1
|
Elmounedi N, Bahloul W, Keskes H. Current Therapeutic Strategies of Intervertebral Disc Regenerative Medicine. Mol Diagn Ther 2024; 28:745-775. [PMID: 39158834 DOI: 10.1007/s40291-024-00729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2024] [Indexed: 08/20/2024]
Abstract
Intervertebral disc degeneration (IDD) is one of the most frequent causes of low back pain. No treatment is currently available to delay the progression of IDD. Conservative treatment or surgical interventions is only used to target the symptoms of IDD rather than treat the underlying cause. Currently, numerous potential therapeutic strategies are available, including molecular therapy, gene therapy, and cell therapy. However, the hostile environment of degenerated discs is a major problem that has hindered the clinical applicability of such approaches. In this regard, the design of drugs using alternative delivery systems (macro-, micro-, and nano-sized particles) may resolve this problem. These can protect and deliver biomolecules along with helping to improve the therapeutic effect of drugs via concentrating, protecting, and prolonging their presence in the degenerated disc. This review summarizes the research progress of diagnosis and the current options for treating IDD.
Collapse
Affiliation(s)
- Najah Elmounedi
- Cell Therapy and Experimental Surgery of Musculoskeletal System LR18SP11 Lab, Sfax Faculty of Medicine, Majida Boulila Road, 3029, Sfax, Tunisia.
| | - Walid Bahloul
- Cell Therapy and Experimental Surgery of Musculoskeletal System LR18SP11 Lab, Sfax Faculty of Medicine, Majida Boulila Road, 3029, Sfax, Tunisia
- Department of Orthopedics and Traumatology, CHU Habib Bourguiba, Sfax, Tunisia
| | - Hassib Keskes
- Cell Therapy and Experimental Surgery of Musculoskeletal System LR18SP11 Lab, Sfax Faculty of Medicine, Majida Boulila Road, 3029, Sfax, Tunisia
- Department of Orthopedics and Traumatology, CHU Habib Bourguiba, Sfax, Tunisia
| |
Collapse
|
2
|
Moxon SR, McMurran Z, Kibble MJ, Domingos M, Gough JE, Richardson SM. 3D bioprinting of an intervertebral disc tissue analogue with a highly aligned annulus fibrosus via suspended layer additive manufacture. Biofabrication 2024; 17:015005. [PMID: 39366424 PMCID: PMC11499629 DOI: 10.1088/1758-5090/ad8379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/01/2024] [Accepted: 10/04/2024] [Indexed: 10/06/2024]
Abstract
Intervertebral disc (IVD) function is achieved through integration of its two component regions: the nucleus pulposus (NP) and the annulus fibrosus (AF). The NP is soft (0.3-5 kPa), gelatinous and populated by spherical NP cells in a polysaccharide-rich extracellular matrix (ECM). The AF is much stiffer (∼100 kPa) and contains layers of elongated AF cells in an aligned, fibrous ECM. Degeneration of the disc is a common problem with age being a major risk factor. Progression of IVD degeneration leads to chronic pain and can result in permanent disability. The development of therapeutic solutions for IVD degeneration is impaired by a lack ofin vitromodels of the disc that are capable of replicating the fundamental structure and biology of the tissue. This study aims to investigate if a newly developed suspended hydrogel bioprinting system (termed SLAM) could be employed to fabricate IVD analogues with integrated structural and compositional features similar to native tissue. Bioprinted IVD analogues were fabricated to recapitulate structural, morphological and biological components present in the native tissue. The constructs replicated key structural components of native tissue with the presence of a central, polysaccharide-rich NP surrounded by organised, aligned collagen fibres in the AF. Cell tracking, actin and matrix staining demonstrated that embedded NP and AF cells exhibited morphologies and phenotypes analogous to what is observedin vivowith elongated, aligned AF cells and spherical NP cells that deposited HA into the surrounding environment. Critically, it was also observed that the NP and AF regions contained a defined cellular and material interface and segregated regions of the two cell types, thus mimicking the highly regulated structure of the IVD.
Collapse
Affiliation(s)
- S R Moxon
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
- Henry Royce Institute, University of Manchester, Manchester, United Kingdom
| | - Z McMurran
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - M J Kibble
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
- Henry Royce Institute, University of Manchester, Manchester, United Kingdom
| | - M Domingos
- Henry Royce Institute, University of Manchester, Manchester, United Kingdom
- Department of Mechanical and Aerospace Engineering, School of Engineering, Faculty of Science and Engineering, University of Manchester, Manchester, United Kingdom
| | - J E Gough
- Henry Royce Institute, University of Manchester, Manchester, United Kingdom
- Department of Materials, School of Natural Sciences, University of Manchester, Manchester, United Kingdom
| | - S M Richardson
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
3
|
Shang Z, Liu Y, Yuan H, Huo Y, Zhang D, Li W, Ding W, Wang H. Inherited genetic predisposition and imaging concordance in degenerative lumbar scoliosis patients and their descendants. J Orthop Surg Res 2024; 19:494. [PMID: 39169360 PMCID: PMC11337562 DOI: 10.1186/s13018-024-05000-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Offspring consistently exhibit similar imaging features as their parents in cases of degenerative lumbar scoliosis (DLS). Nevertheless, the role of genetic factors in the pathogenesis of DLS remains uncertain. METHODS A prospective analysis was conducted on 35 patients with DLS and their 36 offspring. Genomic DNA was extracted from 71 blood samples for gene mutation analysis using whole exome sequencin. Various demographic and imaging parameters were compared. RESULTS In 11 pedigrees of the 35 family members with DLS, 13 suspected pathogenic genes were identified. Among the 35 DLS patients, 11/35(31.5%) exhibited susceptibility gene mutations (mutant group), while 24/35(68.5%) had no pathogenic gene mutations (non-mutant group). AVR was more severe in mutant group than that in no-mutant group (p < 0.05). Among the 36 offspring, 11/36(30.6%) cohorts presented susceptibility genes (mutant group), 25/36(69.4%) cohorts presented no pathogenic genes (no-mutant group). More cohorts in the mutant group presented vertebral rotation (72.8%) and scoliosis (45.5%) than those (24%), (12%) in the no-mutant group, respectively (p < 0.05). Among the 36 offspring, 8/36(22.2%) presented scoliosis (study group), they all presented the same scoliosis orientation and apex vertebrae/disc location to their parents, the other 28/36(77.8%) cohorts without scoliosis were enrolled as control group, the mutation rate (62.5%) was higher in study group than that (21.4%) in control group. CONCLUSIONS Genetic influences are significant in the onset of DLS, with affected families showing similar scoliosis patterns and identical apex vertebrae. Moreover, individuals with genetic mutations tend to have more pronounced vertebral rotation and at a higher risk of developing scoliosis.
Collapse
Affiliation(s)
- Zhenguo Shang
- Spine Department, The Third Hospital of HeBei Medical University, Shijiazhuang, China
| | - Yilei Liu
- Spine Department, The Third Hospital of HeBei Medical University, Shijiazhuang, China
| | - Hongru Yuan
- Spine Department, The Third Hospital of HeBei Medical University, Shijiazhuang, China
| | - Yachong Huo
- Spine Department, The Third Hospital of HeBei Medical University, Shijiazhuang, China
| | - Di Zhang
- Spine Department, The Third Hospital of HeBei Medical University, Shijiazhuang, China
| | - Weishi Li
- Orthopaedic Department of Peking, University Third Hospital, Beijing, China
| | - Wenyuan Ding
- Spine Department, The Third Hospital of HeBei Medical University, Shijiazhuang, China
| | - Hui Wang
- Spine Department, The Third Hospital of HeBei Medical University, Shijiazhuang, China.
| |
Collapse
|
4
|
Tang J, Luo Y, Wang Q, Wu J, Wei Y. Stimuli-Responsive Delivery Systems for Intervertebral Disc Degeneration. Int J Nanomedicine 2024; 19:4735-4757. [PMID: 38813390 PMCID: PMC11135562 DOI: 10.2147/ijn.s463939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
As a major cause of low back pain, intervertebral disc degeneration is an increasingly prevalent chronic disease worldwide that leads to huge annual financial losses. The intervertebral disc consists of the inner nucleus pulposus, outer annulus fibrosus, and sandwiched cartilage endplates. All these factors collectively participate in maintaining the structure and physiological functions of the disc. During the unavoidable degeneration stage, the degenerated discs are surrounded by a harsh microenvironment characterized by acidic, oxidative, inflammatory, and chaotic cytokine expression. Loss of stem cell markers, imbalance of the extracellular matrix, increase in inflammation, sensory hyperinnervation, and vascularization have been considered as the reasons for the progression of intervertebral disc degeneration. The current treatment approaches include conservative therapy and surgery, both of which have drawbacks. Novel stimuli-responsive delivery systems are more promising future therapeutic options than traditional treatments. By combining bioactive agents with specially designed hydrogels, scaffolds, microspheres, and nanoparticles, novel stimuli-responsive delivery systems can realize the targeted and sustained release of drugs, which can both reduce systematic adverse effects and maximize therapeutic efficacy. Trigger factors are categorized into internal (pH, reactive oxygen species, enzymes, etc.) and external stimuli (photo, ultrasound, magnetic, etc.) based on their intrinsic properties. This review systematically summarizes novel stimuli-responsive delivery systems for intervertebral disc degeneration, shedding new light on intervertebral disc therapy.
Collapse
Affiliation(s)
- Jianing Tang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- First Clinic School, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yuexin Luo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- First Clinic School, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Qirui Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- First Clinic School, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Juntao Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
- First Clinic School, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yulong Wei
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
5
|
Mizuno S, Vadala G, Kang JD. Biological Therapeutic Modalities for Intervertebral Disc Diseases: An Orthoregeneration Network (ON) Foundation Review. Arthroscopy 2024; 40:1019-1030. [PMID: 37918699 DOI: 10.1016/j.arthro.2023.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Orthoregeneration is defined as a solution for orthopaedic conditions that harnesses the benefits of biology to improve healing, reduce pain, improve function, and, optimally, provide an environment for tissue regeneration. Options include drugs, surgical intervention, scaffolds, biologics as a product of cells, and physical and electromagnetic stimuli. The goal of regenerative medicine is to enhance the healing of tissue after musculoskeletal injuries as both isolated treatment and adjunct to surgical management, using novel therapies to improve recovery and outcomes. Various orthopaedic biologics (orthobiologics) have been investigated for the treatment of pathology involving the spine, including lower back pain, with or without numbness and/or dysfunction in the lower extremities, disc herniation, spinal stenosis, and spondylolisthesis. Promising and established treatment modalities include repair of the annulus fibrosis, injection of expanded or nonexpanded autologous or allogenic cells that are chondrogenic or from a stem cell lineage used to promote matrix tissue regeneration of the intervertebral disc, including nucleus pulpous cells and mesenchymal stem cells isolated from bone marrow, umbilical cord blood, or adipose tissue; and injection of platelet-rich plasma, platelet-rich fibrin, or fibrin sealant. Early clinical studies show promise for pain reduction and functional recovery. LEVEL OF EVIDENCE: Level V, expert opinion.
Collapse
Affiliation(s)
- Shuichi Mizuno
- Department of Orthopaedic Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, U.S.A
| | - Gianluca Vadala
- Laboratory for Regenerative Orthopaedics, Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy; Operative Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - James D Kang
- Department of Orthopaedic Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, U.S.A..
| |
Collapse
|
6
|
Yang S, Jing S, Wang S, Jia F. From drugs to biomaterials: a review of emerging therapeutic strategies for intervertebral disc inflammation. Front Cell Infect Microbiol 2024; 14:1303645. [PMID: 38352058 PMCID: PMC10861683 DOI: 10.3389/fcimb.2024.1303645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024] Open
Abstract
Chronic low back pain (LBP) is an increasingly prevalent issue, especially among aging populations. A major underlying cause of LBP is intervertebral disc degeneration (IDD), often triggered by intervertebral disc (IVD) inflammation. Inflammation of the IVD is divided into Septic and Aseptic inflammation. Conservative therapy and surgical treatment often fail to address the root cause of IDD. Recent advances in the treatment of IVD infection and inflammation range from antibiotics and small-molecule drugs to cellular therapies, biological agents, and innovative biomaterials. This review sheds light on the complex mechanisms of IVD inflammation and physiological and biochemical processes of IDD. Furthermore, it provides an overview of recent research developments in this area, intending to identify novel therapeutic targets and guide future clinical strategies for effectively treating IVD-related conditions.
Collapse
Affiliation(s)
- Shuhan Yang
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Shaoze Jing
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Shanxi Wang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Fajing Jia
- Department of General Practice, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
7
|
Crump KB, Alminnawi A, Bermudez‐Lekerika P, Compte R, Gualdi F, McSweeney T, Muñoz‐Moya E, Nüesch A, Geris L, Dudli S, Karppinen J, Noailly J, Le Maitre C, Gantenbein B. Cartilaginous endplates: A comprehensive review on a neglected structure in intervertebral disc research. JOR Spine 2023; 6:e1294. [PMID: 38156054 PMCID: PMC10751983 DOI: 10.1002/jsp2.1294] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 12/30/2023] Open
Abstract
The cartilaginous endplates (CEP) are key components of the intervertebral disc (IVD) necessary for sustaining the nutrition of the disc while distributing mechanical loads and preventing the disc from bulging into the adjacent vertebral body. The size, shape, and composition of the CEP are essential in maintaining its function, and degeneration of the CEP is considered a contributor to early IVD degeneration. In addition, the CEP is implicated in Modic changes, which are often associated with low back pain. This review aims to tackle the current knowledge of the CEP regarding its structure, composition, permeability, and mechanical role in a healthy disc, how they change with degeneration, and how they connect to IVD degeneration and low back pain. Additionally, the authors suggest a standardized naming convention regarding the CEP and bony endplate and suggest avoiding the term vertebral endplate. Currently, there is limited data on the CEP itself as reported data is often a combination of CEP and bony endplate, or the CEP is considered as articular cartilage. However, it is clear the CEP is a unique tissue type that differs from articular cartilage, bony endplate, and other IVD tissues. Thus, future research should investigate the CEP separately to fully understand its role in healthy and degenerated IVDs. Further, most IVD regeneration therapies in development failed to address, or even considered the CEP, despite its key role in nutrition and mechanical stability within the IVD. Thus, the CEP should be considered and potentially targeted for future sustainable treatments.
Collapse
Affiliation(s)
- Katherine B. Crump
- Tissue Engineering for Orthopaedics & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical FacultyUniversity of BernBernSwitzerland
- Department of Orthopaedic Surgery and Traumatology, InselspitalBern University Hospital, Medical Faculty, University of BernBernSwitzerland
- Graduate School for Cellular and Biomedical Sciences (GCB)University of BernBernSwitzerland
| | - Ahmad Alminnawi
- GIGA In Silico MedicineUniversity of LiègeLiègeBelgium
- Skeletal Biology and Engineering Research Center, KU LeuvenLeuvenBelgium
- Biomechanics Research Unit, KU LeuvenLeuvenBelgium
| | - Paola Bermudez‐Lekerika
- Tissue Engineering for Orthopaedics & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical FacultyUniversity of BernBernSwitzerland
- Department of Orthopaedic Surgery and Traumatology, InselspitalBern University Hospital, Medical Faculty, University of BernBernSwitzerland
- Graduate School for Cellular and Biomedical Sciences (GCB)University of BernBernSwitzerland
| | - Roger Compte
- Twin Research & Genetic EpidemiologySt. Thomas' Hospital, King's College LondonLondonUK
| | - Francesco Gualdi
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM)BarcelonaSpain
| | - Terence McSweeney
- Research Unit of Health Sciences and TechnologyUniversity of OuluOuluFinland
| | - Estefano Muñoz‐Moya
- BCN MedTech, Department of Information and Communication TechnologiesUniversitat Pompeu FabraBarcelonaSpain
| | - Andrea Nüesch
- Division of Clinical Medicine, School of Medicine and Population HealthUniversity of SheffieldSheffieldUK
| | - Liesbet Geris
- GIGA In Silico MedicineUniversity of LiègeLiègeBelgium
- Skeletal Biology and Engineering Research Center, KU LeuvenLeuvenBelgium
- Biomechanics Research Unit, KU LeuvenLeuvenBelgium
| | - Stefan Dudli
- Center of Experimental RheumatologyDepartment of Rheumatology, University Hospital Zurich, University of ZurichZurichSwitzerland
- Department of Physical Medicine and RheumatologyBalgrist University Hospital, Balgrist Campus, University of ZurichZurichSwitzerland
| | - Jaro Karppinen
- Research Unit of Health Sciences and TechnologyUniversity of OuluOuluFinland
- Finnish Institute of Occupational HealthOuluFinland
- Rehabilitation Services of South Karelia Social and Health Care DistrictLappeenrantaFinland
| | - Jérôme Noailly
- BCN MedTech, Department of Information and Communication TechnologiesUniversitat Pompeu FabraBarcelonaSpain
| | - Christine Le Maitre
- Division of Clinical Medicine, School of Medicine and Population HealthUniversity of SheffieldSheffieldUK
| | - Benjamin Gantenbein
- Tissue Engineering for Orthopaedics & Mechanobiology, Bone & Joint Program, Department for BioMedical Research (DBMR), Medical FacultyUniversity of BernBernSwitzerland
- Department of Orthopaedic Surgery and Traumatology, InselspitalBern University Hospital, Medical Faculty, University of BernBernSwitzerland
| |
Collapse
|
8
|
Samanta A, Lufkin T, Kraus P. Intervertebral disc degeneration-Current therapeutic options and challenges. Front Public Health 2023; 11:1156749. [PMID: 37483952 PMCID: PMC10359191 DOI: 10.3389/fpubh.2023.1156749] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Degeneration of the intervertebral disc (IVD) is a normal part of aging. Due to the spine's declining function and the development of pain, it may affect one's physical health, mental health, and socioeconomic status. Most of the intervertebral disc degeneration (IVDD) therapies today focus on the symptoms of low back pain rather than the underlying etiology or mechanical function of the disc. The deteriorated disc is typically not restored by conservative or surgical therapies that largely focus on correcting symptoms and structural abnormalities. To enhance the clinical outcome and the quality of life of a patient, several therapeutic modalities have been created. In this review, we discuss genetic and environmental causes of IVDD and describe promising modern endogenous and exogenous therapeutic approaches including their applicability and relevance to the degeneration process.
Collapse
Affiliation(s)
| | | | - Petra Kraus
- Department of Biology, Clarkson University, Potsdam, NY, United States
| |
Collapse
|
9
|
Mohd Isa IL, Teoh SL, Mohd Nor NH, Mokhtar SA. Discogenic Low Back Pain: Anatomy, Pathophysiology and Treatments of Intervertebral Disc Degeneration. Int J Mol Sci 2022; 24:208. [PMID: 36613651 PMCID: PMC9820240 DOI: 10.3390/ijms24010208] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is a major contributing factor for discogenic low back pain (LBP), causing a significant global disability. The IVD consists of an inner core proteoglycan-rich nucleus pulposus (NP) and outer lamellae collagen-rich annulus fibrosus (AF) and is confined by a cartilage end plate (CEP), providing structural support and shock absorption against mechanical loads. Changes to degenerative cascades in the IVD cause dysfunction and instability in the lumbar spine. Various treatments include pharmacological, rehabilitation or surgical interventions that aim to relieve pain; however, these modalities do not halt the pathologic events of disc degeneration or promote tissue regeneration. Loss of stem and progenitor markers, imbalance of the extracellular matrix (ECM), increase of inflammation, sensory hyperinnervation and vascularization, and associated signaling pathways have been identified as the onset and progression of disc degeneration. To better understand the pain originating from IVD, our review focuses on the anatomy of IVD and the pathophysiology of disc degeneration that contribute to the development of discogenic pain. We highlight the key mechanisms and associated signaling pathways underlying disc degeneration causing discogenic back pain, current clinical treatments, clinical perspective and directions of future therapies. Our review comprehensively provides a better understanding of healthy IVD and degenerative events of the IVD associated with discogenic pain, which helps to model painful disc degeneration as a therapeutic platform and to identify signaling pathways as therapeutic targets for the future treatment of discogenic pain.
Collapse
Affiliation(s)
- Isma Liza Mohd Isa
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- SFI Research Centre for Medical Devices, University of Galway, H91W2TY Galway, Ireland
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Nurul Huda Mohd Nor
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
| | - Sabarul Afian Mokhtar
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
10
|
Importance of Matrix Cues on Intervertebral Disc Development, Degeneration, and Regeneration. Int J Mol Sci 2022; 23:ijms23136915. [PMID: 35805921 PMCID: PMC9266338 DOI: 10.3390/ijms23136915] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 01/25/2023] Open
Abstract
Back pain is one of the leading causes of disability worldwide and is frequently caused by degeneration of the intervertebral discs. The discs’ development, homeostasis, and degeneration are driven by a complex series of biochemical and physical extracellular matrix cues produced by and transmitted to native cells. Thus, understanding the roles of different cues is essential for designing effective cellular and regenerative therapies. Omics technologies have helped identify many new matrix cues; however, comparatively few matrix molecules have thus far been incorporated into tissue engineered models. These include collagen type I and type II, laminins, glycosaminoglycans, and their biomimetic analogues. Modern biofabrication techniques, such as 3D bioprinting, are also enabling the spatial patterning of matrix molecules and growth factors to direct regional effects. These techniques should now be applied to biochemically, physically, and structurally relevant disc models incorporating disc and stem cells to investigate the drivers of healthy cell phenotype and differentiation. Such research will inform the development of efficacious regenerative therapies and improved clinical outcomes.
Collapse
|
11
|
Lu L, Xu A, Gao F, Tian C, Wang H, Zhang J, Xie Y, Liu P, Liu S, Yang C, Ye Z, Wu X. Mesenchymal Stem Cell-Derived Exosomes as a Novel Strategy for the Treatment of Intervertebral Disc Degeneration. Front Cell Dev Biol 2022; 9:770510. [PMID: 35141231 PMCID: PMC8818990 DOI: 10.3389/fcell.2021.770510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/31/2021] [Indexed: 12/15/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) has been reported to be the most prevalent contributor to low back pain, posing a significant strain on the healthcare systems on a global scale. Currently, there are no approved therapies available for the prevention of the progressive degeneration of intervertebral disc (IVD); however, emerging regenerative strategies that aim to restore the normal structure of the disc have been fundamentally promising. In the last decade, mesenchymal stem cells (MSCs) have received a significant deal of interest for the treatment of IVDD due to their differentiation potential, immunoregulatory capabilities, and capability to be cultured and regulated in a favorable environment. Recent investigations show that the pleiotropic impacts of MSCs are regulated by the production of soluble paracrine factors. Exosomes play an important role in regulating such effects. In this review, we have summarized the current treatments for disc degenerative diseases and their limitations and highlighted the therapeutic role and its underlying mechanism of MSC-derived exosomes in IVDD, as well as the possible future developments for exosomes.
Collapse
Affiliation(s)
- Lin Lu
- Department of Orthopaedics Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aoshuang Xu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Gao
- Department of Orthopaedics Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenjun Tian
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Honglin Wang
- Department of Orthopaedics Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiayao Zhang
- Department of Orthopaedics Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Xie
- Department of Orthopaedics Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengran Liu
- Department of Orthopaedics Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Songxiang Liu
- Department of Orthopaedics Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cao Yang
- Department of Orthopaedics Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhewei Ye
- Department of Orthopaedics Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhewei Ye, ; Xinghuo Wu,
| | - Xinghuo Wu
- Department of Orthopaedics Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zhewei Ye, ; Xinghuo Wu,
| |
Collapse
|
12
|
Borem R, Madeline A, Theos C, Vela R, Garon A, Gill S, Mercuri J. Angle-ply scaffold supports annulus fibrosus matrix expression and remodeling by mesenchymal stromal and annulus fibrosus cells. J Biomed Mater Res B Appl Biomater 2021; 110:1056-1068. [PMID: 34843173 DOI: 10.1002/jbm.b.34980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/07/2021] [Accepted: 11/19/2021] [Indexed: 11/07/2022]
Abstract
The angle-ply multilaminate structure of the annulus fibrosus is not reestablished following discectomy which leads to reherniation of the intervertebral disc (IVD). Biomimetic scaffolds developed to repair these defects should be evaluated for their ability to support tissue regeneration by endogenous and exogenous cells. Herein a collagen-based, angle-ply multilaminate patch designed to repair the outer annulus fibrosus was assessed for its ability to support mesenchymal stromal and annulus fibrosus cell viability, elongation, alignment, extracellular matrix gene expression, and scaffold remodeling. Results demonstrated that the cells remained viable, elongated, and aligned along the collagen fiber preferred direction of the scaffold, upregulated genes associated with annulus fibrosus matrix and produced collagen on the scaffold yielding biaxial mechanical properties that resembled native annulus fibrosus tissue. In conclusion, these scaffolds have demonstrated their potential to promote a living repair of defects in the annulus fibrosus and thus may be used to prevent recurrent IVD herniations.
Collapse
Affiliation(s)
- Ryan Borem
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Allison Madeline
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Chris Theos
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Ricardo Vela
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Alex Garon
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Sanjitpal Gill
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.,Department of Orthopaedic Surgery, Medical Group of the Carolinas-Pelham, Spartanburg Regional Healthcare System, Greer, South Carolina, USA
| | - Jeremy Mercuri
- The Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.,Frank H. Stelling and C. Dayton Riddle Orthopaedic Education and Research Laboratory, Clemson University Biomedical Engineering Innovation Campus, Greenville, South Carolina, USA
| |
Collapse
|
13
|
Panebianco CJ, Dave A, Charytonowicz D, Sebra R, Iatridis JC. Single-cell RNA-sequencing atlas of bovine caudal intervertebral discs: Discovery of heterogeneous cell populations with distinct roles in homeostasis. FASEB J 2021; 35:e21919. [PMID: 34591994 PMCID: PMC8496998 DOI: 10.1096/fj.202101149r] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/19/2021] [Accepted: 08/31/2021] [Indexed: 12/25/2022]
Abstract
Back and neck pain are significant healthcare burdens that are commonly associated with pathologies of the intervertebral disc (IVD). The poor understanding of the cellular heterogeneity within the IVD makes it difficult to develop regenerative IVD therapies. To address this gap, we developed an atlas of bovine (Bos taurus) caudal IVDs using single-cell RNA-sequencing (scRNA-seq). Unsupervised clustering resolved 15 unique clusters, which we grouped into the following annotated partitions: nucleus pulposus (NP), outer annulus fibrosus (oAF), inner AF (iAF), notochord, muscle, endothelial, and immune cells. Analyzing the pooled gene expression profiles of the NP, oAF, and iAF partitions allowed us to identify novel markers for NP (CP, S100B, H2AC18, SNORC, CRELD2, PDIA4, DNAJC3, CHCHD7, and RCN2), oAF (IGFBP6, CTSK, LGALS1, and CCN3), and iAF (MGP, COMP, SPP1, GSN, SOD2, DCN, FN1, TIMP3, WDR73, and GAL) cells. Network analysis on subpopulations of NP and oAF cells determined that clusters NP1, NP2, NP4, and oAF1 displayed gene expression profiles consistent with cell survival, suggesting these clusters may uniquely support viability under the physiological stresses of the IVD. Clusters NP3, NP5, oAF2, and oAF3 expressed various extracellular matrix (ECM)-associated genes, suggesting their role in maintaining IVD structure. Lastly, transcriptional entropy and pseudotime analyses found that clusters NP3 and NP1 had the most stem-like gene expression signatures of the NP partition, implying these clusters may contain IVD progenitor cells. Overall, results highlight cell type diversity within the IVD, and these novel cell phenotypes may enhance our understanding of IVD development, homeostasis, degeneration, and regeneration.
Collapse
Affiliation(s)
- Christopher J. Panebianco
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Arpit Dave
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Daniel Charytonowicz
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Icahn Institute for Data Science and Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Sema4, a Mount Sinai venture, Stamford, CT
| | - James C. Iatridis
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
14
|
Lakstins K, Arnold L, Gunsch G, Flanigan D, Khan S, Gadde N, Jones B, Agarwal G, Purmessur D. Characterization of the human intervertebral disc cartilage endplate at the molecular, cell, and tissue levels. J Orthop Res 2021; 39:1898-1907. [PMID: 32915471 DOI: 10.1002/jor.24854] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/29/2020] [Accepted: 09/08/2020] [Indexed: 02/04/2023]
Abstract
Given the importance of the cartilage endplate (CEP) in low back pain (LBP), there is a need to characterize the human CEP at the molecular, cell, and tissue levels to inform treatment strategies that target it. The goal of this study was to characterize the structure, matrix composition, and cell phenotype of the human CEP compared with adjacent tissues within the intervertebral joint: the nucleus pulposus (NP), annulus fibrosus (AF), and articular cartilage (AC). Isolated CEP, NP, AF, and AC tissues and cells were evaluated for cell morphology, matrix composition, collagen structure, glycosaminoglycan content, and gene and protein expression. The CEP contained elongated cells that mainly produce a collagen-rich interterritorial matrix and a proteoglycan-rich territorial matrix. The CEP contained significantly fewer glycosaminoglycans than the NP tissue. Significant differences in matrix and cell marker gene expression were observed between CEP and NP or AF, with the greatest differences between CEP and AC. We were able to distinguish NP from CEP cells using collagen-10 (COLX), highlighting COLX as a potential CEP marker. Our findings suggest that at the cell and tissue levels, the CEP demonstrates both similarities and differences when compared with NP, AF, and hyaline AC. This study highlights a unique structure, matrix composition, and cell phenotype for the human CEP and can help to inform regenerative strategies that target the intervertebral disc joint in chronic LBP.
Collapse
Affiliation(s)
- Katherine Lakstins
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Lauren Arnold
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Gilian Gunsch
- Department of Biology, The Ohio State University, Columbus, Ohio, USA
| | - David Flanigan
- Department of Orthopaedics, The Ohio State University, Columbus, Ohio, USA
| | - Safdar Khan
- Department of Orthopaedics, The Ohio State University, Columbus, Ohio, USA
| | - Nikhit Gadde
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Blain Jones
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Gunjan Agarwal
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Devina Purmessur
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA.,Department of Orthopaedics, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
15
|
Smith K, Mercuri J. Microgravity and Radiation Effects on Astronaut Intervertebral Disc Health. Aerosp Med Hum Perform 2021; 92:342-352. [PMID: 33875067 DOI: 10.3357/amhp.5713.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION: The effects of spaceflight on the intervertebral disc (IVD) have not been thoroughly studied, despite the knowledge that spaceflight increases the risk of herniation of IVDs in astronauts upon return to Earth. However, as long duration missions become more common, fully characterizing the mechanisms behind space-induced IVD degeneration becomes increasingly imperative for mission success. This review therefore surveys current literature to outline the results of human, animal, and cell-level studies investigating the effect of microgravity and radiation exposure on IVD health. Overall, recurring study findings include increases in IVD height in microgravity conditions, upregulation of catabolic proteases leading to a weakening extracellular matrix (ECM), and both nucleus pulposus (NP) swelling and loss of annulus fibrosus (AF) fiber alignment which are hypothesized to contribute to the increased risk of herniation when reloading is experienced. However, the limitations of current studies are also discussed. For example, human studies do not allow for invasive measures of the underpinning biochemical mechanisms, correlating animal model results to the human condition may be difficult, and cellular studies lack incorporation of ECM and other complexities that mimic the native IVD microarchitecture and environment. Moving forward, the use of three-dimensional organoid culture models that incorporate IVD-specific human cells, ECM, and signals as well as the development of cell- and ECM-level computational models may further improve our understanding of the impacts that spaceflight has on astronaut IVD health.Smith K, Mercuri J. Microgravity and radiation effects on astronaut intervertebral disc health. Aerosp Med Hum Perform. 2021; 92(5):342352.
Collapse
|
16
|
van den Akker GGH, Cremers A, Surtel DAM, Voncken W, Welting TJM. Isolation of Nucleus Pulposus and Annulus Fibrosus Cells from the Intervertebral Disc. Methods Mol Biol 2021; 2221:41-52. [PMID: 32979197 DOI: 10.1007/978-1-0716-0989-7_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells isolated from the intervertebral disc are often used for in vitro experimentation. Correctly separating the intervertebral disc tissue in annulus fibrosus and nucleus pulposus is particularly challenging when working with surplus material from surgery or specimens from donors with an advanced age. Moreover, lineage controls are only sparsely reported to verify tissue of origin. Here we describe an approach to intervertebral disc cell isolation from human and bovine origin.
Collapse
Affiliation(s)
- Guus G H van den Akker
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - Andy Cremers
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - Donatus A M Surtel
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands
| | - Willem Voncken
- Department of Molecular Genetics, Maastricht University, Maastricht, The Netherlands
| | - Tim J M Welting
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
17
|
van den Akker GGH, Eijssen LMT, Richardson SM, Rhijn LWV, Hoyland JA, Welting TJM, Voncken JW. A Membranome-Centered Approach Defines Novel Biomarkers for Cellular Subtypes in the Intervertebral Disc. Cartilage 2020; 11:203-220. [PMID: 29629573 PMCID: PMC7097986 DOI: 10.1177/1947603518764260] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Lack of specific marker-sets prohibits definition and functional distinction of cellular subtypes in the intervertebral disc (IVD), such as those from the annulus fibrosus (AF) and the nucleus pulposus (NP). DESIGN We recently generated immortalized cell lines from human NP and AF tissues; these comprise a set of functionally distinct clonal subtypes. Whole transcriptome analyses were performed of 12 phenotypically distinct clonal cell lines (4× NP-Responder, 4× NP-nonResponder, 2× AF-Sheet forming, and 2× AF-nonSheet forming). Data sets were filtered for membrane-associated marker genes and compared to literature. RESULTS Comparison of our immortal cell lines to published primary NP, AF, and articular chondrocytes (AC) transcriptome datasets revealed preservation of AF and NP phenotypes. NP-specific membrane-associated genes were defined by comparison to AF cells in both the primary dataset (46 genes) and immortal cell-lines (161 genes). Definition of AF-specific membrane-associated genes yielded 125 primary AF cell and 92 immortal cell-line markers. Overlap between primary and immortal NP cells yielded high-confidence NP-specific marker genes for NP-R (CLDN11, TMEFF2, CA12, ANXA2, CD44) and NP-nR (EFNA1, NETO2, SLC2A1). Overlap between AF and immortal AF subtypes yielded specific markers for AF-S (COLEC12, LPAR1) and AF-nS (CHIC1). CONCLUSIONS The current study provides a reference platform for preclinical evaluation of novel membrane-associated cell type-specific markers in the IVD. Future research will focus on their biological relevance for IVD function in development, homeostasis, and degenerate conditions.
Collapse
Affiliation(s)
- Guus G. H. van den Akker
- Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Lars M. T. Eijssen
- Department of Bioinformatics, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Stephen M. Richardson
- Centre for Regenerative Medicine, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Lodewijk W. van Rhijn
- Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Judith A. Hoyland
- Centre for Regenerative Medicine, Institute of Inflammation and Repair, University of Manchester, Manchester, UK
| | - Tim J. M. Welting
- Department of Orthopedic Surgery, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Jan Willem Voncken
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
18
|
Zhou P, Chu G, Yuan Z, Wang H, Zhang W, Mao Y, Zhu X, Chen W, Yang H, Li B. Regulation of differentiation of annulus fibrosus-derived stem cells using heterogeneous electrospun fibrous scaffolds. J Orthop Translat 2020; 26:171-180. [PMID: 33437636 PMCID: PMC7773966 DOI: 10.1016/j.jot.2020.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/02/2020] [Accepted: 02/06/2020] [Indexed: 01/07/2023] Open
Abstract
Background Tissue engineering of the annulus fibrosus (AF) shows promise as a treatment for patients with degenerative disc disease (DDD). However, it remains challenging due to the intrinsic heterogeneity of AF tissue. Fabrication of scaffolds recapitulating the specific cellular, componential, and microstructural features of AF, therefore, is critical to successful AF tissue regeneration. Methods Poly-L-lactic acid (PLLA) fibrous scaffolds with various fiber diameters and orientation were prepared to mimic the microstructural characteristics of AF tissue using electrospinning technique. AF-derived stem cells (AFSCs) were cultured on the PLLA fibrous scaffolds for 7 days. Results The morphology of AFSCs significantly varied when cultured on the scaffolds with various fiber diameters and orientation. AFSCs were nearly round on scaffolds with small fibers. However, they became spindle-shaped on scaffolds with large fibers. Meanwhile, upregulated expression of collagen-I gene happened in cells cultured on scaffolds with large fibers, while enhanced expression of collagen-II and aggrecan genes was seen on scaffolds with small fibers. The production of related proteins also showed similar trends. Further, culturing AFSCs on a heterogeneous scaffold by overlaying membranes with different fiber sizes led to the formation of a hierarchical structure approximating native AF tissue. Conclusion Findings from this study demonstrate that fibrous scaffolds with different fiber sizes effectively promoted the differentiation of AFSCs into specific cells similar to the types of cells at various AF zones. It also provides a valuable reference for regulation of cell differentiation and fabrication of engineered tissues with complex hierarchical structures using the physical cues of scaffolds. The translational potential of this article Effective AF repair is an essential need for treating degenerative disc disease. Tissue engineering is a promising approach to achieving tissue regeneration and restoring normal functions of tissues. By mimicking the key structural features of native AF tissue, including fiber size and alignment, this study deciphered the effect of scaffold materials on the cell differentiation and extracellular matrix deposition, which provides a solid basis for designing new strategies toward more effective AF repair and regeneration.
Collapse
Affiliation(s)
- Pinghui Zhou
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China.,Anhui Province Key Laboratory of Tissue Transplantation, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China
| | - Genglei Chu
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital, Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Zhangqin Yuan
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital, Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Huan Wang
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital, Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Weidong Zhang
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital, Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Yingji Mao
- Anhui Province Key Laboratory of Tissue Transplantation, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China
| | - Xuesong Zhu
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital, Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Weiguo Chen
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital, Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Huilin Yang
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital, Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Bin Li
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital, Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
19
|
Takeoka Y, Yurube T, Morimoto K, Kunii S, Kanda Y, Tsujimoto R, Kawakami Y, Fukase N, Takemori T, Omae K, Kakiuchi Y, Miyazaki S, Kakutani K, Takada T, Nishida K, Fukushima M, Kuroda R. Reduced nucleotomy-induced intervertebral disc disruption through spontaneous spheroid formation by the Low Adhesive Scaffold Collagen (LASCol). Biomaterials 2020; 235:119781. [PMID: 31981764 DOI: 10.1016/j.biomaterials.2020.119781] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/24/2022]
Abstract
Back pain is a global health problem with a high morbidity and socioeconomic burden. Intervertebral disc herniation and degeneration are its primary cause, further associated with neurological radiculopathy, myelopathy, and paralysis. The current surgical treatment is principally discectomy, resulting in the loss of spinal movement and shock absorption. Therefore, the development of disc regenerative therapies is essential. Here we show reduced disc damage by a new collagen type I-based scaffold through actinidain hydrolysis-Low Adhesive Scaffold Collagen (LASCol)-with a high 3D spheroid-forming capability, water-solubility, and biodegradability and low antigenicity. In human disc nucleus pulposus and annulus fibrosus cells surgically obtained, time-dependent spheroid formation with increased expression of phenotypic markers and matrix components was observed on LASCol but not atelocollagen (AC). In a rat tail nucleotomy model, LASCol-injected and AC-injected discs presented relatively similar radiographic and MRI damage control; however, LASCol, distinct from AC, decelerated histological disc disruption, showing collagen type I-comprising LASCol degradation, aggrecan-positive and collagen type II-positive endogenous cell migration, and M1-polarized and also M2-polarized macrophage infiltration. Reduced nucleotomy-induced disc disruption through spontaneous spheroid formation by LASCol warrants further investigations of whether it may be an effective treatment without stem cells and/or growth factors for intervertebral disc disease.
Collapse
Affiliation(s)
- Yoshiki Takeoka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Takashi Yurube
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Koichi Morimoto
- Department of Genetic Engineering, Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama, 649-6493, Japan.
| | - Saori Kunii
- Department of Genetic Engineering, Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama, 649-6493, Japan.
| | - Yutaro Kanda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Ryu Tsujimoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Yohei Kawakami
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Naomasa Fukase
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Toshiyuki Takemori
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Kaoru Omae
- Translational Research Center for Medical Innovation (TRI), Foundation for Biomedical Research and Innovation at Kobe, 1-5-4 Minatojima-Minamimachi, Kobe, 650-0047, Japan.
| | - Yuji Kakiuchi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Shingo Miyazaki
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Kenichiro Kakutani
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Toru Takada
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Kotaro Nishida
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Masanori Fukushima
- Translational Research Center for Medical Innovation (TRI), Foundation for Biomedical Research and Innovation at Kobe, 1-5-4 Minatojima-Minamimachi, Kobe, 650-0047, Japan.
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| |
Collapse
|
20
|
Chu G, Yuan Z, Zhu C, Zhou P, Wang H, Zhang W, Cai Y, Zhu X, Yang H, Li B. Substrate stiffness- and topography-dependent differentiation of annulus fibrosus-derived stem cells is regulated by Yes-associated protein. Acta Biomater 2019; 92:254-264. [PMID: 31078765 DOI: 10.1016/j.actbio.2019.05.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/24/2019] [Accepted: 05/06/2019] [Indexed: 01/02/2023]
Abstract
Annulus fibrosus (AF) tissue engineering has attracted increasing attention as a promising therapy for degenerative disc disease (DDD). However, regeneration of AF still faces many challenges due to the tremendous complexity of this tissue and lack of in-depth understanding of the structure-function relationship at cellular level within AF is highly required. In light of the fact that AF is composed of various types of cells and has gradient mechanical, topographical and biochemical features along the radial direction. In this study, we aimed to achieve directed differentiation of AF-derived stem cells (AFSCs) by mimicking the mechanical and topographical features of native AF tissue. AFSCs were cultured on four types of electrospun poly(ether carbonate urethane)urea (PECUU) scaffolds with various stiffness and fiber size (soft, small size; stiff, small size; soft, large size and stiff, large size). The results show that with constant fiber size, the expression level of the outer AF (oAF) phenotypic marker genes in AFSCs increased with the scaffold stiffness, while that of inner AF (iAF) phenotypic marker genes showed an opposite trend. When scaffold stiffness was fixed, the expression of oAF phenotypic marker genes in AFSCs increased with fiber size. While the expression of iAF phenotypic marker genes decreased. Such substrate stiffness- and topography-dependent changes of AFSCs was in accordance with the genetic and biochemical distribution of AF tissue from the inner to outer regions. Further, we found that the Yes-associated protein (YAP) was translocated to the nucleus in AFSCs cultured with increasing stiffness and fiber size of scaffolds, yet it remained mostly phosphorylated and cytosolic in cells on soft scaffolds with small fiber size. Inhibition of YAP down-regulated the expression of tendon/ligament-related genes, whereas expression of the cartilage-related genes was upregulated. The results illustrate that matrix stiffness is a potent regulator of AFSC differentiation. Moreover, we reveal that fiber size of scaffolds induced changes in cell adhesions and determined cell shape, spreading area, and extracellular matrix expression. In all, both mechanical property and topography features of scaffolds regulate AFSC differentiation, possibly through a YAP-dependent mechanotransduction mechanism. STATEMENT OF SIGNIFICANCE: Physical cues such as mechanical properties, topographical and geometrical features were shown to profoundly impact the growth and differentiation of cultured stem cells. Previously, we have found that the differentiation of annulus fibrosus-derived stem cells (AFSCs) could be regulated by the stiffness of scaffold. In this study, we fabricated four types of poly(ether carbonate urethane)urea (PECUU) scaffolds with controlled stiffness and fiber size to explore the potential of induced differentiation of AFSCs. We found that AFSCs are able to present different gene expression patterns simply as a result of the stiffness and fiber size of scaffold material. This work has, for the first time, demonstrated that larger-sized and higher-stiffness substrates increase the amount of vinculin assembly and activate YAP signaling in pre-differentiated AFSCs. The present study affords an in-depth comprehension of materiobiology, and be helpful for explain the mechanism of YAP mechanosensing in AF in response to biophysical effects of materials.
Collapse
Affiliation(s)
- Genglei Chu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhangqin Yuan
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Caihong Zhu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Pinghui Zhou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Huan Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yan Cai
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xuesong Zhu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Huilin Yang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Bin Li
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang, China.
| |
Collapse
|
21
|
Akgun FS, Sirin DY, Yilmaz I, Karaarslan N, Ozbek H, Simsek AT, Kaya YE, Kaplan N, Akyuva Y, Caliskan T, Ates O. Investigation of the effect of dipyrone on cells isolated from intervertebral disc tissue. Exp Ther Med 2019; 18:216-224. [PMID: 31258656 PMCID: PMC6566084 DOI: 10.3892/etm.2019.7576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/28/2019] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to evaluate the effects of dipyrone, an indispensable analgesic, anti-pyretic and anti-spasmodic used in emergency departments, on nucleus pulposus and annulus fibrosus cells in vitro. After surgical biopsy, primary cell cultures were prepared from intact intervertebral disc tissues. Dipyrone was administered to the cultures in the experimental groups except for the control group. The data obtained were statistically evaluated. The proliferation was identified to be suppressed via MTT analysis. The gene expression profile of the intervertebral disc cells in the dipyrone-treated groups was significantly changed. The expression of chondroadherin, cartilage oligo matrix protein, interleukin-1β and metalloproteinase (MMP)-19 genes were decreased, but MMP-13 and MMP-7 genes expressions were increased, as determined via reverse transcription-quantitative PCR. AO/PI staining revealed that no apoptotic or other type of cell death was detectable after administration of dipyrone does not mean that the drug is innocuous. The occurrence of cellular senescence and/or the halt of cell proliferation may also be important mechanisms underlying the adverse inhibitory effects of dipyrone. Therefore, prior to administering dipyrone in clinical practice, all possible adverse effects of this drug should be considered.
Collapse
Affiliation(s)
- Feride Sinem Akgun
- Department of Emergency Medicine, School of Medicine, Istanbul Maltepe University, Istanbul 34843, Turkey
| | - Duygu Yasar Sirin
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Namik Kemal University, Tekirdag 59100, Turkey
| | - Ibrahim Yilmaz
- Department of Medical Pharmacology, School of Medicine, Istanbul Medipol University, Istanbul 34810, Turkey
| | - Numan Karaarslan
- Department of Neurosurgery, School of Medicine, Namik Kemal University, Tekirdag 59100, Turkey
| | - Hanefi Ozbek
- Department of Medical Pharmacology, School of Medicine, Istanbul Medipol University, Istanbul 34810, Turkey
| | - Abdullah Talha Simsek
- Department of Neurosurgery, School of Medicine, Namik Kemal University, Tekirdag 59100, Turkey
| | - Yasin Emre Kaya
- Department of Orthopedics and Traumatology, School of Medicine, Abant Izzet Baysal University, Bolu 14000, Turkey
| | - Necati Kaplan
- Department of Neurosurgery, Corlu Reyap Hospital, Istanbul Rumeli University, Tekirdag 59680, Turkey
| | - Yener Akyuva
- Department of Neurosurgery, Gaziosmanpasa Taksim Training and Research Hospital, Istanbul 34433, Turkey
| | - Tezcan Caliskan
- Department of Neurosurgery, School of Medicine, Namik Kemal University, Tekirdag 59100, Turkey
| | - Ozkan Ates
- Department of Neurosurgery, Istanbul Koc University Hospital, Istanbul Koc University, Istanbul 34010, Turkey
| |
Collapse
|
22
|
Somasundaram SG, Muresanu C, Schield P, Makhmutovа A, Bovina EV, Fisenko VP, Hasanov NF, Aliev G. A Novel Non-invasive Effective Method for Potential Treatment of Degenerative Disc Disease: A Hypothesis. Cent Nerv Syst Agents Med Chem 2019; 19:8-14. [PMID: 30332977 DOI: 10.2174/1871524918666181017152053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/10/2018] [Accepted: 10/12/2018] [Indexed: 06/08/2023]
Abstract
The pathophysiology of the intervertebral discs plays a significant role in the people's life quality. There is not adequate research done in the pathogenesis and treatment of intervertebral disc degeneration. Alternately, self-educated physiology offers a novel and noninvasive method to reverse the degenerated discs. In this single case study, report attempts have been made to highlight the effect of the self-educative physiology, on magnetic resonance imaging investigations, of progressive healing, on the degenerated intervertebral discs. Based on this novel method, an effort has been made to review literature on the degeneration of intervertebral discs and available mode of treatments and then to propose a hypothesis for the biochemical mechanisms of healing. The idea is that transforming growth factor-β1 from seminal plasma secretions may contribute to releasing the osteogenic protein- 1 which induces nucleus pulposus and annulus fibrosus cells in intervertebral discs for repairs. In addition, the patient's medical history is presented with background information.
Collapse
Affiliation(s)
- Siva G Somasundaram
- Departments of Biology & Health Education, Salem University, 223 West Main Street, Salem, WV 26426, United States
- NAFA LLC, 64 Carolina Ave, Salem, WV 26426, United States
| | - Cristian Muresanu
- Romanian Television, TVR Cluj, 160 Donath Street, Cluj-Napoca, CJ 400293, Romania
| | - Pamela Schield
- School of Education & Athletics, Salem University, Salem, WV 26426, United States
| | - Alfiya Makhmutovа
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
| | - Elena V Bovina
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
| | - Vladimir P Fisenko
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str., 8, Bld. 2, Moscow, 119991, Russian Federation
| | - Nusrat F Hasanov
- Neurology Division, Central Sharur District Hospital, Nakhichevan Autonomous Republic, Azerbaijan
| | - Gjumrakch Aliev
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str., 8, Bld. 2, Moscow, 119991, Russian Federation
- "GALLY" International Biomedical Research Consulting LLC., 7733 Louis Pasteur Drive, #330, San Antonio, TX 78229, United States
- School of Health Science and Healthcare Administration, University of Atlanta, E. Johns Crossing, #175, Johns Creek, GA 30097, United States
| |
Collapse
|
23
|
Torre OM, Mroz V, Bartelstein MK, Huang AH, Iatridis JC. Annulus fibrosus cell phenotypes in homeostasis and injury: implications for regenerative strategies. Ann N Y Acad Sci 2018; 1442:61-78. [PMID: 30604562 DOI: 10.1111/nyas.13964] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/05/2018] [Accepted: 08/15/2018] [Indexed: 12/11/2022]
Abstract
Despite considerable efforts to develop cellular, molecular, and structural repair strategies and restore intervertebral disk function after injury, the basic biology underlying intervertebral disk healing remains poorly understood. Remarkably, little is known about the origins of cell populations residing within the annulus fibrosus, or their phenotypes, heterogeneity, and roles during healing. This review focuses on recent literature highlighting the intrinsic and extrinsic cell types of the annulus fibrosus in the context of the injury and healing environment. Spatial, morphological, functional, and transcriptional signatures of annulus fibrosus cells are reviewed, including inner and outer annulus fibrosus cells, which we propose to be referred to as annulocytes. The annulus also contains peripheral cells, interlamellar cells, and potential resident stem/progenitor cells, as well as macrophages, T lymphocytes, and mast cells following injury. Phases of annulus fibrosus healing include inflammation and recruitment of immune cells, cell proliferation, granulation tissue formation, and matrix remodeling. However, annulus fibrosus healing commonly involves limited remodeling, with granulation tissues remaining, and the development of chronic inflammatory states. Identifying annulus fibrosus cell phenotypes during health, injury, and degeneration will inform reparative regeneration strategies aimed at improving annulus fibrosus healing.
Collapse
Affiliation(s)
- Olivia M Torre
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Victoria Mroz
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Meredith K Bartelstein
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alice H Huang
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - James C Iatridis
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
24
|
Torre OM, Das R, Berenblum RE, Huang AH, Iatridis JC. Neonatal mouse intervertebral discs heal with restored function following herniation injury. FASEB J 2018; 32:4753-4762. [PMID: 29570392 PMCID: PMC6103171 DOI: 10.1096/fj.201701492r] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/12/2018] [Indexed: 12/13/2022]
Abstract
Adult intervertebral discs (IVDs) have poor endogenous healing capacity, because of their challenging microenvironment and complex mechanical demands, which can result in painful IVD herniation. There are no regenerative strategies available to improve IVD healing and restore its function. Neonatal mice are excellent models of mammalian regeneration, but there are no studies of the regenerative capacity of neonatal IVDs. In this study, we developed a neonatal model of improved IVD healing to inform repair strategies after herniation. In vivo puncture injuries were performed to simulate herniation with complete annulus fibrosus (AF) tears in caudal IVDs of neonatal (postnatal d 5) and adult (4-6 mo) Scleraxis green fluorescent protein ( ScxGFP) mice. Acute and long-term healing responses were assessed with histologic, radiologic, and biomechanical measurements. Neonates underwent accelerated IVD healing compared to adults with functional restoration and enhanced structural repair after herniation. A population of ScxGFP- cells identified in the neonatal repair site may be associated with this improved healing and warrants future investigation. In summary, function of neonatal IVDs was restored after herniation injury, whereas that of adult discs was not. This improved healing response is likely driven by multiple mechanisms that may include differences in mechanical loading and available repair cells during growth.-Torre, O. M., Das, R., Berenblum, R. E., Huang, A. H., Iatridis, J. C. Neonatal mouse intervertebral discs heal with restored function following herniation injury.
Collapse
Affiliation(s)
- Olivia M. Torre
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rohit Das
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ramy E. Berenblum
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alice H. Huang
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - James C. Iatridis
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
25
|
Schubert AK, Smink JJ, Pumberger M, Putzier M, Sittinger M, Ringe J. Standardisation of basal medium for reproducible culture of human annulus fibrosus and nucleus pulposus cells. J Orthop Surg Res 2018; 13:209. [PMID: 30134986 PMCID: PMC6106880 DOI: 10.1186/s13018-018-0914-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/15/2018] [Indexed: 11/24/2022] Open
Abstract
Background The lifetime prevalence of degenerative disc disease is dramatically high. Numerous investigations on disc degeneration have been performed on cells from annulus fibrosus (AF) and nucleus pulposus (NP) of the intervertebral disc (IVD) in cell culture experiments utilising a broad variety of basal culture media. Although the basal media differ in nutrient formulation, it is not known whether the choice of the basal media itself has an impact on the cell’s behaviour in vitro. In this study, we evaluated the most common media used for monolayer expansion of AF and NP cells to set standards for disc cell culture. Methods Human AF and NP cells were isolated from cervical discs. Cells were expanded in monolayer until passage P2 using six different common culture media containing alpha-Minimal Essential Medium (alpha-MEM), Dulbecco’s Modified Eagle’s Medium (DMEM) or Ham’s F-12 medium (Ham’s F-12) as single medium or in a mixture of two media (alpha/F-12, DMEM/alpha, DMEM/F-12). Cell morphology, cell growth, glycosaminoglycan production and quantitative gene expression of cartilage- and IVD-related markers aggrecan, collagen type II, forkhead box F1 and keratin 18 were analysed. Statistical analysis was performed with two-way ANOVA testing and Bonferroni compensation. Results AF and NP cells were expandable in all tested media. Both cell types showed similar cell morphology and characteristics of dedifferentiation known for cultured disc cells independently from the media. However, proceeding culture in Ham’s F-12 impeded cell growth of both AF and NP cells. Furthermore, the keratin 18 gene expression profile of NP cells was changed in alpha-MEM and Ham’s F-12. Conclusion The impact of the different media itself on disc cell’s behaviour in vitro was low. However, AF and NP cells were only robust, when DMEM was used as single medium or in a mixture (DMEM/alpha, DMEM/F-12). Therefore, we recommend using these media as standard medium for disc cell culture. Our findings are valuable for the harmonisation of preclinical study results and thereby push the development of cell therapies for clinical treatment of disc degeneration.
Collapse
Affiliation(s)
- Ann-Kathrin Schubert
- Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Südstraße 2, 13353, Berlin, Germany. .,CO.DON AG, Teltow, Germany.
| | | | - Matthias Pumberger
- Center for Musculoskeletal Surgery, Department of Orthopaedics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Michael Putzier
- Center for Musculoskeletal Surgery, Department of Orthopaedics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Michael Sittinger
- Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Südstraße 2, 13353, Berlin, Germany
| | - Jochen Ringe
- Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, Südstraße 2, 13353, Berlin, Germany
| |
Collapse
|
26
|
van den Akker GGH, Koenders MI, van de Loo FAJ, van Lent PLEM, Blaney Davidson E, van der Kraan PM. Transcriptional profiling distinguishes inner and outer annulus fibrosus from nucleus pulposus in the bovine intervertebral disc. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2017; 26:2053-2062. [PMID: 28567592 DOI: 10.1007/s00586-017-5150-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 05/11/2017] [Accepted: 05/18/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Cells in the intervertebral disc have unique phenotypes and marker genes that separate the nucleus pulposus (NP), annulus fibrosus (AF) and articular cartilage (AC) have been identified. Recently, it was shown that phenotypic marker genes exhibit variable expression in humans. In this study, the bovine tail was used to determine the ability of marker genes to distinguish the outer and inner AF from NP tissue and isolated cells. METHODS Bovine tail intervertebral discs from 13 donors were dissected and correct isolation of tissue was confirmed. mRNA was isolated directly from tissue or passage 0 monolayer cells and used for gene expression measurements (qPCR). Conventional marker genes (bAcan, bCol1a1, bCol2a1) and novel marker genes (bAdamts17, bBrachyury/T, bCD24, bCol5a1, bCol12a1, bFoxf1, bKrt19, bPax1, bSfrp2) were evaluated. RESULTS As expected bAcan, bCol2a1 and bCol1a1 distinguished outer AF from NP tissue, while inner AF and NP could not be discriminated. The NP markers bT, bCd24 and bKrt19 were significantly higher expressed in NP than inner and outer AF tissue. bFoxF1 and bPax1 only distinguished IVD tissues from AC. The AF markers bAdamts17, bCol5a1, bCol12a1 and bSfrp2 were higher expressed in the outer AF compared with inner AF and NP tissue. Monolayer culturing strongly decreased bAcan, bCol2a1, bCD24 and bCol5a1 expression, while bCol1a1, bT, bKrt19 and bSfrp2 were not affected. CONCLUSION The IVD phenotypic marker genes bT, bKrt19, bSfrp2 and bCol12a1 convincingly distinguished NP from outer AF in situ and in vitro.
Collapse
Affiliation(s)
- Guus G H van den Akker
- Department of Rheumatology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Marije I Koenders
- Department of Rheumatology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Fons A J van de Loo
- Department of Rheumatology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Peter L E M van Lent
- Department of Rheumatology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Esmeralda Blaney Davidson
- Department of Rheumatology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Peter M van der Kraan
- Department of Rheumatology, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
27
|
Notochordal and nucleus pulposus marker expression is maintained by sub-populations of adult human nucleus pulposus cells through aging and degeneration. Sci Rep 2017; 7:1501. [PMID: 28473691 PMCID: PMC5431421 DOI: 10.1038/s41598-017-01567-w] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 03/28/2017] [Indexed: 01/07/2023] Open
Abstract
The nucleus pulposus (NP) of the intervertebral disc (IVD) demonstrates substantial changes in cell and matrix composition with both ageing and degeneration. While recent transcriptomic profiling studies have helped define human NP cell phenotype, it remains unclear how expression of these markers is influenced by ageing or degeneration. Furthermore, cells of the NP are thought to derive from the notochord, although adult NP lacks identifiable notochordal (NC) cells. This study aimed to confirm expression of previously identified NP and NC marker genes in adult human NP cells from a range of ages and degenerate states. Importantly, using gene expression analysis (N = 60) and immunohistochemistry (N = 56) the study demonstrates expression of NP markers FoxF1, Pax-1, keratin-8/18, carbonic anhydrase-12, and NC markers brachyury, galectin-3 and CD24 in cells of the NP irrespective of age or degeneration. Our immunohistochemical data, combined with flow cytometry (N = 5) which identified a small number of CA12+Gal3+T+CD24+ cells, suggests the possible presence of a sub-population of cells with an NC-like phenotype in adult NP tissue. These findings suggest that the NP contains a heterogeneous population of cells, which may possess varied phenotypic and functional profiles and thus warrant further investigation to improve our understanding of IVD homeostasis and repair.
Collapse
|
28
|
Kraus P, Lufkin T. Implications for a Stem Cell Regenerative Medicine Based Approach to Human Intervertebral Disk Degeneration. Front Cell Dev Biol 2017; 5:17. [PMID: 28326305 PMCID: PMC5339228 DOI: 10.3389/fcell.2017.00017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 02/20/2017] [Indexed: 12/11/2022] Open
Abstract
The human body develops from a single cell, the zygote, the product of the maternal oocyte and the paternal spermatozoon. That 1-cell zygote embryo will divide and eventually grow into an adult human which is comprised of ~3.7 × 1013 cells. The tens of trillions of cells in the adult human can be classified into approximately 200 different highly specialized cell types that make up all of the different tissues and organs of the human body. Regenerative medicine aims to replace or restore dysfunctional cells, tissues and organs with fully functional ones. One area receiving attention is regeneration of the intervertebral discs (IVDs), which are located between the vertebrae and function to give flexibility and support load to the spine. Degenerated discs are a major cause of lower back pain. Different stem cell based regenerative medicine approaches to cure disc degeneration are now available, including using autologous mesenchymal stem cells (MSCs), induced pluripotent stem cells (iPSCs) and even attempts at direct transdifferentiation of somatic cells. Here we discuss some of the recent advances, successes, drawbacks, and the failures of the above-mentioned approaches.
Collapse
Affiliation(s)
- Petra Kraus
- Department of Biology, Clarkson University Potsdam, NY, USA
| | - Thomas Lufkin
- Department of Biology, Clarkson University Potsdam, NY, USA
| |
Collapse
|
29
|
Melrose J. Strategies in regenerative medicine for intervertebral disc repair using mesenchymal stem cells and bioscaffolds. Regen Med 2016; 11:705-24. [DOI: 10.2217/rme-2016-0069] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The intervertebral disc (IVD) is a major weight bearing structure that undergoes degenerative changes with aging limiting its ability to dissipate axial spinal loading in an efficient manner resulting in the generation of low back pain. Low back pain is a number one global musculoskeletal disorder with massive socioeconomic impact. The WHO has nominated development of mesenchymal stem cells and bioscaffolds to promote IVD repair as primary research objectives. There is a clear imperative for the development of strategies to effectively treat IVD defects. Early preclinical studies with mesenchymal stem cells in canine and ovine models have yielded impressive results in IVD repair. Combinatorial therapeutic approaches encompassing biomaterial and cell-based therapies promise significant breakthroughs in IVD repair in the near future.
Collapse
Affiliation(s)
- James Melrose
- Raymond Purves Bone & Joint Research Laboratory, Kolling Institute Northern Sydney Local Health District, St Leonards, NSW 2065, Australia
- Sydney Medical School, Northern, The University of Sydney, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
30
|
Chou PH, Wang ST, Ma HL, Liu CL, Chang MC, Lee OKS. Development of a two-step protocol for culture expansion of human annulus fibrosus cells with TGF-β1 and FGF-2. Stem Cell Res Ther 2016; 7:89. [PMID: 27405858 PMCID: PMC4942939 DOI: 10.1186/s13287-016-0332-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Different biologic approaches to treat disc regeneration, including growth factors (GFs) application, are currently under investigation. Human annulus fibrosus (hAF) repair or regeneration is one of the key elements for maintenance and restoration of nucleus pulposus function. However, so far there is no effective treatment for this purpose. The aim of the present study was to investigate the response of hAF cells to different combinations of GFs, and develop a protocol for efficient culture expansion. METHODS hAF cells were harvested from degenerated disc tissues during surgical intervertebral disc removal, and hAF cells were expanded in a monolayer. The experiments were categorized based on different protocols with transforming growth factor (TGF-β1) and fibroblast growth factor (FGF-2) culture for 14 days: group 1 had no GFs (control group); group 2 received TGF-β1; group 3 received FGF-2; group 4 received both GFs; and group 5 (two-step) received both GFs for the first 10 days and TGF-β1 only for the next 4 days. Cell proliferation, collagen, and noncollagen extracellular matrix (ECM) production and genes expression were compared among these groups. RESULTS At days 3, 7 and 10 of cultivation, groups 4 and 5 had significantly more cell numbers and faster cell proliferation rates than groups 1, 2, and 3. At 14 days of cultivation, significantly more cell numbers were observed in groups 3 and 4 than in group 5. The group 4 had the most cell numbers and the fastest proliferation rate at 14 days of cultivation. After normalization for cell numbers, group 5 (two-step) produced the most collagen and noncollagen ECM at 10 and 14 days of cultivation among the five groups. In group 5, ECM gene expression was significantly upregulated. High expression of matrix metalloproteinase-1 was upregulated with FGF-2 on the different days as compared to the other groups. Annulus fibrosus cell phenotypes were only marginally retained under the different protocols based on quantitative polymerase chain reaction results. CONCLUSION Taken together, the two-step protocol was the most efficient among these different protocols with the most abundant ECM production after normalization for cell numbers for culture expansion of hAF cells. The protocol may be useful in further cell therapy and tissue engineering approaches for disc regeneration.
Collapse
Affiliation(s)
- Po-Hsin Chou
- Department of Orthopedics and Traumatology, Taipei Veterans General Hospital, Taipei city, Taiwan.,School of Medicine, National Yang-Ming University, Taipei city, Taiwan
| | - Shih-Tien Wang
- Department of Orthopedics and Traumatology, Taipei Veterans General Hospital, Taipei city, Taiwan.,School of Medicine, National Yang-Ming University, Taipei city, Taiwan
| | - Hsiao-Li Ma
- Department of Orthopedics and Traumatology, Taipei Veterans General Hospital, Taipei city, Taiwan.,School of Medicine, National Yang-Ming University, Taipei city, Taiwan
| | - Chien-Lin Liu
- Department of Orthopedics and Traumatology, Taipei Veterans General Hospital, Taipei city, Taiwan.,School of Medicine, National Yang-Ming University, Taipei city, Taiwan
| | - Ming-Chau Chang
- Department of Orthopedics and Traumatology, Taipei Veterans General Hospital, Taipei city, Taiwan.,School of Medicine, National Yang-Ming University, Taipei city, Taiwan
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, National Yang-Ming University , Taipei city, Taiwan. .,Department of Medical Research, Taipei Veterans General Hospital, Taipei city, Taiwan. .,Taipei City General Hospital, No.145, Zhengzhou Rd., Datong Dist., Taipei City, 10341, Taiwan (R.O.C.).
| |
Collapse
|
31
|
Decoding the intervertebral disc: Unravelling the complexities of cell phenotypes and pathways associated with degeneration and mechanotransduction. Semin Cell Dev Biol 2016; 62:94-103. [PMID: 27208724 DOI: 10.1016/j.semcdb.2016.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 12/20/2022]
Abstract
Back pain is the most common cause of pain and disability worldwide. While its etiology remains unknown, it is typically associated with intervertebral disc (IVD) degeneration. Despite the prevalence of back pain, relatively little is known about the specific cellular pathways and mechanisms that contribute to the development, function and degeneration of the IVD. Consequently, current treatments for back pain are largely limited to symptomatic interventions. However, major progress is being made in multiple research directions to unravel the biology and pathology of the IVD, raising hope that effective disease-modifying interventions will soon be developed. In this review, we will discuss our current knowledge and gaps in knowledge on the developmental origin of the IVD, the phenotype of the distinct cell types found within the IVD tissues, molecular targets in IVD degeneration identified using bioinformatics strategies, and mechanotransduction pathways that influence IVD cell fate and function.
Collapse
|
32
|
van den Akker GGH, Surtel DAM, Cremers A, Hoes MFGA, Caron MM, Richardson SM, Rodrigues-Pinto R, van Rhijn LW, Hoyland JA, Welting TJM, Voncken JW. EGR1 controls divergent cellular responses of distinctive nucleus pulposus cell types. BMC Musculoskelet Disord 2016; 17:124. [PMID: 26975996 PMCID: PMC4791893 DOI: 10.1186/s12891-016-0979-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 03/09/2016] [Indexed: 01/07/2023] Open
Abstract
Background Immediate early genes (IEGs) encode transcription factors which serve as first line response modules to altered conditions and mediate appropriate cell responses. The immediate early response gene EGR1 is involved in physiological adaptation of numerous different cell types. We have previously shown a role for EGR1 in controlling processes supporting chondrogenic differentiation. We recently established a unique set of phenotypically distinct cell lines from the human nucleus pulposus (NP). Extensive characterization showed that these NP cellular subtypes represented progenitor-like cell types and more functionally mature cells. Methods To further understanding of cellular heterogeneity in the NP, we analyzed the response of these cell subtypes to anabolic and catabolic factors. Here, we test the hypothesis that physiological responses of distinct NP cell types are mediated by EGR1 and reflect specification of cell function using an RNA interference-based experimental approach. Results We show that distinct NP cell types rapidly induce EGR1 exposure to either growth factors or inflammatory cytokines. In addition, we show that mRNA profiles induced in response to anabolic or catabolic conditions are cell type specific: the more mature NP cell type produced a strong and more specialized transcriptional response to IL-1β than the NP progenitor cells and aspects of this response were controlled by EGR1. Conclusions Our current findings provide important substantiation of differential functionality among NP cellular subtypes. Additionally, the data shows that early transcriptional programming initiated by EGR1 is essentially restrained by the cells’ epigenome as it was determined during development and differentiation. These studies begin to define functional distinctions among cells of the NP and will ultimately contribute to defining functional phenotypes within the adult intervertebral disc. Electronic supplementary material The online version of this article (doi:10.1186/s12891-016-0979-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guus G H van den Akker
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands.,Current Address: Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Don A M Surtel
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Andy Cremers
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Martijn F G A Hoes
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marjolein M Caron
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Stephen M Richardson
- Centre for Tissue Injury and Repair, Institute of Inflammation and Repair, The University of Manchester, Manchester, UK
| | - Ricardo Rodrigues-Pinto
- Centre for Tissue Injury and Repair, Institute of Inflammation and Repair, The University of Manchester, Manchester, UK.,Current Address: Department of Orthopaedics, Centro Hospitalar do Porto - Hospital de Santo António, Porto, Portugal
| | - Lodewijk W van Rhijn
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Judith A Hoyland
- Centre for Tissue Injury and Repair, Institute of Inflammation and Repair, The University of Manchester, Manchester, UK.,NIHR Manchester Musculoskeletal Biomedical Research Unit, Manchester Academic Health Science Centre, Manchester, UK
| | - Tim J M Welting
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jan Willem Voncken
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands.
| |
Collapse
|