1
|
Liu C, Tian N, Chang P, Zhang W. Mating reconciles fitness and fecundity by switching diet preference in flies. Nat Commun 2024; 15:9912. [PMID: 39548088 PMCID: PMC11568147 DOI: 10.1038/s41467-024-54369-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Protein-rich diets shorten lifespan but increase fecundity in many organisms. Animals actively adjust their feeding behavior to meet their nutritional requirements. However, the neural mechanisms underlying the dynamic regulation of protein consumption remain unclear. Here we find that both sexes of fruit flies exhibit a preference for protein food before mating to prepare for reproduction. Mated female flies display an increased appetite for yeast to benefit their offspring, albeit at the cost of stress resistance and lifespan. In contrast, males show a momentarily reduced yeast appetite after mating likely to restore their fitness. This mating state-dependent switch between sexes is mediated by a sexually dimorphic neural circuit labeled with leucokinin in the anterior brain. Furthermore, intermittent yeast consumption benefits both the lifespan and fecundity of males, while maximizing female fecundity without compromising lifespan.
Collapse
Affiliation(s)
- Chenxi Liu
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China.
| | - Ning Tian
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Pei Chang
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Wei Zhang
- State Key Laboratory of Membrane Biology, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
2
|
Mc Auley MT. An evolutionary perspective of lifespan and epigenetic inheritance. Exp Gerontol 2023; 179:112256. [PMID: 37460026 DOI: 10.1016/j.exger.2023.112256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
In the last decade epigenetics has come to the fore as a discipline which is central to biogerontology. Age associated epigenetic changes are routinely linked with pathologies, including cardiovascular disease, cancer, and Alzheimer's disease; moreover, epigenetic clocks are capable of correlating biological age with chronological age in many species including humans. Recent intriguing empirical observations also suggest that inherited epigenetic effects could influence lifespan/longevity in a variety of organisms. If this is the case, an imperative exists to reconcile lifespan/longevity associated inherited epigenetic processes with the evolution of ageing. This review will critically evaluate inherited epigenetic effects from an evolutionary perspective. The overarching aim is to integrate the evidence which suggests epigenetic inheritance modulates lifespan/longevity with the main evolutionary theories of ageing.
Collapse
|
3
|
Quo Vadis Psychiatry? Why It Is Time to Endorse Evolutionary Theory. J Nerv Ment Dis 2022; 210:235-245. [PMID: 35349502 DOI: 10.1097/nmd.0000000000001493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In recent decades, psychiatry and the neurosciences have made little progress in terms of preventing, diagnosing, classifying, or treating mental disorders. Here we argue that the dilemma of psychiatry and the neurosciences is, in part, based on fundamental misconceptions about the human mind, including misdirected nature-nurture debates, the lack of definitional concepts of "normalcy," distinguishing defense from defect, disregarding life history theory, evolutionarily uninformed genetic and epigenetic research, the "disconnection" of the brain from the rest of the body, and lack of attention to actual behavior in real-world interactions. All these conceptual difficulties could potentially benefit from an approach that uses evolutionary theory to improve the understanding of causal mechanisms, gene-environment interaction, individual differences in behavioral ecology, interaction between the gut (and other organs) and the brain, as well as cross-cultural and across-species comparison. To foster this development would require reform of the curricula of medical schools.
Collapse
|
4
|
May CM, Van den Akker EB, Zwaan BJ. The Transcriptome in Transition: Global Gene Expression Profiles of Young Adult Fruit Flies Depend More Strongly on Developmental Than Adult Diet. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.624306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Developmental diet is known to exert long-term effects on adult phenotypes in many animal species as well as disease risk in humans, purportedly mediated through long-term changes in gene expression. However, there are few studies linking developmental diet to adult gene expression. Here, we use a full-factorial design to address how three different larval and adult diets interact to affect gene expression in 1-day-old adult fruit flies (Drosophila melanogaster) of both sexes. We found that the largest contributor to transcriptional variation in young adult flies is larval, and not adult diet, particularly in females. We further characterized gene expression variation by applying weighted gene correlation network analysis (WGCNA) to identify modules of co-expressed genes. In adult female flies, the caloric content of the larval diet associated with two strongly negatively correlated modules, one of which was highly enriched for reproduction-related processes. This suggests that gene expression in young adult female flies is in large part related to investment into reproduction-related processes, and that the level of expression is affected by dietary conditions during development. In males, most modules had expression patterns independent of developmental or adult diet. However, the modules that did correlate with larval and/or adult dietary regimes related primarily to nutrient sensing and metabolic functions, and contained genes highly expressed in the gut and fat body. The gut and fat body are among the most important nutrient sensing tissues, and are also the only tissues known to avoid histolysis during pupation. This suggests that correlations between larval diet and gene expression in male flies may be mediated by the carry-over of these tissues into young adulthood. Our results show that developmental diet can have profound effects on gene expression in early life and warrant future research into how they correlate with actual fitness related traits in early adulthood.
Collapse
|
5
|
Abstract
AbstractReproduction, mortality, and immune function often change with age but do not invariably deteriorate. Across the tree of life, there is extensive variation in age-specific performance and changes to key life-history traits. These changes occur on a spectrum from classic senescence, where performance declines with age, to juvenescence, where performance improves with age. Reproduction, mortality, and immune function are also important factors influencing the spread of infectious disease, yet there exists no comprehensive investigation into how the aging spectrum of these traits impacts epidemics. We used a model laboratory infection system to compile an aging profile of a single organism, including traits directly linked to pathogen susceptibility and those that should indirectly alter pathogen transmission by influencing demography. We then developed generalizable epidemiological models demonstrating that different patterns of aging produce dramatically different transmission landscapes: in many cases, aging can reduce the probability of epidemics, but it can also promote severity. This work provides context and tools for use across taxa by empiricists, demographers, and epidemiologists, advancing our ability to accurately predict factors contributing to epidemics or the potential repercussions of senescence manipulation.
Collapse
|
6
|
Monaghan P, Maklakov AA, Metcalfe NB. Intergenerational Transfer of Ageing: Parental Age and Offspring Lifespan. Trends Ecol Evol 2020; 35:927-937. [PMID: 32741650 DOI: 10.1016/j.tree.2020.07.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022]
Abstract
The extent to which the age of parents at reproduction can affect offspring lifespan and other fitness-related traits is important in our understanding of the selective forces shaping life history evolution. In this article, the widely reported negative effects of parental age on offspring lifespan (the 'Lansing effect') is examined. Outlined herein are the potential routes whereby a Lansing effect can occur, whether effects might accumulate across multiple generations, and how the Lansing effect should be viewed as part of a broader framework, considering how parental age affects offspring fitness. The robustness of the evidence for a Lansing effect produced so far, potential confounding variables, and how the underlying mechanisms might best be unravelled through carefully designed experimental studies are discussed.
Collapse
Affiliation(s)
- Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine, MVLS, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Alexei A Maklakov
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Neil B Metcalfe
- Institute of Biodiversity, Animal Health and Comparative Medicine, MVLS, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
7
|
Kroeger SB, Blumstein DT, Armitage KB, Reid JM, Martin JGA. Older mothers produce more successful daughters. Proc Natl Acad Sci U S A 2020; 117:4809-4814. [PMID: 32071200 PMCID: PMC7060700 DOI: 10.1073/pnas.1908551117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Annual reproductive success and senescence patterns vary substantially among individuals in the wild. However, it is still seldom considered that senescence may not only affect an individual but also affect age-specific reproductive success in its offspring, generating transgenerational reproductive senescence. We used long-term data from wild yellow-bellied marmots (Marmota flaviventer) living in two different elevational environments to quantify age-specific reproductive success of daughters born to mothers differing in age. Contrary to prediction, daughters born to older mothers had greater annual reproductive success on average than daughters born to younger mothers, and this translated into greater lifetime reproductive success. However, in the favorable lower elevation environment, daughters born to older mothers also had greater age-specific decreases in annual reproductive success. In the harsher higher elevation environment on the other hand, daughters born to older mothers tended to die before reaching ages at which such senescent decreases could be observed. Our study highlights the importance of incorporating environment-specific transgenerational parent age effects on adult offspring age-specific life-history traits to fully understand the substantial variation observed in senescence patterns in wild populations.
Collapse
Affiliation(s)
- Svenja B Kroeger
- School of Biological Sciences, Zoology Building, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom;
- Department of Landscape and Biodiversity, The Norwegian Institute of Bioeconomy Research, 7031 Trondheim, Norway
| | - Daniel T Blumstein
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095-1606
- The Rocky Mountain Biological Laboratory, Crested Butte, CO 81224
| | - Kenneth B Armitage
- The Rocky Mountain Biological Laboratory, Crested Butte, CO 81224
- Department of Ecology & Evolutionary Biology, The University of Kansas, Lawrence, KS 66045-7534
| | - Jane M Reid
- School of Biological Sciences, Zoology Building, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Realfagbygget, Gløshaugen, N-7491 Trondheim, Norway
| | - Julien G A Martin
- School of Biological Sciences, Zoology Building, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
8
|
Etienne J, Liu C, Skinner CM, Conboy MJ, Conboy IM. Skeletal muscle as an experimental model of choice to study tissue aging and rejuvenation. Skelet Muscle 2020; 10:4. [PMID: 32033591 PMCID: PMC7007696 DOI: 10.1186/s13395-020-0222-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 01/12/2020] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle is among the most age-sensitive tissues in mammal organisms. Significant changes in its resident stem cells (i.e., satellite cells, SCs), differentiated cells (i.e., myofibers), and extracellular matrix cause a decline in tissue homeostasis, function, and regenerative capacity. Based on the conservation of aging across tissues and taking advantage of the relatively well-characterization of the myofibers and associated SCs, skeletal muscle emerged as an experimental system to study the decline in function and maintenance of old tissues and to explore rejuvenation strategies. In this review, we summarize the approaches for understanding the aging process and for assaying the success of rejuvenation that use skeletal muscle as the experimental system of choice. We further discuss (and exemplify with studies of skeletal muscle) how conflicting results might be due to variations in the techniques of stem cell isolation, differences in the assays of functional rejuvenation, or deciding on the numbers of replicates and experimental cohorts.
Collapse
Affiliation(s)
- Jessy Etienne
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA, 94720-3220, USA
| | - Chao Liu
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA, 94720-3220, USA
| | - Colin M Skinner
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA, 94720-3220, USA
| | - Michael J Conboy
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA, 94720-3220, USA
| | - Irina M Conboy
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA, 94720-3220, USA.
| |
Collapse
|
9
|
Zhu Q, Fu S, Zhang Q, Tian J, Zhao Y, Yao Y. Female Fertility Has a Negative Relationship With Longevity in Chinese Oldest-Old Population: A Cross-Sectional Study. Front Endocrinol (Lausanne) 2020; 11:616207. [PMID: 33613452 PMCID: PMC7887279 DOI: 10.3389/fendo.2020.616207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 12/14/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Despite research efforts in this field for more than a century, the relationship between female fertility and longevity is unclear. This study was designed to investigate this relationship in Chinese oldest-old population. METHODS The China Hainan Centenarian Cohort Study was performed in 18 cities and counties of Hainan. A total of 1,226 females, including 758 centenarian women and 468 women aged 80-99 years, were enrolled in this study. Using a standardized protocol, in-person interviews and blood analyses were conducted by a well-trained research team through home visits. RESULTS Centenarian women had significantly lower number of children (NOC) and higher initial childbearing age (ICA) and last childbearing age (LCA) than women aged 80-99 years (p < 0.05 for all). Multivariate logistic regression analysis showed that NOC and testosterone (T) levels were positively associated with women aged 80-99 years, when centenarian women was considered as reference (p < 0.05 for all). ICA, LCA, and estradiol (E2) levels were negatively associated with women aged 80-99 years, when centenarian women was considered as reference (p < 0.05 for all). CONCLUSIONS The centenarians had crucial characteristics of less and delayed childbearing, indicating a negative relationship between female fertility and longevity in Chinese oldest-old population. Serum E2 levels were positively associated and serum T levels were negatively associated with longevity. The less and late childbearing might be a significant factor of longevity, and successful aging might be promoted by reducing and delaying female childbearing.
Collapse
Affiliation(s)
- Qiao Zhu
- Central Laboratory, Hainan Hospital of Chinese People’s Liberation Army General Hospital, Sanya, China
| | - Shihui Fu
- Department of Cardiology, Hainan Hospital of Chinese People’s Liberation Army General Hospital, Sanya, China
| | - Qian Zhang
- Department of Neurology, Hainan Hospital of Chinese People’s Liberation Army General Hospital, Sanya, China
| | - Jinwen Tian
- Department of Cardiology, Hainan Hospital of Chinese People’s Liberation Army General Hospital, Sanya, China
- *Correspondence: Jinwen Tian, ; Yali Zhao, ; Yao Yao,
| | - Yali Zhao
- Central Laboratory, Hainan Hospital of Chinese People’s Liberation Army General Hospital, Sanya, China
- *Correspondence: Jinwen Tian, ; Yali Zhao, ; Yao Yao,
| | - Yao Yao
- Center for Healthy Aging and Development Studies, Raissun Institute for Advanced Studies, National School of Development, Peking University, Beijing, China
- Center for the Study of Aging and Human Development and Geriatrics Division, Medical School of Duke University, Durham, NC, United States
- *Correspondence: Jinwen Tian, ; Yali Zhao, ; Yao Yao,
| |
Collapse
|
10
|
Marasco V, Boner W, Griffiths K, Heidinger B, Monaghan P. Intergenerational effects on offspring telomere length: interactions among maternal age, stress exposure and offspring sex. Proc Biol Sci 2019; 286:20191845. [PMID: 31575358 DOI: 10.1098/rspb.2019.1845] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Offspring produced by older parents often have reduced longevity, termed the Lansing effect. Because adults usually have similar-aged mates, it is difficult to separate effects of maternal and paternal age, and environmental circumstances are also likely to influence offspring outcomes. The mechanisms underlying the Lansing effect are poorly understood. Variation in telomere length and loss, particularly in early life, is linked to longevity in many vertebrates, and therefore changes in offspring telomere dynamics could be very important in this context. We examined the effect of maternal age and environment on offspring telomere length in zebra finches. We kept mothers under either control (ad libitum food) or more challenging (unpredictable food) circumstances and experimentally minimized paternal age and mate choice effects. Irrespective of the maternal environment, there was a substantial negative effect of maternal age on offspring telomere length, evident in longitudinal and cross-sectional comparisons (average of 39% shorter). Furthermore, in young mothers, sons reared by challenged mothers had significantly shorter telomere lengths than sons reared by control mothers. This effect disappeared when the mothers were old, and was absent in daughters. These findings highlight the importance of telomere dynamics as inter-generational mediators of the evolutionary processes determining optimal age-specific reproductive effort and sex allocation.
Collapse
Affiliation(s)
- Valeria Marasco
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Savoyenstraβe 1a, 1160 Vienna, Austria.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - Winnie Boner
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - Kate Griffiths
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - Britt Heidinger
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK.,Biological Sciences Department, North Dakota State University, Stevens Hall, Fargo, ND 58108, USA
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| |
Collapse
|
11
|
Bock MJ, Jarvis GC, Corey EL, Stone EE, Gribble KE. Maternal age alters offspring lifespan, fitness, and lifespan extension under caloric restriction. Sci Rep 2019; 9:3138. [PMID: 30816287 PMCID: PMC6395700 DOI: 10.1038/s41598-019-40011-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/06/2019] [Indexed: 12/24/2022] Open
Abstract
Maternal age has a negative effect on offspring lifespan in a range of taxa and is hypothesized to influence the evolution of aging. However, the mechanisms of maternal age effects are unknown, and it remains unclear if maternal age alters offspring response to therapeutic interventions to aging. Here, we evaluate maternal age effects on offspring lifespan, reproduction, and the response to caloric restriction, and investigate maternal investment as a source of maternal age effects using the rotifer, Brachionus manjavacas, an aquatic invertebrate. We found that offspring lifespan and fecundity decline with increasing maternal age. Caloric restriction increases lifespan in all offspring, but the magnitude of lifespan extension is greater in the offspring from older mothers. The trade-off between reproduction and lifespan extension under low food conditions expected by life history theory is observed in young-mother offspring, but not in old-mother offspring. Age-related changes in maternal resource allocation to reproduction do not drive changes in offspring fitness or plasticity under caloric restriction in B. manjavacas. Our results suggest that the declines in reproduction in old-mother offspring negate the evolutionary fitness benefits of lifespan extension under caloric restriction.
Collapse
Affiliation(s)
- Martha J Bock
- Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Mayo Clinic, Rochester, MN, 55905, USA
| | - George C Jarvis
- Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- California State University, Northridge, Northridge, CA, 91330, USA
| | - Emily L Corey
- Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Emily E Stone
- Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | | |
Collapse
|
12
|
Marasco V, Boner W, Griffiths K, Heidinger B, Monaghan P. Environmental conditions shape the temporal pattern of investment in reproduction and survival. Proc Biol Sci 2019; 285:rspb.2017.2442. [PMID: 29298939 DOI: 10.1098/rspb.2017.2442] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/29/2017] [Indexed: 11/12/2022] Open
Abstract
The relationship between environmental stress exposure and ageing is likely to vary with stressor severity, life-history stage and the time scale over which effects are measured. Such factors could influence whether stress exposure accelerates or slows the ageing process, but their interactions have not previously been experimentally investigated. We found that experimental exposure of zebra finches to mildly challenging environmental circumstances from young to old adulthood, which increased exposure to stress hormones, reduced breeding performance during early adulthood, but had positive effects when individuals were bred in old adulthood. This difference was not due to selective mortality, because the effects were evident within individuals, and no evidence of habituation in the response to the stressor was found. The more stressful environment had no effects on survival during young or old adulthood, but substantially improved survival during middle age. Changes in the effects at different ages could be due to the duration and nature of the challenging exposure, or to variation in coping capacity or strategy with age. These results show that living under challenging environmental circumstances can influence ageing trajectories in terms of both reproductive performance and longevity. Our results provide experimental support for the emerging idea that stress exposure needs to be optimized rather than minimized to obtain the best health outcomes.
Collapse
Affiliation(s)
- Valeria Marasco
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - Winnie Boner
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - Kate Griffiths
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - Britt Heidinger
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| |
Collapse
|
13
|
Bellworthy J, Menoud M, Krueger T, Meibom A, Fine M. Developmental carryover effects of ocean warming and acidification in corals from a potential climate refugium, the Gulf of Aqaba. ACTA ACUST UNITED AC 2019; 222:jeb.186940. [PMID: 30446540 DOI: 10.1242/jeb.186940] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/06/2018] [Indexed: 01/01/2023]
Abstract
Coral reefs are degrading from the effects of anthropogenic activities, including climate change. Under these stressors, their ability to survive depends upon existing phenotypic plasticity, but also transgenerational adaptation. Parental effects are ubiquitous in nature, yet empirical studies of these effects in corals are scarce, particularly in the context of climate change. This study exposed mature colonies of the common reef-building coral Stylophora pistillata from the Gulf of Aqaba to seawater conditions likely to occur just beyond the end of this century during the peak planulae brooding season (Representative Concentration Pathway 8.5: pH -0.4 and +5°C beyond present day). Parent and planulae physiology were assessed at multiple time points during the experimental incubation. After 5 weeks of incubation, the physiology of the parent colonies exhibited limited treatment-induced changes. All significant time-dependent changes in physiology occurred in both ambient and treatment conditions. Planulae were also resistant to future ocean conditions, with protein content, symbiont density, photochemistry, survival and settlement success not significantly different compared with under ambient conditions. High variability in offspring physiology was independent of parental or offspring treatments and indicate the use of a bet-hedging strategy in this population. This study thus demonstrates weak climate-change-associated carryover effects. Furthermore, planulae display temperature and pH resistance similar to those of adult colonies and therefore do not represent a larger future population size bottleneck. The findings add support to the emerging hypothesis that the Gulf of Aqaba may serve as a coral climate change refugium aided by these corals' inherent broad physiological resistance.
Collapse
Affiliation(s)
- Jessica Bellworthy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel .,The Interuniversity Institute for Marine Sciences in Eilat, P.O. Box 469, Eilat 88103, Israel
| | - Malika Menoud
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, (EPFL), 1015 Lausanne, Switzerland.,Institute for Marine and Atmospheric Research Utrecht, Utrecht University, 3584CC Utrecht, The Netherlands
| | - Thomas Krueger
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, (EPFL), 1015 Lausanne, Switzerland
| | - Anders Meibom
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, (EPFL), 1015 Lausanne, Switzerland.,Institute of Earth Sciences, Center for Advanced Surface Analysis, University of Lausanne, 1015 Lausanne, Switzerland
| | - Maoz Fine
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan 5290002, Israel.,The Interuniversity Institute for Marine Sciences in Eilat, P.O. Box 469, Eilat 88103, Israel
| |
Collapse
|
14
|
Tobi EW, van den Heuvel J, Zwaan BJ, Lumey L, Heijmans BT, Uller T. Selective Survival of Embryos Can Explain DNA Methylation Signatures of Adverse Prenatal Environments. Cell Rep 2018; 25:2660-2667.e4. [DOI: 10.1016/j.celrep.2018.11.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 09/18/2018] [Accepted: 11/02/2018] [Indexed: 12/21/2022] Open
|
15
|
Golubev A, Hanson AD, Gladyshev VN. A Tale of Two Concepts: Harmonizing the Free Radical and Antagonistic Pleiotropy Theories of Aging. Antioxid Redox Signal 2018; 29:1003-1017. [PMID: 28874059 PMCID: PMC6104246 DOI: 10.1089/ars.2017.7105] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 08/09/2017] [Accepted: 08/31/2017] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE The two foremost concepts of aging are the mechanistic free radical theory (FRT) of how we age and the evolutionary antagonistic pleiotropy theory (APT) of why we age. Both date from the late 1950s. The FRT holds that reactive oxygen species (ROS) are the principal contributors to the lifelong cumulative damage suffered by cells, whereas the APT is generally understood as positing that genes that are good for young organisms can take over a population even if they are bad for the old organisms. Recent Advances: Here, we provide a common ground for the two theories by showing how aging can result from the inherent chemical reactivity of many biomolecules, not just ROS, which imposes a fundamental constraint on biological evolution. Chemically reactive metabolites spontaneously modify slowly renewable macromolecules in a continuous way over time; the resulting buildup of damage wrought by the genes coding for enzymes that generate such small molecules eventually masquerades as late-acting pleiotropic effects. In aerobic organisms, ROS are major agents of this damage but they are far from alone. CRITICAL ISSUES Being related to two sides of the same phenomenon, these theories should be compatible. However, the interface between them is obscured by the FRT mistaking a subset of damaging processes for the whole, and the APT mistaking a cumulative quantitative process for a qualitative switch. FUTURE DIRECTIONS The manifestations of ROS-mediated cumulative chemical damage at the population level may include the often-observed negative correlation between fitness and the rate of its decline with increasing age, further linking FRT and APT. Antioxid. Redox Signal. 29, 1003-1017.
Collapse
Affiliation(s)
- Alexey Golubev
- Department of Carcinogenesis and Oncogerontology, Petrov Research Institute of Oncology, Saint Petersburg, Russia
| | - Andrew D. Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, Florida
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, Massachusetts
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow Russia
| |
Collapse
|
16
|
Vega‐Trejo R, Kruuk LEB, Jennions MD, Head ML. What happens to offspring when parents are inbred, old or had a poor start in life? Evidence for sex‐specific parental effects. J Evol Biol 2018; 31:1138-1151. [DOI: 10.1111/jeb.13292] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/30/2018] [Accepted: 05/14/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Regina Vega‐Trejo
- Division of Ecology & Evolution, Research School of Biology The Australian National University, Acton Canberra ACT Australia
| | - Loeske E. B. Kruuk
- Division of Ecology & Evolution, Research School of Biology The Australian National University, Acton Canberra ACT Australia
| | - Michael D. Jennions
- Division of Ecology & Evolution, Research School of Biology The Australian National University, Acton Canberra ACT Australia
| | - Megan L. Head
- Division of Ecology & Evolution, Research School of Biology The Australian National University, Acton Canberra ACT Australia
| |
Collapse
|
17
|
Hooper AK, Lehtonen J, Schwanz LE, Bonduriansky R. Sexual competition and the evolution of condition-dependent ageing. Evol Lett 2018; 2:37-48. [PMID: 30283663 PMCID: PMC6089505 DOI: 10.1002/evl3.36] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/01/2017] [Accepted: 12/13/2017] [Indexed: 02/06/2023] Open
Abstract
Increased individual resources (condition) can be correlated with either increased or decreased longevity. While variation in resource acquisition and allocation can account for some of this variation, the general conditions that select for either pattern remain unclear. Previous models suggest that nonlinearity of payoffs from investment in reproduction (e.g., male secondary sexual traits) can select for high‐condition individuals that sacrifice longevity to increase reproductive opportunity. However, it remains unclear what mating systems or patterns of sexual competition might select for such life‐history strategies. We used a model of condition‐dependent investment to explore how expected payoffs from increased expression of secondary sexual traits affect optimal investment in lifespan. We find that nonlinearity of these payoffs results in a negative relationship between condition and lifespan under two general conditions: first, when there are accelerating marginal benefits from increasing investment; second, when individuals that invest minimally in secondary sexual trait expression can still achieve matings. In the second scenario, the negative relationship occurs due to selection on low‐condition individuals to extend lifespan at the cost of secondary sexual trait expression. Our findings clarify the potential role of sexual selection in shaping patterns of condition‐dependent ageing, and highlight the importance of considering the strategies of both low‐ and high‐condition individuals when investigating patterns of condition‐dependent ageing.
Collapse
Affiliation(s)
- Amy K Hooper
- School of Biological, Earth and Environmental Sciences, Evolution and Ecology Research Centre University of New South Wales Sydney NSW 2052 Australia
| | - Jussi Lehtonen
- School of Biological, Earth and Environmental Sciences, Evolution and Ecology Research Centre University of New South Wales Sydney NSW 2052 Australia
| | - Lisa E Schwanz
- School of Biological, Earth and Environmental Sciences, Evolution and Ecology Research Centre University of New South Wales Sydney NSW 2052 Australia
| | - Russell Bonduriansky
- School of Biological, Earth and Environmental Sciences, Evolution and Ecology Research Centre University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
18
|
Marasco V, Boner W, Griffiths K, Heidinger B, Monaghan P. Environmental conditions shape the temporal pattern of investment in reproduction and survival. Proc Biol Sci 2018; 285:rspb.2017.2442. [PMID: 29298939 DOI: 10.1016/b978-0-323-60984-5.00062-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/29/2017] [Indexed: 05/25/2023] Open
Abstract
The relationship between environmental stress exposure and ageing is likely to vary with stressor severity, life-history stage and the time scale over which effects are measured. Such factors could influence whether stress exposure accelerates or slows the ageing process, but their interactions have not previously been experimentally investigated. We found that experimental exposure of zebra finches to mildly challenging environmental circumstances from young to old adulthood, which increased exposure to stress hormones, reduced breeding performance during early adulthood, but had positive effects when individuals were bred in old adulthood. This difference was not due to selective mortality, because the effects were evident within individuals, and no evidence of habituation in the response to the stressor was found. The more stressful environment had no effects on survival during young or old adulthood, but substantially improved survival during middle age. Changes in the effects at different ages could be due to the duration and nature of the challenging exposure, or to variation in coping capacity or strategy with age. These results show that living under challenging environmental circumstances can influence ageing trajectories in terms of both reproductive performance and longevity. Our results provide experimental support for the emerging idea that stress exposure needs to be optimized rather than minimized to obtain the best health outcomes.
Collapse
Affiliation(s)
- Valeria Marasco
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - Winnie Boner
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - Kate Griffiths
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - Britt Heidinger
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| |
Collapse
|
19
|
Lemaître JF, Gaillard JM. Reproductive senescence: new perspectives in the wild. Biol Rev Camb Philos Soc 2017; 92:2182-2199. [PMID: 28374548 DOI: 10.1111/brv.12328] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/23/2017] [Accepted: 03/03/2017] [Indexed: 11/26/2022]
Abstract
According to recent empirical studies, reproductive senescence, the decline in reproductive success with increasing age, seems to be nearly ubiquitous in the wild. However, a clear understanding of the evolutionary causes and consequences of reproductive senescence is still lacking and requires new and integrative approaches. After identifying the sequential and complex nature of female reproductive senescence, we show that the relative contributions of physiological decline and alterations in the efficiency of parental care to reproductive senescence remain unknown and need to be assessed in the light of current evolutionary theories of ageing. We demonstrate that, although reproductive senescence is generally studied only from the female viewpoint, age-specific female reproductive success strongly depends on male-female interactions. Thus, a reduction in male fertilization efficiency with increasing age has detrimental consequences for female fitness. Lastly, we call for investigations of the role of environmental conditions on reproductive senescence, which could provide salient insights into the underlying sex-specific mechanisms of reproductive success. We suggest that embracing such directions should allow building new bridges between reproductive senescence and the study of sperm competition, parental care, mate choice and environmental conditions.
Collapse
Affiliation(s)
- Jean-François Lemaître
- Univ Lyon, Université Lyon 1; CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR5558, F-69622, Villeurbanne, France
| | - Jean-Michel Gaillard
- Univ Lyon, Université Lyon 1; CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR5558, F-69622, Villeurbanne, France
| |
Collapse
|
20
|
van den Heuvel J, Zandveld J, Brakefield PM, Kirkwood TBL, Shanley DP, Zwaan BJ. Growing more positive with age: The relationship between reproduction and survival in aging flies. Exp Gerontol 2017; 90:34-42. [PMID: 28122252 DOI: 10.1016/j.exger.2017.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 02/04/2023]
Abstract
Populations of laboratory animals that are selected for increased lifespan often show negative correlated responses in early fecundity. However, late fecundity and/or total lifetime fecundity can be higher in the populations selected for increased lifespan. This has been interpreted by some as being at odds with the disposable soma theory, which predicts decreased lifespan to increase total reproductive output. Alternatively, the Y-model explores the effects of variation in resource allocation and acquisition on life histories. In this model, a negative relationship between lifespan and reproduction can be viewed as variation in allocation, whereas a positive relationship is the result of variation in acquisition. However, a frequently neglected complication of the Y-model is that older individuals often show a decline in resource acquisition. Therefore, differential allocation to maintenance and survival might affect this decline in late-life acquisition which will affect resource availability across the whole lifespan. In this paper we show that a model which incorporates the ideas of the Y-model, the disposable soma theory, and an age-related decrease in resource acquisition, i.e. feeding senescence, can explain how the relationship between fecundity and lifespan changes with age. Furthermore, by modeling environments with contrasting extrinsic mortality rates, we explored how the outcome of the model depended on the relative importance of early and late-life reproduction. In high mortality environments a relatively higher early fecundity, lower late fecundity, and lower lifespans were more optimal, whereas the opposite was true for low mortality environments. We applied predictions from the model to a cohort of individually-housed female Drosophila melanogaster flies for which we measured age specific fecundity and lifespan. Early fecundity was negatively associated with lifespan, while late fecundity related positively with lifespan in the same cohort. This verified that the mechanism of feeding senescence could explain patterns for age specific relationships between lifespan and fecundity.
Collapse
Affiliation(s)
- Joost van den Heuvel
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, NE4 5PL, United Kingdom; Plant Sciences Group, Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Jelle Zandveld
- Plant Sciences Group, Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Paul M Brakefield
- Department of Zoology, University Museum of Zoology Cambridge, University of Cambridge, CB2 3EJ Cambridge, United Kingdom
| | - Thomas B L Kirkwood
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, NE4 5PL, United Kingdom; Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Daryl P Shanley
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, NE4 5PL, United Kingdom
| | - Bas J Zwaan
- Plant Sciences Group, Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|