1
|
Biswas M, Nurunnabi M, Khatun Z. Understanding Mucosal Physiology and Rationale of Formulation Design for Improved Mucosal Immunity. ACS APPLIED BIO MATERIALS 2024; 7:5037-5056. [PMID: 38787767 DOI: 10.1021/acsabm.4c00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The oral and nasal cavities serve as critical gateways for infectious pathogens, with microorganisms primarily gaining entry through these routes. Our first line of defense against these invaders is the mucosal membrane, a protective barrier that shields the body's internal systems from infection while also contributing to vital functions like air and nutrient intake. One of the key features of this mucosal barrier is its ability to protect the physiological system from pathogens. Additionally, mucosal tolerance plays a crucial role in maintaining homeostasis by regulating the pH and water balance within the body. Recognizing the importance of the mucosal barrier, researchers have developed various mucosal formulations to enhance the immune response. Mucosal vaccines, for example, deliver antigens directly to mucosal tissues, triggering local immune stimulation and ultimately inducing systemic immunity. Studies have shown that lipid-based formulations such as liposomes and virosomes can effectively elicit both local and systemic immune responses. Furthermore, mucoadhesive polymeric particles, with their prolonged delivery to target sites, have demonstrated an enhanced immune response. This Review delves into the critical role of material selection and delivery approaches in optimizing mucosal immunity.
Collapse
Affiliation(s)
- Mila Biswas
- Department of Electrical and Computer Engineering, University of Texas at El Paso, El Paso, Texas 79902, United States
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
- Department of Biomedical Engineering, College of Engineering, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Zehedina Khatun
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
| |
Collapse
|
2
|
Cervantes PW, Segelke BW, Lau EY, Robinson BV, Abisoye-Ogunniyan A, Pal S, de la Maza LM, Coleman MA, D’haeseleer P. Sequence, structure prediction, and epitope analysis of the polymorphic membrane protein family in Chlamydia trachomatis. PLoS One 2024; 19:e0304525. [PMID: 38861498 PMCID: PMC11166332 DOI: 10.1371/journal.pone.0304525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
The polymorphic membrane proteins (Pmps) are a family of autotransporters that play an important role in infection, adhesion and immunity in Chlamydia trachomatis. Here we show that the characteristic GGA(I,L,V) and FxxN tetrapeptide repeats fit into a larger repeat sequence, which correspond to the coils of a large beta-helical domain in high quality structure predictions. Analysis of the protein using structure prediction algorithms provided novel insight to the chlamydial Pmp family of proteins. While the tetrapeptide motifs themselves are predicted to play a structural role in folding and close stacking of the beta-helical backbone of the passenger domain, we found many of the interesting features of Pmps are localized to the side loops jutting out from the beta helix including protease cleavage, host cell adhesion, and B-cell epitopes; while T-cell epitopes are predominantly found in the beta-helix itself. This analysis more accurately defines the Pmp family of Chlamydia and may better inform rational vaccine design and functional studies.
Collapse
Affiliation(s)
- Patrick W. Cervantes
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Brent W. Segelke
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Edmond Y. Lau
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Beverly V. Robinson
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Abisola Abisoye-Ogunniyan
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Sukumar Pal
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, California, United States of America
| | - Luis M. de la Maza
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, California, United States of America
| | - Matthew A. Coleman
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| | - Patrik D’haeseleer
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, United States of America
| |
Collapse
|
3
|
Mucosal vaccine delivery: A focus on the breakthrough of specific barriers. Acta Pharm Sin B 2022; 12:3456-3474. [PMID: 35818435 PMCID: PMC9259023 DOI: 10.1016/j.apsb.2022.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/03/2022] [Accepted: 06/30/2022] [Indexed: 12/30/2022] Open
Abstract
Mucosal vaccines can effectively induce an immune response at the mucosal site and form the first line of defense against microbial invasion. The induced mucosal immunity includes the proliferation of effector T cells and the production of IgG and IgA antibodies, thereby effectively blocking microbial infection and transmission. However, after a long period of development, the transformation of mucosal vaccines into clinical use is still relatively slow. To date, fewer than ten mucosal vaccines have been approved. Only seven mucosal vaccines against coronavirus disease 2019 (COVID-19) are under investigation in clinical trials. A representative vaccine is the adenovirus type-5 vectored COVID-19 vaccine (Ad5-nCoV) developed by Chen and coworkers, which is currently in phase III clinical trials. The reason for the limited progress of mucosal vaccines may be the complicated mucosal barriers. Therefore, this review summarizes the characteristics of mucosal barriers and highlights strategies to overcome these barriers for effective mucosal vaccine delivery.
Collapse
|
4
|
Chen H, Ji H, Kong X, Lei P, Yang Q, Wu W, Jin L, Sun D. Bacterial Ghosts-Based Vaccine and Drug Delivery Systems. Pharmaceutics 2021; 13:1892. [PMID: 34834306 PMCID: PMC8622331 DOI: 10.3390/pharmaceutics13111892] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
Bacterial ghosts (BGs) are empty bacterial envelopes of Gram-negative bacteria produced by controlled expressions of cloned gene E, forming a lysis tunnel structure within the envelope of the living bacteria. Globally, BGs have been used as vaccine delivery systems and vaccine adjuvants. There is an increasing interest in the development of novel delivery systems that are based on BGs for biomedical applications. Due to intact reservation of bacterial cell membranes, BGs have an inherent immunogenicity, which enables targeted drug delivery and controlled release. As carrier vehicles, BGs protect drugs from interference by external factors. In recent years, there has been an increasing interest in BG-based delivery systems against tumors, inflammation, and infection, among others. Herein, we reviewed the preparation methods for BGs, interactions between BGs and the host, and further highlighted research progress in BG development.
Collapse
Affiliation(s)
- Haojie Chen
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.C.); (H.J.); (X.K.); (P.L.); (W.W.)
| | - Hao Ji
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.C.); (H.J.); (X.K.); (P.L.); (W.W.)
| | - Xiangjun Kong
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.C.); (H.J.); (X.K.); (P.L.); (W.W.)
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Pengyu Lei
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.C.); (H.J.); (X.K.); (P.L.); (W.W.)
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China;
| | - Wei Wu
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.C.); (H.J.); (X.K.); (P.L.); (W.W.)
- Key Laboratory for Biorheological Science and Technology of Ministry of Education & State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Libo Jin
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.C.); (H.J.); (X.K.); (P.L.); (W.W.)
| | - Da Sun
- Institute of Life Sciences & Engineering Laboratory of Zhejiang Province for Pharmaceutical Development of Growth Factors, Wenzhou University, Wenzhou 325035, China; (H.C.); (H.J.); (X.K.); (P.L.); (W.W.)
| |
Collapse
|
5
|
Frohns A, Stojanovic M, Barisani-Asenbauer T, Kuratli J, Borel N, Inic-Kanada A. Effects of water-filtered infrared A and visible light (wIRA/VIS) radiation on heat- and stress-responsive proteins in the retina and cornea of guinea pigs. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 224:112306. [PMID: 34562830 DOI: 10.1016/j.jphotobiol.2021.112306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/27/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Water-filtered infrared A and visible light (wIRA/VIS), shown to reduce chlamydial infections in vitro and in vivo, might represent an innovative therapeutic approach against trachoma, a neglected tropical disease caused by ocular infection with the bacterium C. trachomatis. In this in vivo study, we assessed the impact of wIRA radiation in combination with VIS (wavelength range 595-1400 nm, intensity 2100 W/m2) on the retina and cornea in a guinea pig animal model of inclusion conjunctivitis. We investigated the effects 19 days after wIRA/VIS irradiation by comparing a single and double wIRA/VIS treatment with a sham control. By immunolabeling and western blot analyses of critical heat- and stress-responsive proteins, we could not detect wIRA/VIS-induced changes in their expression pattern. Also, immunolabeling of specific retinal marker proteins revealed no changes in their expression pattern caused by the treatment. Our preclinical study suggests wIRA/VIS as a promising and safe therapeutic tool to treat ocular chlamydial infections.
Collapse
Affiliation(s)
| | | | - Talin Barisani-Asenbauer
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Jasmin Kuratli
- Institute of Veterinary Pathology, (IVPZ) and Center for Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Nicole Borel
- Institute of Veterinary Pathology, (IVPZ) and Center for Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Aleksandra Inic-Kanada
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Pedraza L, Camargo M, Moreno-Pérez DA, Sánchez R, Del Río-Ospina L, Báez-Murcia IM, Patarroyo ME, Patarroyo MA. Identifying HLA DRB1-DQB1 alleles associated with Chlamydia trachomatis infection and in silico prediction of potentially-related peptides. Sci Rep 2021; 11:12837. [PMID: 34145318 PMCID: PMC8213839 DOI: 10.1038/s41598-021-92294-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/09/2021] [Indexed: 02/05/2023] Open
Abstract
HLA class II (HLA-II) genes' polymorphism influences the immune response to Chlamydia trachomatis (Ct), it is considered a sexually transmitted infection. However, associations between HLA-II alleles and Ct-infection have been little explored in humans; this study was thus aimed at determining HLA-DRB1-DQB1 alleles/haplotypes' effect on Ct-infection outcome in a cohort of Colombian women. Cervical sample DNA was used as template for detecting Ct by PCR and typing HLA-DRB1-DQB1 alleles/haplotypes by Illumina MiSeq sequencing. Survival models were adjusted for identifying the alleles/haplotypes' effect on Ct-outcome; bioinformatics tools were used for predicting secreted bacterial protein T- and B-cell epitopes. Sixteen HLA-DRB1 alleles having a significant effect on Ct-outcome were identified in the 262 women analysed. DRB1*08:02:01G and DRB1*12:01:01G were related to infection-promoting events. Only the DQB1*05:03:01G allele related to clearance/persistence events was found for HLA-DQB1. HLA-DRB1 allele homozygous women were associated with events having a lower probability of clearance and/or early occurrence of persistence. Twenty-seven peptides predicted in silico were associated with protective immunity against Ct; outer membrane and polymorphic membrane protein-derived peptides had regions having dual potential for being T- or B-cell epitopes. This article describes HLA-DRB1-DQB1 alleles/haplotypes related to Ct-infection resolution and the peptides predicted in silico which might probably be involved in host immune response. The data provides base information for developing future studies leading to the development of effective prevention measures against Ct-infection.
Collapse
Affiliation(s)
- Leidy Pedraza
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), 111321, Bogotá D.C., Colombia
- MSc Programme in Microbiology, Universidad Nacional de Colombia, 111321, Bogotá D.C., Colombia
| | - Milena Camargo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), 111321, Bogotá D.C., Colombia
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), 111166, Bogotá D.C., Colombia
| | - Darwin A Moreno-Pérez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), 111321, Bogotá D.C., Colombia
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), 111166, Bogotá D.C., Colombia
| | - Ricardo Sánchez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), 111321, Bogotá D.C., Colombia
- Faculty of Medicine, Universidad Nacional de Colombia, 111321, Bogotá D.C., Colombia
| | - Luisa Del Río-Ospina
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), 111321, Bogotá D.C., Colombia
| | - Indira M Báez-Murcia
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), 111321, Bogotá D.C., Colombia
| | - Manuel E Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), 111321, Bogotá D.C., Colombia
- Faculty of Medicine, Universidad Nacional de Colombia, 111321, Bogotá D.C., Colombia
- Health Sciences Division, Main Campus, Universidad Santo Tomás, 110231, Bogotá D.C., Colombia
| | - Manuel A Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), 111321, Bogotá D.C., Colombia.
- Faculty of Medicine, Universidad Nacional de Colombia, 111321, Bogotá D.C., Colombia.
- Health Sciences Division, Main Campus, Universidad Santo Tomás, 110231, Bogotá D.C., Colombia.
| |
Collapse
|
7
|
Prophylactic Multi-Subunit Vaccine against Chlamydia trachomatis: In Vivo Evaluation in Mice. Vaccines (Basel) 2021; 9:vaccines9060609. [PMID: 34204170 PMCID: PMC8226540 DOI: 10.3390/vaccines9060609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 01/08/2023] Open
Abstract
Chlamydia trachomatis is the most frequent sexually-transmitted disease-causing bacterium. Urogenital serovars of this intracellular pathogen lead to urethritis and cervicitis. Ascending infections result in pelvic inflammatory disease, salpingitis, and oophoritis. One of 200 urogenital infections leads to tubal infertility. Serovars A–C cause trachoma with visual impairment. There is an urgent need for a vaccine. We characterized a new five-component subunit vaccine in a mouse vaccination-lung challenge infection model. Four recombinant Pmp family-members and Ctad1 from C. trachomatis serovar E, all of which participate in adhesion and binding of chlamydial elementary bodies to host cells, were combined with the mucosal adjuvant cyclic-di-adenosine monophosphate. Intranasal application led to a high degree of cross-serovar protection against urogenital and ocular strains of C. trachomatis, which lasted at least five months. Critical evaluated parameters were body weight, clinical score, chlamydial load, a granulocyte marker and the cytokines IFN-γ/TNF-α in lung homogenate. Vaccine antigen-specific antibodies and a mixed Th1/Th2/Th17 T cell response with multi-functional CD4+ and CD8+ T cells correlate with protection. However, serum-transfer did not protect the recipients suggesting that circulating antibodies play only a minor role. In the long run, our new vaccine might help to prevent the feared consequences of human C. trachomatis infections.
Collapse
|
8
|
de la Maza LM, Darville TL, Pal S. Chlamydia trachomatis vaccines for genital infections: where are we and how far is there to go? Expert Rev Vaccines 2021; 20:421-435. [PMID: 33682583 DOI: 10.1080/14760584.2021.1899817] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen in the world. Antibiotic treatment does not prevent against reinfection and a vaccine is not yet available. AREAS COVERED We focus the review on the progress made of our understanding of the immunological responses required for a vaccine to elicit protection, and on the antigens, adjuvants, routes of immunization and delivery systems that have been tested in animal models. PubMed and Google Scholar were used to search publication on these topics for the last 5 years and recent Reviews were examined. EXPERT OPINION The first Phase 1 clinical trial of a C. trachomatis vaccine to protect against genital infections was successfully completed. We expect that, in the next five years, additional vaccine clinical trials will be implemented.
Collapse
Affiliation(s)
- Luis M de la Maza
- Department of Pathology and Laboratory Medicine Medical Sciences, I, Room D440 University of California, Irvine, California, USA
| | - Toni L Darville
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sukumar Pal
- Department of Pathology and Laboratory Medicine Medical Sciences, I, Room D440 University of California, Irvine, California, USA
| |
Collapse
|
9
|
Stojanovic M, Lukic I, Marinkovic E, Kovacevic A, Miljkovic R, Tobias J, Schabussova I, Zlatović M, Barisani-Asenbauer T, Wiedermann U, Inic-Kanada A. Cross-Reactive Effects of Vaccines: Heterologous Immunity between Tetanus and Chlamydia. Vaccines (Basel) 2020; 8:vaccines8040719. [PMID: 33271962 PMCID: PMC7712554 DOI: 10.3390/vaccines8040719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
Vaccines can have heterologous effects on the immune system, i.e., effects other than triggering an immune response against the disease targeted by the vaccine. We investigated whether monoclonal antibodies (mAbs) specific for tetanus could cross-react with Chlamydia and confer heterologous protection against chlamydial infection. The capability of two tetanus-specific mAbs, namely mAb26 and mAb51, to prevent chlamydial infection has been assessed: (i) in vitro, by performing a neutralization assay using human conjunctival epithelial (HCjE) cells infected with Chlamydia trachomatis serovar B, and (ii) in vivo, by using a guinea pig model of Chlamydiacaviae-induced inclusion conjunctivitis. The mAb26 has been superior in comparison with mAb51 in the prevention of chlamydial infection in HCjE cells. The mAb26 has conferred ≈40% inhibition of the infection, compared to less than 5% inhibition in the presence of the mAb51. In vivo, mAb26 significantly diminished ocular pathology intensity in guinea pigs infected with C. caviae compared to either the mAb51-treated or sham-treated guinea pigs. Our data provide insights that tetanus immunization generates antibodies which induce heterologous chlamydial immunity and promote protection beyond the intended target pathogen.
Collapse
Affiliation(s)
- Marijana Stojanovic
- Institute of Virology, Vaccines, and Sera–TORLAK, 11152 Belgrade, Serbia; (M.S.); (I.L.); (E.M.); (A.K.); (R.M.)
| | - Ivana Lukic
- Institute of Virology, Vaccines, and Sera–TORLAK, 11152 Belgrade, Serbia; (M.S.); (I.L.); (E.M.); (A.K.); (R.M.)
| | - Emilija Marinkovic
- Institute of Virology, Vaccines, and Sera–TORLAK, 11152 Belgrade, Serbia; (M.S.); (I.L.); (E.M.); (A.K.); (R.M.)
| | - Ana Kovacevic
- Institute of Virology, Vaccines, and Sera–TORLAK, 11152 Belgrade, Serbia; (M.S.); (I.L.); (E.M.); (A.K.); (R.M.)
| | - Radmila Miljkovic
- Institute of Virology, Vaccines, and Sera–TORLAK, 11152 Belgrade, Serbia; (M.S.); (I.L.); (E.M.); (A.K.); (R.M.)
| | - Joshua Tobias
- Center for Pathophysiology Infectiology and Immunology, Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, 1090 Vienna, Austria; (J.T.); (I.S.); (T.B.-A.); (U.W.)
| | - Irma Schabussova
- Center for Pathophysiology Infectiology and Immunology, Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, 1090 Vienna, Austria; (J.T.); (I.S.); (T.B.-A.); (U.W.)
| | - Mario Zlatović
- Faculty of Chemistry, University of Belgrade, 11000 Belgrade, Serbia;
| | - Talin Barisani-Asenbauer
- Center for Pathophysiology Infectiology and Immunology, Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, 1090 Vienna, Austria; (J.T.); (I.S.); (T.B.-A.); (U.W.)
| | - Ursula Wiedermann
- Center for Pathophysiology Infectiology and Immunology, Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, 1090 Vienna, Austria; (J.T.); (I.S.); (T.B.-A.); (U.W.)
| | - Aleksandra Inic-Kanada
- Center for Pathophysiology Infectiology and Immunology, Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, 1090 Vienna, Austria; (J.T.); (I.S.); (T.B.-A.); (U.W.)
- Correspondence: ; Tel.: +43-1-40160-33-154
| |
Collapse
|
10
|
Abstract
INTRODUCTION Bacterial ghosts are intact bacterial cell envelopes that are emptied of their content by gentle biological or chemical poring methods. Ghost techniques increase the safety of the killed vaccines, while maintaining their antigenicity due to mild preparation procedures. Moreover, ghost-platforms may express and/or carry several antigens or plasmid-DNA encoding for protein epitopes. AREAS COVERED In this review, the development in ghost-vaccine production over the last 30 years is classified and discussed. The different applications of ghost-vaccines, how they trigger the immune system, their advantages and limitations are displayed. The phage-mediated lysis, molecular manipulation of the lysis-genes, and the biotechnological production of ghosts are described. The trials are classified according to the pattern of lysis and to the type of bacteria. Further subdivision includes chronological ordered application of the ghost as alternative-killed vaccine, recombinant antigen platform, plasmid DNA carrier, adjuvants, and dendritic cell inducer. Particular trials for specific pathogens or from distinct research schools are gathered. EXPERT OPINION Ghosts are highly qualified to act as immune-presenting platforms that express and/or carry several recombinant and DNA vaccines, as well as, being efficient alternative-killed vaccines. The coming years will show more molecular advances to develop ghost-production and to express more antigens.
Collapse
Affiliation(s)
- Ali M Batah
- Tropical Disease Research Center, University of Science and Technology , Sana'a, Yemen
| | - Tarek A Ahmad
- Morehouse School of Medicine , Atlanta, GA, USA.,Library Sector, Bibliotheca Alexandrina , Alexandria, Egypt
| |
Collapse
|
11
|
Zhou P, Wu H, Chen S, Bai Q, Chen X, Chen L, Zeng X, Liu L, Chen L. MOMP and MIP DNA-loaded bacterial ghosts reduce the severity of lung lesions in mice after Chlamydia psittaci respiratory tract infection. Immunobiology 2019; 224:739-746. [DOI: 10.1016/j.imbio.2019.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/22/2019] [Accepted: 09/03/2019] [Indexed: 10/26/2022]
|
12
|
Luan X, Peng B, Li Z, Tang L, Chen C, Chen L, Wu H, Sun Z, Lu C. Vaccination with MIP or Pgp3 induces cross-serovar protection against chlamydial genital tract infection in mice. Immunobiology 2018; 224:223-230. [PMID: 30558842 DOI: 10.1016/j.imbio.2018.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 01/26/2023]
Abstract
Previously we reported that recombinant Chlamydia muridarum macrophage infectivity potentiator (MIP) provided partial protection against C. muridarum genital tract infection in mice. On the other hand, Chlamydia trachomatis plasmid encoded Pgp3could induce the protection against C. muridarum air way infection. This study aimed to evaluate the immunogenicity of MIP and Pgp3 from C. trachomatis serovar D and further investigate whether MIP and Pgp3 provide cross-serovar protection against C. muridarum genital tract infection in mice. Our results showed that vaccination by any regimen, including MIP alone, Pgp3 alone or MIP plus Pgp3, induced specific serum antibody production and Th1-dominant cellular responses in mice. Live chlamydial shedding from the vaginal and inflammatory pathologies in the oviduct markedly reduced. However, MIP + Pgp3 vaccination did not provide better protection than the single immunization. In conclusion, this study demonstrated that both MIP and Pgp3 can induce cross-serovar protective against chlamydial genital tract infection, and provided the guide for the development of optimal multisubunit vaccines against C. trachomatis infection.
Collapse
Affiliation(s)
- Xiuli Luan
- Pathogenic Biology Institute, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Bo Peng
- Pathogenic Biology Institute, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China; Department of Pathology, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Zhongyu Li
- Pathogenic Biology Institute, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Lingli Tang
- Department of Clinic Diagnosis, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Chaoqun Chen
- Pathogenic Biology Institute, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
| | - Lili Chen
- Pathogenic Biology Institute, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
| | - Haiying Wu
- Pathogenic Biology Institute, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
| | - Zhenjie Sun
- Pathogenic Biology Institute, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
| | - Chunxue Lu
- Pathogenic Biology Institute, Hengyang Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China.
| |
Collapse
|
13
|
The effect of infectious dose on humoral and cellular immune responses in Chlamydophila caviae primary ocular infection. PLoS One 2017; 12:e0180551. [PMID: 28678871 PMCID: PMC5498042 DOI: 10.1371/journal.pone.0180551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/16/2017] [Indexed: 12/27/2022] Open
Abstract
Following infection, the balance between protective immunity and immunopathology often depends on the initial infectious load. Several studies have investigated the effect of infectious dose; however, the mechanism by which infectious dose affects disease outcomes and the development of a protective immune response is not known. The aim of this study was to investigate how the infectious dose modulates the local and systemic humoral and the cellular immune responses during primary ocular chlamydial infection in the guinea pig animal model. Guinea pigs were infected by ocular instillation of a Chlamydophila caviae-containing eye solution in the conjunctival sac in three different doses: 1×102, 1×104, and 1×106 inclusion forming units (IFUs). Ocular pathology, chlamydial clearance, local and systemic C. caviae-specific humoral and cellular immune responses were assessed. All inocula of C. caviae significantly enhanced the local production of C. caviae-specific IgA in tears, but only guinea pigs infected with the higher doses showed significant changes in C. caviae-specific IgA levels in vaginal washes and serum. On complete resolution of infection, the low dose of C. caviae did not alter the ratio of CD4+ and CD8+ cells within guinea pigs’ submandibular lymph node (SMLN) lymphocytes while the higher doses increased the percentages of CD4+ and CD8+ cells within the SMLN lymphocytes. A significant negative correlation between pathology intensity and the percentage of CD4+ and CD8+ cells within SMLN lymphocyte pool at selected time points post-infection was recorded for both 1×104, and 1×106 IFU infected guinea pigs. The relevance of the observed dose-dependent differences on the immune response should be further investigated in repeated ocular chlamydial infections.
Collapse
|
14
|
Update on Chlamydia trachomatis Vaccinology. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00543-16. [PMID: 28228394 DOI: 10.1128/cvi.00543-16] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Attempts to produce a vaccine to protect against Chlamydia trachomatis-induced trachoma were initiated more than 100 years ago and continued for several decades. Using whole organisms, protective responses were obtained. However, upon exposure to C. trachomatis, disease exacerbation developed in some immunized individuals, precluding the implementation of the vaccine. Evidence of the role of C. trachomatis as a sexually transmitted pathogen started to emerge in the 1960s, and it soon became evident that it can cause acute infections and long-term sequelae in women, men, and newborns. The main focus of this minireview is to summarize recent findings and discuss formulations, including antigens, adjuvants, routes, and delivery systems for immunization, primarily explored in the female mouse model, with the goal of implementing a vaccine against C. trachomatis genital infections.
Collapse
|
15
|
Pal S, Favaroni A, Tifrea DF, Hanisch PT, Luczak SET, Hegemann JH, de la Maza LM. Comparison of the nine polymorphic membrane proteins of Chlamydia trachomatis for their ability to induce protective immune responses in mice against a C. muridarum challenge. Vaccine 2017; 35:2543-2549. [PMID: 28385608 DOI: 10.1016/j.vaccine.2017.03.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/06/2017] [Accepted: 03/22/2017] [Indexed: 01/24/2023]
Abstract
OBJECTIVES To test vaccines, formulated with novel antigens, to protect mice against Chlamydia infections. METHODS To determine the ability of polymorphic membrane proteins (Pmps) to induce cross-species protective immune responses, recombinant fragments from all nine C. trachomatis serovar E Pmps were used to vaccinate BALB/c mice utilizing CpG-1826 and Montanide ISA 720 as adjuvants. C. muridarum recombinant MOMP and PBS, formulated with the same adjuvants, were used as positive and negative controls, respectively. Mice were challenged intranasally with 104 inclusion-forming units (IFU) of C. muridarum. Animals were weighed daily and at 10days post-challenge, they were euthanized, their lungs harvested, weighed and the number of chlamydial IFU counted. RESULTS Following vaccination the nine Pmps elicited immune responses. Based on body weight changes, or number of IFU recovered from lungs, mice vaccinated with Pmp C, G or H were the best protected. For example, over the 10-day period, the negative control group vaccinated with PBS lost significantly more body weight than mice immunized with PmpC or G (P<0.05). C. muridarum MOMP vaccinated mice were better protected against body weight losses than any group immunized with Pmps. Also, the median number of IFU recovered from the lungs of mice vaccinated with PmpC (72×106) or PmpH (61×106) was significantly less than from mice immunized with PBS (620×106; P<0.05). As determined by the number of IFU, all Pmps elicited less protection than C. muridarum MOMP (0.078×106 IFU; P<0.05). CONCLUSIONS This is the first time PmpC has been shown to elicit cross-species protection against a respiratory challenge. Additional work with Pmps C, G and H is recommended to determine their ability to protect animal models against genital and ocular challenges.
Collapse
Affiliation(s)
- Sukumar Pal
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
| | - Alison Favaroni
- Institut für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Delia F Tifrea
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
| | - Philipp T Hanisch
- Institut für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Sören E T Luczak
- Institut für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Johannes H Hegemann
- Institut für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Luis M de la Maza
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
16
|
Ou B, Yang Y, Tham WL, Chen L, Guo J, Zhu G. Genetic engineering of probiotic Escherichia coli Nissle 1917 for clinical application. Appl Microbiol Biotechnol 2016; 100:8693-9. [PMID: 27640192 DOI: 10.1007/s00253-016-7829-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/31/2016] [Accepted: 09/03/2016] [Indexed: 12/11/2022]
Abstract
Escherichia coli strain Nissle 1917 (EcN) has been used as a probiotic. Genetic engineering has enhanced the utility of EcN in several vaccine and pharmaceutical preparations. We discuss in this mini review the genetics and physical properties of EcN. We also discuss the numerous genetic engineering strategies employed for EcN-based vaccine development, including recombinant plasmid transfer, genetic engineering of cryptic plasmids or the EcN chromosome, EcN bacterial ghosts and its outer membrane vesicles. We also provide a current update on the progress and the challenges regarding the use of EcN in vaccine development.
Collapse
Affiliation(s)
- Bingming Ou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Ying Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Wai Liang Tham
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, V6T1Z4, Canada
| | - Lin Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.,Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
| | - Jitao Guo
- Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China. .,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
17
|
Inic-Kanada A, Stojanovic M, Marinkovic E, Becker E, Stein E, Lukic I, Djokic R, Schuerer N, Hegemann JH, Barisani-Asenbauer T. A Probiotic Adjuvant Lactobacillus rhamnosus Enhances Specific Immune Responses after Ocular Mucosal Immunization with Chlamydial Polymorphic Membrane Protein C. PLoS One 2016; 11:e0157875. [PMID: 27636704 PMCID: PMC5026373 DOI: 10.1371/journal.pone.0157875] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/06/2016] [Indexed: 11/19/2022] Open
Abstract
Recent advances in the development of chlamydia vaccines, using live-attenuated or ultraviolet light-inactivated chlamydia, are paving the way for new possibilities to oppose the societal challenges posed by chlamydia-related diseases, such as blinding trachoma. An effective subunit vaccine would mitigate the risks associated with the use of a whole-cell vaccine. Our rationale for the design of an efficient subunit vaccine against Chlamydia trachomatis (Ct) is based on the membrane proteins involved in the initial Ct-host cell contact and on the route of immunization that mimics the natural infection process (i.e., via the ocular mucosa). The first aim of our study was to characterize the specific conjunctival and vaginal immune responses following eye drop immunization in BALB/c mice, using the N-terminal portion of the Ct serovar E polymorphic membrane protein C (N-PmpC) as the subunit vaccine antigen. Second, we aimed to examine the adjuvant properties of the probiotic Lactobacillus rhamnosus (LB) when formulated with N-PmpC. N-PmpC applied alone stimulated the production of N-PmpC- and Ct serovar B-specific antibodies in serum, tears and vaginal washes, whereas the combination with LB significantly enhanced these responses. The N-PmpC/LB combination initiated a T cell response characterized by an elevated percentage of CD25+ T cells and CD8+ effector T cells, enhanced CD4+ T-helper 1 skewing, and increased regulatory T cell responses. Together, these results show that eye drop vaccination with combined use of N-PmpC and a live probiotic LB stimulates specific cellular and humoral immune responses, not only locally in the conjunctiva but also in the vaginal mucosa, which could be a promising approach in Ct vaccine development.
Collapse
Affiliation(s)
- Aleksandra Inic-Kanada
- OCUVAC – Center of Ocular Inflammation and Infection, Laura Bassi Centres of Expertise, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Marijana Stojanovic
- Department of Research and Development, Institute of Virology, Vaccines and Sera – TORLAK, Belgrade, Serbia
| | - Emilija Marinkovic
- Department of Research and Development, Institute of Virology, Vaccines and Sera – TORLAK, Belgrade, Serbia
| | - Elisabeth Becker
- Institut für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, Gebäude 25.02.U1, 40225, Düsseldorf, Germany
| | - Elisabeth Stein
- OCUVAC – Center of Ocular Inflammation and Infection, Laura Bassi Centres of Expertise, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ivana Lukic
- Department of Research and Development, Institute of Virology, Vaccines and Sera – TORLAK, Belgrade, Serbia
| | - Radmila Djokic
- Department of Research and Development, Institute of Virology, Vaccines and Sera – TORLAK, Belgrade, Serbia
| | - Nadine Schuerer
- OCUVAC – Center of Ocular Inflammation and Infection, Laura Bassi Centres of Expertise, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Johannes H. Hegemann
- Institut für Funktionelle Genomforschung der Mikroorganismen, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, Gebäude 25.02.U1, 40225, Düsseldorf, Germany
| | - Talin Barisani-Asenbauer
- OCUVAC – Center of Ocular Inflammation and Infection, Laura Bassi Centres of Expertise, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|