss of NFAT1 phenocopies GRK5 loss-of-function effects on the cell cycle alterations. Self-renewal of tumor propagating cells (TPCs) is thought to give rise to tumor relapse. We show that loss of GRK5 results in a significant reduction of RMS self-renewal capacity in part due to increased cell death. Treatment of human RMS xenografts in mice with CCG-215022, a GRK5-selective inhibitor, results in reduced tumor growth and self-renewal in both major subtypes of RMS. GRK5 represents a novel therapeutic target for the treatment of RMS.
Collapse
Affiliation(s)
- Thao Pham
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Kristin Robinson
- Department of Pathology, University of Washington, Seattle, WA, USA
| | | | - James E. Annis
- Quellos HTS Core, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Eleanor Y. Chen
- Department of Pathology, University of Washington, Seattle, WA, USA
| |
Collapse
|
22
|
Westphal M, Sant P, Hauser AT, Jung M, Driever W. Chemical Genetics Screen Identifies Epigenetic Mechanisms Involved in Dopaminergic and Noradrenergic Neurogenesis in Zebrafish. Front Genet 2020; 11:80. [PMID: 32158467 PMCID: PMC7052299 DOI: 10.3389/fgene.2020.00080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 01/24/2020] [Indexed: 12/17/2022] Open
Abstract
The cell type diversity and complexity of the nervous system is generated by a network of signaling events, transcription factors, and epigenetic regulators. Signaling and transcriptional control have been easily amenable to forward genetic screens in model organisms like zebrafish. In contrast, epigenetic mechanisms have been somewhat elusive in genetic screens, likely caused by broad action in multiple developmental pathways that masks specific phenotypes, but also by genetic redundancies of epigenetic factors. Here, we performed a screen using small molecule inhibitors of epigenetic mechanisms to reveal contributions to specific aspects of neurogenesis in zebrafish. We chose development of dopaminergic and noradrenergic neurons from neural progenitors as target of epigenetic regulation. We performed the screen in two phases: First, we tested a small molecule inhibitor library that targets a broad range of epigenetic protein classes and mechanisms, using expression of the dopaminergic and noradrenergic marker tyrosine hydroxylase as readout. We identified 10 compounds, including HDAC, Bromodomain and HAT inhibitors, which interfered with dopaminergic and noradrenergic development in larval zebrafish. In the second screening phase, we aimed to identify neurogenesis stages affected by these 10 inhibitors. We analyzed treated embryos for effects on neural stem cells, growth progression of the retina, and apoptosis in neural tissues. In addition, we analyzed effects on islet1 expressing neuronal populations to determine potential selectivity of compounds for transmitter phenotypes. In summary, our targeted screen of epigenetic inhibitors identified specific compounds, which reveal chromatin regulator classes that contribute to dopaminergic and noradrenergic neurogenesis in vivo.
Collapse
Affiliation(s)
- Markus Westphal
- Developmental Biology, Faculty of Biology, Institute Biology 1, Albert Ludwigs University Freiburg, Freiburg, Germany
- CIBSS and BIOSS—Centres for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Pooja Sant
- Developmental Biology, Faculty of Biology, Institute Biology 1, Albert Ludwigs University Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Alexander-Thomas Hauser
- Chemical Epigenetics Group, Institute of Pharmaceutical Sciences, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Manfred Jung
- Chemical Epigenetics Group, Institute of Pharmaceutical Sciences, Albert Ludwigs University Freiburg, Freiburg, Germany
- CIBSS—Centre for Integrative Biological SignallingStudies, University of Freiburg, Freiburg, Germany
| | - Wolfgang Driever
- Developmental Biology, Faculty of Biology, Institute Biology 1, Albert Ludwigs University Freiburg, Freiburg, Germany
- CIBSS and BIOSS—Centres for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
23
|
Sicari D, Igbaria A, Chevet E. Control of Protein Homeostasis in the Early Secretory Pathway: Current Status and Challenges. Cells 2019; 8:E1347. [PMID: 31671908 PMCID: PMC6912474 DOI: 10.3390/cells8111347] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 12/20/2022] Open
Abstract
: Discrimination between properly folded proteins and those that do not reach this state is necessary for cells to achieve functionality. Eukaryotic cells have evolved several mechanisms to ensure secretory protein quality control, which allows efficiency and fidelity in protein production. Among the actors involved in such process, both endoplasmic reticulum (ER) and the Golgi complex play prominent roles in protein synthesis, biogenesis and secretion. ER and Golgi functions ensure that only properly folded proteins are allowed to flow through the secretory pathway while improperly folded proteins have to be eliminated to not impinge on cellular functions. Thus, complex quality control and degradation machineries are crucial to prevent the toxic accumulation of improperly folded proteins. However, in some instances, improperly folded proteins can escape the quality control systems thereby contributing to several human diseases. Herein, we summarize how the early secretory pathways copes with the accumulation of improperly folded proteins, and how insufficient handling can cause the development of several human diseases. Finally, we detail the genetic and pharmacologic approaches that could be used as potential therapeutic tools to treat these diseases.
Collapse
Affiliation(s)
- Daria Sicari
- Proteostasis & Cancer Team INSERM U1242 « Chemistry, Oncogenesis Stress Signaling », Université de Rennes, CEDEX, 35042 Rennes, France.
- Centre de Lutte contre le Cancer Eugène Marquis, CEDEX, 35042 Rennes, France.
| | - Aeid Igbaria
- Proteostasis & Cancer Team INSERM U1242 « Chemistry, Oncogenesis Stress Signaling », Université de Rennes, CEDEX, 35042 Rennes, France.
- Centre de Lutte contre le Cancer Eugène Marquis, CEDEX, 35042 Rennes, France.
| | - Eric Chevet
- Proteostasis & Cancer Team INSERM U1242 « Chemistry, Oncogenesis Stress Signaling », Université de Rennes, CEDEX, 35042 Rennes, France.
- Centre de Lutte contre le Cancer Eugène Marquis, CEDEX, 35042 Rennes, France.
| |
Collapse
|
24
|
Pal A, Chiu HY, Taneja R. Genetics, epigenetics and redox homeostasis in rhabdomyosarcoma: Emerging targets and therapeutics. Redox Biol 2019; 25:101124. [PMID: 30709791 PMCID: PMC6859585 DOI: 10.1016/j.redox.2019.101124] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 12/16/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma accounting for 5-8% of malignant tumours in children and adolescents. Children with high risk disease have poor prognosis. Anti-RMS therapies include surgery, radiation and combination chemotherapy. While these strategies improved survival rates, they have plateaued since 1990s as drugs that target differentiation and self-renewal of tumours cells have not been identified. Moreover, prevailing treatments are aggressive with drug resistance and metastasis causing failure of several treatment regimes. Significant advances have been made recently in understanding the genetic and epigenetic landscape in RMS. These studies have identified novel diagnostic and prognostic markers and opened new avenues for treatment. An important target identified in high throughput drug screening studies is reactive oxygen species (ROS). Indeed, many drugs in clinical trials for RMS impact tumour progression through ROS. In light of such emerging evidence, we discuss recent findings highlighting key pathways, epigenetic alterations and their impacts on ROS that form the basis of developing novel molecularly targeted therapies in RMS. Such targeted therapies in combination with conventional therapy could reduce adverse side effects in young survivors and lead to a decline in long-term morbidity.
Collapse
Affiliation(s)
- Ananya Pal
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Hsin Yao Chiu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
| |
Collapse
|
25
|
Tarnowski M, Tkacz M, Kopytko P, Bujak J, Piotrowska K, Pawlik A. Trichostatin A Inhibits Rhabdomyosarcoma Proliferation and Induces Differentiation through MyomiR Reactivation. Folia Biol (Praha) 2019; 65:43-52. [PMID: 31171081 DOI: 10.14712/fb2019065010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Rhabdomyosarcoma (RMS) is a malignant tumour of soft tissues, occurring mainly in children and young adults. RMS cells derive from muscle cells, which due to mutations and epigenetic modifications have lost their ability to differentiate. Epigenetic modifications regulate expression of genes responsible for cell proliferation, maturation, differentiation and apoptosis. HDAC inhibitors suppress histone acetylation; therefore, they are a promising tool used in cancer therapy. Trichostatin A (TsA) is a pan-inhibitor of HDAC. In our study, we investigated the effect of TsA on RMS cell biology. Our findings strongly suggest that TsA inhibits RMS cell proliferation, induces cell apoptosis, and reactivates tumour cell differentiation. TsA up-regulates miR-27b expression, which is involved in the process of myogenesis. Moreover, TsA increases susceptibility of RMS cells to routinely used chemotherapeutics. In conclusion, TsA exhibits anti-cancer properties, triggers differentiation, and thereby can complement an existing spectrum of chemotherapeutics used in RMS therapy.
Collapse
Affiliation(s)
- M Tarnowski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - M Tkacz
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - P Kopytko
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - J Bujak
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - K Piotrowska
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - A Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
26
|
Ghayad SE, Rammal G, Sarkis O, Basma H, Ghamloush F, Fahs A, Karam M, Harajli M, Rabeh W, Mouawad JE, Zalzali H, Saab R. The histone deacetylase inhibitor Suberoylanilide Hydroxamic Acid (SAHA) as a therapeutic agent in rhabdomyosarcoma. Cancer Biol Ther 2018; 20:272-283. [PMID: 30307360 DOI: 10.1080/15384047.2018.1529093] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is an aggressive childhood sarcoma with two distinct subtypes, embryonal (ERMS) and alveolar (ARMS) histologies. More effective treatment is needed to improve outcomes, beyond conventional cytotoxic chemotherapy. The pan-histone deacetylase inhibitor, Suberoylanilide Hydroxamic Acid (SAHA), has shown promising efficacy in limited preclinical studies. We used a panel of human ERMS and ARMS cell lines and xenografts to evaluate the effects of SAHA as a therapeutic agent in both RMS subtypes. SAHA decreased cell viability by inhibiting S-phase progression in all cell lines tested, and induced apoptosis in all but one cell line. Molecularly, SAHA-treated cells showed activation of a DNA damage response, induction of the cell cycle inhibitors p21Cip1 and p27Kip1 and downregulation of Cyclin D1. In a subset of RMS cell lines, SAHA promoted features of cellular senescence and myogenic differentiation. Interestingly, SAHA treatment profoundly decreased protein levels of the driver fusion oncoprotein PAX3-FOXO1 in ARMS cells at a post-translational level. In vivo, SAHA-treated xenografts showed increased histone acetylation and induction of a DNA damage response, along with variable upregulation of p21Cip1 and p27Kip1. However, while the ARMS Rh41 xenograft tumor growth was significantly inhibited, there was no significant inhibition of the ERMS tumor xenograft RD. Thus, our work shows that, while SAHA is effective against ERMS and ARMS tumor cells in vitro, it has divergent in vivo effects . Together with the observed effects on the PAX3-FOXO1 fusion protein, these data suggest SAHA as a possible therapeutic agent for clinical testing in patients with fusion protein-positive RMS.
Collapse
Affiliation(s)
- Sandra E Ghayad
- a Department of Biology, Faculty of Science II , Lebanese University , Fanar , Lebanon
| | - Ghina Rammal
- a Department of Biology, Faculty of Science II , Lebanese University , Fanar , Lebanon.,b Department of Pediatrics and Adolescent Medicine , American University of Beirut , Beirut , Lebanon
| | - Omar Sarkis
- b Department of Pediatrics and Adolescent Medicine , American University of Beirut , Beirut , Lebanon
| | - Hussein Basma
- b Department of Pediatrics and Adolescent Medicine , American University of Beirut , Beirut , Lebanon
| | - Farah Ghamloush
- b Department of Pediatrics and Adolescent Medicine , American University of Beirut , Beirut , Lebanon
| | - Assil Fahs
- a Department of Biology, Faculty of Science II , Lebanese University , Fanar , Lebanon
| | - Mia Karam
- a Department of Biology, Faculty of Science II , Lebanese University , Fanar , Lebanon
| | - Mohamad Harajli
- b Department of Pediatrics and Adolescent Medicine , American University of Beirut , Beirut , Lebanon
| | - Wissam Rabeh
- b Department of Pediatrics and Adolescent Medicine , American University of Beirut , Beirut , Lebanon
| | - Joe E Mouawad
- b Department of Pediatrics and Adolescent Medicine , American University of Beirut , Beirut , Lebanon
| | - Hassan Zalzali
- b Department of Pediatrics and Adolescent Medicine , American University of Beirut , Beirut , Lebanon
| | - Raya Saab
- b Department of Pediatrics and Adolescent Medicine , American University of Beirut , Beirut , Lebanon.,c Department of Anatomy, Cell Biology and Physiology , American University of Beirut , Beirut , Lebanon
| |
Collapse
|
27
|
Ferrari L, Bragato C, Brioschi L, Spreafico M, Esposito S, Pezzotta A, Pizzetti F, Moreno‐Fortuny A, Bellipanni G, Giordano A, Riva P, Frabetti F, Viani P, Cossu G, Mora M, Marozzi A, Pistocchi A. HDAC8 regulates canonical Wnt pathway to promote differentiation in skeletal muscles. J Cell Physiol 2018; 234:6067-6076. [DOI: 10.1002/jcp.27341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Luca Ferrari
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale Università degli Studi di Milano Milano Italy
| | - Cinzia Bragato
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico C. Besta Milano Italy
- PhD Program in Neuroscience, University of Milano‐Bicocca Milano Italy
| | - Loredana Brioschi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale Università degli Studi di Milano Milano Italy
| | - Marco Spreafico
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale Università degli Studi di Milano Milano Italy
| | - Simona Esposito
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale Università degli Studi di Milano Milano Italy
| | - Alex Pezzotta
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale Università degli Studi di Milano Milano Italy
| | - Fabrizio Pizzetti
- Department of Experimental, Diagnostic and Specialty Medicine University of Bologna Bologna Italy
| | - Artal Moreno‐Fortuny
- Division of Cell Matrix Biology and Regenerative Medicine Faculty of Biology, Medicine and Health, University of Manchester Manchester UK
- Developmental Genetics, Department of Biomedicine University of Basel Basel Switzerland
| | - Gianfranco Bellipanni
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University Philadelphia
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University Philadelphia
- Department of Medicine Surgery & Neuroscience, University of Siena Siena Italy
| | - Paola Riva
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale Università degli Studi di Milano Milano Italy
| | - Flavia Frabetti
- Department of Experimental, Diagnostic and Specialty Medicine University of Bologna Bologna Italy
| | - Paola Viani
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale Università degli Studi di Milano Milano Italy
| | - Giulio Cossu
- Division of Cell Matrix Biology and Regenerative Medicine Faculty of Biology, Medicine and Health, University of Manchester Manchester UK
| | - Marina Mora
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico C. Besta Milano Italy
| | - Anna Marozzi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale Università degli Studi di Milano Milano Italy
| | - Anna Pistocchi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale Università degli Studi di Milano Milano Italy
| |
Collapse
|
28
|
Lee DH, Park CJ, Jang S, Cho YU, Seo JJ, Im HJ, Koh KN, Cho KJ, Song JS, Seo EJ. Clinical and Cytogenetic Profiles of Rhabdomyosarcoma with Bone Marrow Involvement in Korean Children: A 15-Year Single-Institution Experience. Ann Lab Med 2018; 38:132-138. [PMID: 29214757 PMCID: PMC5736672 DOI: 10.3343/alm.2018.38.2.132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/17/2017] [Accepted: 11/09/2017] [Indexed: 02/03/2023] Open
Abstract
Background Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children. Alveolar RMS (ARMS) is characterized by FOXO1-related chromosomal translocations that result in a poorer clinical outcome compared with embryonal RMS (ERMS). Because the chromosomal features of RMS have not been comprehensively defined, we analyzed the clinical and laboratory data of childhood RMS patients and determined the clinical significance of chromosomal abnormalities in the bone marrow. Methods Fifty-one Korean patients with RMS <18 years of age treated between 2001 and 2015 were enrolled in this study. Clinical factors, bone marrow and cytogenetic results, and overall survival (OS) were analyzed. Results In total, 36 patients (70.6%) had ERMS and 15 (29.4%) had ARMS; 80% of the ARMS patients had stage IV disease. The incidences of bone and bone marrow metastases were 21.6% and 19.6%, respectively, and these results were higher than previously reported results. Of the 40 patients who underwent bone marrow cytogenetic investigation, five patients had chromosomal abnormalities associated with the 13q14 rearrangement. Patients with a chromosomal abnormality (15 vs 61 months, P=0.037) and bone marrow involvement (17 vs 61 months, P=0.033) had a significantly shorter median OS than those without such characteristics. Two novel rearrangements associated with the 13q14 locus were detected. One patient with concomitant MYCN amplification and PAX3/FOXO1 fusion showed an aggressive clinical course. Conclusions A comprehensive approach involving conventional cytogenetics and FOXO1 FISH of the bone marrow is needed to assess high-risk ARMS patients and identify novel cytogenetic findings.
Collapse
Affiliation(s)
- Dong Hyun Lee
- Department of Laboratory Medicine, Gyeongsang National University Hospital, Jinju, Korea
| | - Chan Jeoung Park
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Seongsoo Jang
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Young Uk Cho
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Jong Jin Seo
- Department of Pediatrics, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Ho Joon Im
- Department of Pediatrics, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Kyung Nam Koh
- Department of Pediatrics, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Kyung Ja Cho
- Department of Pathology, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Joon Seon Song
- Department of Pathology, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Eul Ju Seo
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea.
| |
Collapse
|
29
|
Cramer SL, Miller AL, Pressey JG, Gamblin TL, Beierle EA, Kulbersh BD, Garcia PL, Council LN, Radhakrishnan R, Hendrix SV, Kelly DR, Watts RG, Yoon KJ. Pediatric Anaplastic Embryonal Rhabdomyosarcoma: Targeted Therapy Guided by Genetic Analysis and a Patient-Derived Xenograft Study. Front Oncol 2018; 7:327. [PMID: 29376028 PMCID: PMC5768639 DOI: 10.3389/fonc.2017.00327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 12/18/2017] [Indexed: 11/13/2022] Open
Abstract
Therapy for rhabdomyosarcoma (RMS) has generally been limited to combinations of conventional cytotoxic agents similar to regimens originally developed in the late 1960s. Recently, identification of molecular alterations through next-generation sequencing of individual tumor specimens has facilitated the use of more targeted therapeutic approaches for various malignancies. Such targeted therapies have revolutionized treatment for some cancer types. However, malignancies common in children, thus far, have been less amenable to such targeted therapies. This report describes the clinical course of an 8-year-old female with embryonal RMS having anaplastic features. This patient experienced multiple relapses after receiving various established and experimental therapies. Genomic testing of this RMS subtype revealed mutations in BCOR, ARID1A, and SETD2 genes, each of which contributes to epigenetic regulation and interacts with or modifies the activity of histone deacetylases (HDAC). Based on these findings, the patient was treated with the HDAC inhibitor vorinostat as a single agent. The tumor responded transiently followed by subsequent disease progression. We also examined the efficacy of vorinostat in a patient-derived xenograft (PDX) model developed using tumor tissue obtained from the patient’s most recent tumor resection. The antitumor activity of vorinostat observed with the PDX model reflected clinical observations in that obvious areas of tumor necrosis were evident following exposure to vorinostat. Histologic sections of tumors harvested from PDX tumor-bearing mice treated with vorinostat demonstrated induction of necrosis by this agent. We propose that the evaluation of clinical efficacy in this type of preclinical model merits further evaluation to determine if PDX models predict tumor sensitivity to specific agents and/or combination therapies.
Collapse
Affiliation(s)
- Stuart L Cramer
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Aubrey L Miller
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Joseph G Pressey
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Tracy L Gamblin
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Elizabeth A Beierle
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Brian D Kulbersh
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Patrick L Garcia
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Leona N Council
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States.,The Birmingham Veterans Administration Medical Center, Birmingham, AL, United States
| | - Rupa Radhakrishnan
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Skyler V Hendrix
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, United States.,Biomedical Science Program, UAB Honors College, University of Alabama at Birmingham, Birmingham, AL, United States
| | - David R Kelly
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Pathology and Laboratory Medicine, Children's of Alabama, Birmingham, AL, United States
| | - Raymond G Watts
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Karina J Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
30
|
Eriksson M, Hååg P, Brzozowska B, Lipka M, Lisowska H, Lewensohn R, Wojcik A, Viktorsson K, Lundholm L. Analysis of Chromatin Opening in Heterochromatic Non-Small Cell Lung Cancer Tumor-Initiating Cells in Relation to DNA-Damaging Antitumor Treatment. Int J Radiat Oncol Biol Phys 2017; 100:174-187. [PMID: 29107335 DOI: 10.1016/j.ijrobp.2017.09.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 08/31/2017] [Accepted: 09/14/2017] [Indexed: 01/09/2023]
Abstract
PURPOSE We previously reported that sphere-forming non-small cell lung cancer (NSCLC) tumor-initiating cells (TICs) have an altered activation of DNA damage response- and repair proteins and are refractory to DNA-damaging treatments. We analyzed whether chromatin organization plays a role in the observed refractoriness. METHODS AND MATERIALS Bulk cells and TICs from the NSCLC H23 and H1299 cell lines were examined using cell viability, clonogenic survival, Western blot, short interfering RNA analysis, and micronucleus assay. RESULTS NSCLC TICs displayed elevated heterochromatin markers trimethylated lysine 9 of histone H3 and heterochromatin protein 1γ relative to bulk cells and reduced cell viability upon histone deacetylase inhibition (HDACi). Vorinostat and trichostatin A increased the euchromatin markers acetylated lysine 9/14 of histone H3 and lysine 8 of histone H4, and HDACi pretreatment increased the phosphorylation of the DNA damage response proteins ataxia telangiectasia mutated and DNA-dependent protein kinase, catalytic subunit, upon irradiation in TICs. HDACi sensitized TICs to cisplatin and to some extent to ionizing irradiation. The protectiveness of a dense chromatin structure was indicated by an enhanced frequency of micronuclei in TICs following irradiation, after knockdown of heterochromatin protein 1γ. CONCLUSIONS Although confirmatory studies in additional NSCLC model systems and with respect to analyses of other DNA damage response proteins are needed, our data point toward a heterochromatic structure of NSCLC TICs, such that HDACi can sensitize TICs to DNA damage.
Collapse
Affiliation(s)
- Mina Eriksson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Petra Hååg
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Beata Brzozowska
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; Biomedical Physics Division, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Poland
| | - Magdalena Lipka
- Department of Radiobiology and Immunology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Halina Lisowska
- Department of Radiobiology and Immunology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Rolf Lewensohn
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Andrzej Wojcik
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; Department of Radiobiology and Immunology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | | | - Lovisa Lundholm
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
31
|
Tang F, Choy E, Tu C, Hornicek F, Duan Z. Therapeutic applications of histone deacetylase inhibitors in sarcoma. Cancer Treat Rev 2017; 59:33-45. [PMID: 28732326 DOI: 10.1016/j.ctrv.2017.06.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 02/05/2023]
Abstract
Sarcomas are a rare group of malignant tumors originating from mesenchymal stem cells. Surgery, radiation and chemotherapy are currently the only standard treatments for sarcoma. However, their response rates to chemotherapy are quite low. Toxic side effects and multi-drug chemoresistance make treatment even more challenging. Therefore, better drugs to treat sarcomas are needed. Histone deacetylase inhibitors (HDAC inhibitors, HDACi, HDIs) are epigenetic modifying agents that can inhibit sarcoma growth in vitro and in vivo through a variety of pathways, including inducing tumor cell apoptosis, causing cell cycle arrest, impairing tumor invasion and preventing metastasis. Importantly, preclinical studies have revealed that HDIs can not only sensitize sarcomas to chemotherapy and radiotherapy, but also increase treatment responses when combined with other chemotherapeutic drugs. Several phase I and II clinical trials have been conducted to assess the efficacy of HDIs either as monotherapy or in combination with standard chemotherapeutic agents or targeted therapeutic drugs for sarcomas. Combination regimen for sarcomas appear to be more promising than monotherapy when using HDIs. This review summarizes our current understanding and therapeutic applications of HDIs in sarcomas.
Collapse
Affiliation(s)
- Fan Tang
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, USA; Department of Orthopedics, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu, Sichuan 610041, China
| | - Edwin Choy
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, USA
| | - Chongqi Tu
- Department of Orthopedics, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu, Sichuan 610041, China
| | - Francis Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, USA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, USA.
| |
Collapse
|
32
|
Concomitant epigenetic targeting of LSD1 and HDAC synergistically induces mitochondrial apoptosis in rhabdomyosarcoma cells. Cell Death Dis 2017; 8:e2879. [PMID: 28617441 PMCID: PMC5520898 DOI: 10.1038/cddis.2017.239] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/29/2017] [Accepted: 04/26/2017] [Indexed: 12/22/2022]
Abstract
The lysine-specific demethylase 1 (LSD1) is overexpressed in several cancers including rhabdomyosarcoma (RMS). However, little is yet known about whether or not LSD1 may serve as therapeutic target in RMS. We therefore investigated the potential of LSD1 inhibitors alone or in combination with other epigenetic modifiers such as histone deacetylase (HDAC) inhibitors. Here, we identify a synergistic interaction of LSD1 inhibitors (i.e., GSK690, Ex917) and HDAC inhibitors (i.e., JNJ-26481585, SAHA) to induce cell death in RMS cells. By comparison, LSD1 inhibitors as single agents exhibit little cytotoxicity against RMS cells. Mechanistically, GSK690 acts in concert with JNJ-26481585 to upregulate mRNA levels of the proapoptotic BH3-only proteins BMF, PUMA, BIM and NOXA. This increase in mRNA levels is accompanied by a corresponding upregulation of BMF, PUMA, BIM and NOXA protein levels. Importantly, individual knockdown of either BMF, BIM or NOXA significantly reduces GSK690/JNJ-26481585-mediated cell death. Similarly, genetic silencing of BAK significantly rescues cell death upon GSK690/JNJ-26481585 cotreatment. Also, overexpression of antiapoptotic BCL-2 or MCL-1 significantly protects RMS cells from GSK690/JNJ-26481585-induced cell death. Furthermore, GSK690 acts in concert with JNJ-26481585 to increase activation of caspase-9 and -3. Consistently, addition of the pan-caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) significantly reduces GSK690/JNJ-26481585-mediated cell death. In conclusion, concomitant LSD1 and HDAC inhibition synergistically induces cell death in RMS cells by shifting the ratio of pro- and antiapoptotic BCL-2 proteins in favor of apoptosis, thereby engaging the intrinsic apoptotic pathway. This indicates that combined treatment with LSD1 and HDAC inhibitors is a promising new therapeutic approach in RMS.
Collapse
|
33
|
Schleicher SB, Zaborski JJ, Riester R, Zenkner N, Handgretinger R, Kluba T, Traub F, Boehme KA. Combined application of arsenic trioxide and lithium chloride augments viability reduction and apoptosis induction in human rhabdomyosarcoma cell lines. PLoS One 2017; 12:e0178857. [PMID: 28575066 PMCID: PMC5456379 DOI: 10.1371/journal.pone.0178857] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 05/21/2017] [Indexed: 12/18/2022] Open
Abstract
Rhabdomyosarcomas (RMS) are the most prevalent soft tissue sarcomas affecting children and adolescents. Despite intensive treatment consisting of multimodal chemotherapy and surgery RMS patients diagnosed with metastatic disease expect long term survival rates of only 20%. Often multidrug resistance arises upon initial response emphasizing the need for new therapeutic drugs to improve treatment efficiency. Previously, we demonstrated the efficacy of the FDA approved drug arsenic trioxide (ATO) specifically inhibiting viability and clonal growth as well as inducing cell death in human RMS cell lines of different subtypes. In this study, we combined low dose ATO with lithium chloride (LiCl), which is approved as mood stabilizer for the treatment of bipolar disorder, but also inhibits growth and survival of different cancer cell types in pre-clinical research. Indeed, we could show additive effects of LiCl and ATO on viability reduction, decrease of colony formation as well as cell death induction. In the course of this, LiCl induced inhibitory glycogen synthase kinase-3β (GSK-3β) serine 9 phosphorylation, whereas glioma associated oncogene family 1 (GLI1) protein expression was particularly reduced by combined ATO and LiCl treatment in RD and RH-30 cell lines, showing high rates of apoptotic cell death. These results imply that combination of ATO with LiCl or another drug targeting GSK-3 is a promising strategy to enforce the treatment efficiency in resistant and recurrent RMS.
Collapse
Affiliation(s)
- Sabine B. Schleicher
- Eberhard Karls University Tuebingen, Children’s Hospital, Department of Hematology and Oncology, Tuebingen, Germany
| | - Julian J. Zaborski
- Eberhard Karls University Tuebingen, Department of Orthopedic Surgery, Laboratory of Cell Biology, Tuebingen, Germany
| | - Rosa Riester
- Eberhard Karls University Tuebingen, Department of Orthopedic Surgery, Laboratory of Cell Biology, Tuebingen, Germany
| | - Natascha Zenkner
- Eberhard Karls University Tuebingen, Department of Orthopedic Surgery, Laboratory of Cell Biology, Tuebingen, Germany
| | - Rupert Handgretinger
- Eberhard Karls University Tuebingen, Children’s Hospital, Department of Hematology and Oncology, Tuebingen, Germany
| | - Torsten Kluba
- Eberhard Karls University Tuebingen, Department of Orthopedic Surgery, Tuebingen, Germany
| | - Frank Traub
- Eberhard Karls University Tuebingen, Department of Orthopedic Surgery, Laboratory of Cell Biology, Tuebingen, Germany
- Eberhard Karls University Tuebingen, Department of Orthopedic Surgery, Tuebingen, Germany
| | - Karen A. Boehme
- Eberhard Karls University Tuebingen, Department of Orthopedic Surgery, Laboratory of Cell Biology, Tuebingen, Germany
- * E-mail:
| |
Collapse
|
34
|
El Demellawy D, McGowan-Jordan J, de Nanassy J, Chernetsova E, Nasr A. Update on molecular findings in rhabdomyosarcoma. Pathology 2017; 49:238-246. [PMID: 28256213 DOI: 10.1016/j.pathol.2016.12.345] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 12/12/2016] [Accepted: 12/20/2016] [Indexed: 12/13/2022]
Abstract
Rhabdomyosarcoma (RMS) is the most common malignant soft tissue tumour in children and adolescents. Histologically RMS resembles developing fetal striated skeletal muscle. RMS is stratified into different histological subtypes which appear to influence management plans and patient outcome. Importantly, molecular classification of RMS seems to more accurately capture the true biology and clinical course and prognosis of RMS to guide therapeutic decisions. The identification of PAX-FOXO1 fusion status in RMS is one of the most important updates in the risk stratification of RMS. There are several genes close to PAX that are frequently altered including the RAS family, FGFR4, PIK3CA, CTNNB1, FBXW7, and BCOR. As with most paediatric blue round cell tumours and sarcomas, chemotherapy is the key regimen for RMS therapy. Currently there are no direct inhibitors against PAX-FOXO1 fusion oncoproteins and targeting epigenetic cofactors is limited to clinical trials. Failure of therapy in RMS is usually related to drug resistance and metastatic disease. Through this review we have highlighted most of the molecular aspects in RMS and have attempted to correlate with RMS classification, treatment and prognosis.
Collapse
Affiliation(s)
- Dina El Demellawy
- Faculty of Medicine, University of Ottawa, Ontario, Canada; Pediatric Pathology, Children's Hospital of Eastern Ontario, Ontario, Canada.
| | - Jean McGowan-Jordan
- Faculty of Medicine, University of Ottawa, Ontario, Canada; Genetics, Children's Hospital of Eastern Ontario, Ontario, Canada
| | - Joseph de Nanassy
- Faculty of Medicine, University of Ottawa, Ontario, Canada; Pediatric Pathology, Children's Hospital of Eastern Ontario, Ontario, Canada
| | | | - Ahmed Nasr
- Faculty of Medicine, University of Ottawa, Ontario, Canada; Pediatric Surgery, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| |
Collapse
|
35
|
CRISPR screen identifies the NCOR/HDAC3 complex as a major suppressor of differentiation in rhabdomyosarcoma. Proc Natl Acad Sci U S A 2016; 113:15090-15095. [PMID: 27956629 DOI: 10.1073/pnas.1610270114] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Dysregulated gene expression resulting from abnormal epigenetic alterations including histone acetylation and deacetylation has been demonstrated to play an important role in driving tumor growth and progression. However, the mechanisms by which specific histone deacetylases (HDACs) regulate differentiation in solid tumors remains unclear. Using pediatric rhabdomyosarcoma (RMS) as a paradigm to elucidate the mechanism blocking differentiation in solid tumors, we identified HDAC3 as a major suppressor of myogenic differentiation from a high-efficiency Clustered regularly interspaced short palindromic repeats (CRISPR)-based phenotypic screen of class I and II HDAC genes. Detailed characterization of the HDAC3-knockout phenotype in vitro and in vivo using a tamoxifen-inducible CRISPR targeting strategy demonstrated that HDAC3 deacetylase activity and the formation of a functional complex with nuclear receptor corepressors (NCORs) were critical in restricting differentiation in RMS. The NCOR/HDAC3 complex specifically functions by blocking myoblast determination protein 1 (MYOD1)-mediated activation of myogenic differentiation. Interestingly, there was also a transient up-regulation of growth-promoting genes upon initial HDAC3 targeting, revealing a unique cancer-specific response to the forced transition from a neoplastic state to terminal differentiation. Our study applied modifications of CRISPR/CRISPR-associated endonuclease 9 (Cas9) technology to interrogate the function of essential cancer genes and pathways and has provided insights into cancer cell adaptation in response to altered differentiation status. Because current pan-HDAC inhibitors have shown disappointing results in clinical trials of solid tumors, therapeutic targets specific to HDAC3 function represent a promising option for differentiation therapy in malignant tumors with dysregulated HDAC3 activity.
Collapse
|
36
|
Megiorni F, Camero S, Ceccarelli S, McDowell HP, Mannarino O, Marampon F, Pizer B, Shukla R, Pizzuti A, Marchese C, Clerico A, Dominici C. DNMT3B in vitro knocking-down is able to reverse embryonal rhabdomyosarcoma cell phenotype through inhibition of proliferation and induction of myogenic differentiation. Oncotarget 2016; 7:79342-79356. [PMID: 27764816 PMCID: PMC5346718 DOI: 10.18632/oncotarget.12688] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/29/2016] [Indexed: 01/08/2023] Open
Abstract
Aberrant DNA methylation has been frequently observed in many human cancers, including rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in children. To date, the expression and function of the de novo DNA methyltransferase (DNMT) 3B in RMS have not yet been investigated. Our study show for the first time a significant up-regulation of DNMT3B levels in 14 RMS tumour samples and 4 RMS cell lines in comparison to normal skeletal muscle. Transfection of RD and TE671 cells, two in vitro models of embryonal RMS (ERMS), with a synthetic DNMT3B siRNA decreased cell proliferation by arresting cell cycle at G1 phase, as demonstrated by the reduced expression of Cyclin B1, Cyclin D1 and Cyclin E2, and by the concomitant up-regulation of the checkpoint regulators p21 and p27. DNMT3B depletion also impaired RB phosphorylation status and decreased migratory capacity and clonogenic potential. Interestingly, DNMT3B knock-down was able to commit ERMS cells towards myogenic terminal differentiation, as confirmed by the acquisition of a myogenic-like phenotype and by the increased expression of the myogenic markers MYOD1, Myogenin and MyHC. Finally, inhibition of MEK/ERK signalling by U0126 resulted in a reduction of DNMT3B protein, giving evidence that DNMT3B is a down-stream molecule of this oncogenic pathway.Taken together, our data indicate that altered expression of DNMT3B plays a key role in ERMS development since its silencing is able to reverse cell cancer phenotype by rescuing myogenic program. Epigenetic therapy, by targeting the DNA methylation machinery, may represent a novel therapeutic strategy against RMS.
Collapse
Affiliation(s)
- Francesca Megiorni
- Department of Paediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, Rome, Italy
| | - Simona Camero
- Department of Paediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, Rome, Italy
| | - Simona Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Heather P. McDowell
- Department of Paediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, Rome, Italy
- Department of Oncology, Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom
| | - Olga Mannarino
- Department of Paediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, Rome, Italy
| | - Francesco Marampon
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Barry Pizer
- Department of Oncology, Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom
| | - Rajeev Shukla
- Department of Perinatal and Paediatric Pathology, Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom
| | - Antonio Pizzuti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Anna Clerico
- Department of Paediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, Rome, Italy
| | - Carlo Dominici
- Department of Paediatrics and Infantile Neuropsychiatry, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
37
|
Ahn DH, Javle M, Ahn CW, Jain A, Mikhail S, Noonan AM, Ciombor K, Wu C, Shroff RT, Chen JL, Bekaii-Saab T. Next-generation sequencing survey of biliary tract cancer reveals the association between tumor somatic variants and chemotherapy resistance. Cancer 2016; 122:3657-3666. [PMID: 27495988 DOI: 10.1002/cncr.30247] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 05/31/2016] [Accepted: 06/22/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Biliary tract cancers (BTCs) are uncommon and are associated with a dismal prognosis. Combinations of gemcitabine and platinum chemotherapy (gemcitabine and platinum-based therapy [GP]) form the standard approach for treating advanced BTC. To characterize the spectrum of mutations and to identify potential biomarkers for a GP response in BTC, this study evaluated the genomic landscape and assessed whether mutations affecting DNA repair were associated with GP resistance. METHODS Pretreatment, formalin-fixed, paraffin-embedded samples from 183 BTC patients treated with GP were analyzed. Cox regression models were used to determine the association between mutations, progression-free survival (PFS), and overall survival (OS). RESULTS When genes with an incidence > 10% were considered, no individual gene was independently predictive of a GP response. In patients with unresectable BTC who received GP as their first-line therapy, the joint status of cyclin-dependent kinase inhibitor 2A (CDKN2A), tumor protein 53 (TP53), and AT-rich interaction domain 1A (ARID1A) was associated with PFS (P = .0004) and OS (P ≤ .0001). Patients with mutations in CDKN2A and TP53 were identified as a poor-prognosis cohort with a median PFS of 2.63 months and a median OS of 5.22 months. Patients with mutant ARID1A, regardless of the single-mutation status of TP53 or CDKN2A, had similar outcomes. A patient who exhibited mutations in all 3 genes had a median PFS of 20.37 months, and OS was not reached. CONCLUSIONS In the largest exploratory analysis of this kind for BTC, 3 prevalent, mutually exclusive mutations represent distinct patient cohorts. These mutations are prognostic and may represent a predictive biomarker for a GP response. Prospective studies to validate these findings are needed, and they should include the incorporation of therapies that exploit the genomic instability observed with these mutations in BTC. Cancer 2016;122:3657-66. © 2016 American Cancer Society.
Collapse
Affiliation(s)
- Daniel H Ahn
- Division of Medical Oncology, The Ohio State University Medical Center, Columbus, OH, USA.,Mayo Clinic, 5777 E. Mayo Blvd, Phoenix, AZ, USA
| | - Milind Javle
- Division of Cancer Medicine, MD Anderson Cancer Center, Houston, Texas, USA
| | - Chul W Ahn
- Department of Clinical Sciences, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Apurva Jain
- Division of Cancer Medicine, MD Anderson Cancer Center, Houston, Texas, USA
| | - Sameh Mikhail
- Division of Medical Oncology, The Ohio State University Medical Center, Columbus, OH, USA
| | - Anne M Noonan
- Division of Medical Oncology, The Ohio State University Medical Center, Columbus, OH, USA
| | | | - Christina Wu
- Division of Medical Oncology, The Ohio State University Medical Center, Columbus, OH, USA
| | - Rachna T Shroff
- Division of Cancer Medicine, MD Anderson Cancer Center, Houston, Texas, USA
| | - James L Chen
- Division of Medical Oncology, The Ohio State University Medical Center, Columbus, OH, USA.,Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|