1
|
Gao W, Liu YF, Zhang YX, Wang Y, Jin YQ, Yuan H, Liang XY, Ji XY, Jiang QY, Wu DD. The potential role of hydrogen sulfide in cancer cell apoptosis. Cell Death Discov 2024; 10:114. [PMID: 38448410 PMCID: PMC10917771 DOI: 10.1038/s41420-024-01868-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 03/08/2024] Open
Abstract
For a long time, hydrogen sulfide (H2S) has been considered a toxic compound, but recent studies have found that H2S is the third gaseous signaling molecule which plays a vital role in physiological and pathological conditions. Currently, a large number of studies have shown that H2S mediates apoptosis through multiple signaling pathways to participate in cancer occurrence and development, for example, PI3K/Akt/mTOR and MAPK signaling pathways. Therefore, the regulation of the production and metabolism of H2S to mediate the apoptotic process of cancer cells may improve the effectiveness of cancer treatment. In this review, the role and mechanism of H2S in cancer cell apoptosis in mammals are summarized.
Collapse
Affiliation(s)
- Wei Gao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Ya-Fang Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yu-Qing Jin
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Hang Yuan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xiao-Yi Liang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
- Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan, 450064, China.
| | - Qi-Ying Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
- School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
- Department of Stomatology, Huaihe Hospital of Henan University, Kaifeng, Henan, 475000, China.
| |
Collapse
|
2
|
Yan R, Liu L, Huang X, Quan ZS, Shen QK, Guo HY. Bioactivities and Structure-Activity Relationships of Maslinic Acid Derivatives: A Review. Chem Biodivers 2024; 21:e202301327. [PMID: 38108648 DOI: 10.1002/cbdv.202301327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023]
Abstract
Maslinic acid has a variety of biological activities, such as anti-tumor, hypoglycemic, anti-inflammatory, and anti-parasitic. In order to enhance the biological activity of maslinic acid, scholars have carried out a lot of structural modifications, and found some more valuable maslinic acid derivatives. In this paper, the structural modification, biological activity, and structure-activity relationship of maslinic acid were reviewed, providing references for the development of maslinic acid.
Collapse
Affiliation(s)
- Rui Yan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Luguang Liu
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, Shandong, P. R. China
| | - Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| |
Collapse
|
3
|
Luque C, de la Cabeza Fernández M, Fuentes-Rios D, Cepero A, Contreras-Cáceres R, Doña M, Perazzoli G, Lozano-Chamizo L, Filice M, Marciello M, Gonzalez-Rumayor V, López-Romero JM, Cabeza L, Melguizo C, Prados J. Improved antitumor activity through a tyramidyl maslinic acid derivative. Design and validation as drug-loaded electrospun polymeric nanofibers. Eur J Pharm Biopharm 2023; 193:241-253. [PMID: 37972906 DOI: 10.1016/j.ejpb.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Among the most harmful tumors detected in the human body, such as breast, colon, brain or pancreas, breast (BC) and colorectal cancer (CRC) are the first and third most frequent cancer worldwide, respectively. The current existing chemotherapeutic treatments present serious side effects due to their intravenous administration can induce cytotoxicity in healthy cells. Thus, new treatment methods based on drug-loaded polymeric nanofibers (NFs) have gained significant potential for their use in localized cancer chemotherapy. Here, a deep in vitro comparative analysis between maslinic acid (MA) and a tyramine-maslinic acid (TMA) derivative is initially performed. This analysis includes a proliferation, and a cell cycle assay, and a genotoxicity, antiangiogenic and apoptosis study. Then, the TMA derivative has been incorporated into electrospun polymeric NFs obtaining an implantable dressing material with antitumor activity. Two types of patches containing TMA-loaded polymeric NFs of poly(caprolactone) (PCL), and a mixture of polylactic acid/poly(4-vinylpyridine) (PLA/PVP) were fabricated by the electrospinning technique. The characterization of the drug-loaded NFs showed an encapsulation capacity of 0.027 mg TMA/mg PCL and 0.024 mg TMA/mg PLA/PVP. Then, the cytotoxic activity of both polymeric systems was tested in CRC (T84), BC (MCF-7) and a no tumor (L929) cell lines exposed to TMA-loaded NFs and blank NFs for 48 h. Moreover, cell cycle assay, genotoxicity, angiogenesis and apoptosis tests were carried out to study the mechanism of action of TMA. Blank NFs showed no-toxicity in all cell lines tested and both drug-loaded NFs significantly reduced cell proliferation (relative proliferation of ≈44 % and ≈25 % respectively). Therefore, TMA was less genotoxic than maslinic acid (MA), and reduced VEGFA expression in MCF-7 cells (1.32 and 2.12-fold for MA and TMA respectively). These results showed that TMA-loaded NFs could constitute a promising biocompatible and biodegradable nanoplatform for the local treatment of solid tumors such as CRC or BC.
Collapse
Affiliation(s)
- Cristina Luque
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18071, Spain; Biosanitary Institute of Granada (ibs. GRANADA), Granada 18014, Spain
| | - María de la Cabeza Fernández
- Nanobiotechnology for Life Sciences Laboratory, Department of Chemistry in Pharmaceutical Science, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - David Fuentes-Rios
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, 29071 Málaga, Spain
| | - Ana Cepero
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18071, Spain; Biosanitary Institute of Granada (ibs. GRANADA), Granada 18014, Spain
| | | | - Manuel Doña
- Department of Organic Chemistry, Faculty of Sciences, University of Malaga, 29071 Málaga, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18071, Spain; Biosanitary Institute of Granada (ibs. GRANADA), Granada 18014, Spain
| | - Laura Lozano-Chamizo
- Nanobiotechnology for Life Sciences Laboratory, Department of Chemistry in Pharmaceutical Science, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain; Atrys Health, E-28001 Madrid, Spain
| | - Marco Filice
- Nanobiotechnology for Life Sciences Laboratory, Department of Chemistry in Pharmaceutical Science, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - Marzia Marciello
- Nanobiotechnology for Life Sciences Laboratory, Department of Chemistry in Pharmaceutical Science, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain
| | | | | | - Laura Cabeza
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18071, Spain; Biosanitary Institute of Granada (ibs. GRANADA), Granada 18014, Spain.
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18071, Spain; Biosanitary Institute of Granada (ibs. GRANADA), Granada 18014, Spain
| | - José Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain; Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18071, Spain; Biosanitary Institute of Granada (ibs. GRANADA), Granada 18014, Spain
| |
Collapse
|
4
|
Hasan SN, Banerjee J, Patra S, Kar S, Das S, Samanta S, Wanigasekera D, Pavithra U, Wijesekera K, Napagoda M, Giri B, Dash SK, Bag BG. Self-assembled renewable nano-sized pentacyclic triterpenoid maslinic acids in aqueous medium for anti-leukemic, antibacterial and biocompatibility studies: An insight into targeted proteins-compound interactions based mechanistic pathway prediction through molecular docking. Int J Biol Macromol 2023; 245:125416. [PMID: 37336373 DOI: 10.1016/j.ijbiomac.2023.125416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/23/2023] [Accepted: 06/13/2023] [Indexed: 06/21/2023]
Abstract
Maslinic acid is a naturally occurring dihydroxy, mono-carboxy bioactive triterpenoid. Its bulky structure was the main hindrance in the path of biological activity. Sodium and potassium salts of nano-sized triterpenoid maslinic acid were prepared from maslinic acid and its self-assembly property was studied in aqueous and aqueous-organic binary liquid mixtures. Morphology of the compounds studied by Field Emission Scanning Electron Microscopy (FESEM), Atomic Force Microscopy (AFM), High Resolution Transmission Electron Microscopy (HRTEM), Optical Microscopy, Fourier Transform Infrared Spectroscopy (FTIR) and X-ray diffraction (XRD) revealed vesicular morphology of the self-assemblies. Selective cytotoxicity was performed in leukemic (K-562 and KG-1a) and PBMC cells. Among the three self-assemblies (maslinic acid 1, sodium maslinate 2 and potassium maslinate 3), sodium maslinate 2 showed better antileukemic efficacy. Sodium maslinate 2 induced apoptosis in leukemic cells by elevating ROS levels and disrupting the cellular antioxidant system. From the in-silico studies, it was confirmed that 2 interacted with extrinsic and intrinsic apoptotic proteins of leukemic cells and killed those cells by inducing apoptotic pathways. The compounds 1, 2 and 3 showed significant antibacterial efficacy against E.coli strain through binding with several periplasmic membrane fusion protein (MFP) and limiting the efflux system leading to arrestation of antimicrobial resistance.
Collapse
Affiliation(s)
- Sk Nurul Hasan
- Department of Chemistry & Chemical Technology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Jhimli Banerjee
- Department of Physiology, University of Gour Banga, Malda 732103, West Bengal, India
| | - Soumen Patra
- Department of Chemistry & Chemical Technology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Sukhendu Kar
- Department of Chemistry & Chemical Technology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Sayan Das
- Department of Chemistry & Chemical Technology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Sovan Samanta
- Department of Physiology, University of Gour Banga, Malda 732103, West Bengal, India
| | - Dharani Wanigasekera
- Department of Biochemistry, Faculty of Medicine, University of Ruhuna, Galle 80000, Sri Lanka
| | - Upekshi Pavithra
- Department of Biochemistry, Faculty of Medicine, University of Ruhuna, Galle 80000, Sri Lanka
| | - Kanchana Wijesekera
- Department of Pharmacy, Faculty of Allied Health Sciences, University of Ruhuna, Galle 80 000, Sri Lanka
| | - Mayuri Napagoda
- Department of Biochemistry, Faculty of Medicine, University of Ruhuna, Galle 80000, Sri Lanka
| | - Biplab Giri
- Department of Physiology, University of Gour Banga, Malda 732103, West Bengal, India
| | - Sandeep Kumar Dash
- Department of Physiology, University of Gour Banga, Malda 732103, West Bengal, India.
| | - Braja Gopal Bag
- Department of Chemistry & Chemical Technology, Vidyasagar University, Midnapore 721102, West Bengal, India.
| |
Collapse
|
5
|
Aguilera-Garrido A, Graván P, Navarro-Marchal SA, Medina-O'Donnell M, Parra A, Gálvez-Ruiz MJ, Marchal JA, Galisteo-González F. Maslinic acid solid lipid nanoparticles as hydrophobic anticancer drug carriers: Formulation, in vitro activity and in vivo biodistribution. Biomed Pharmacother 2023; 163:114828. [PMID: 37163783 DOI: 10.1016/j.biopha.2023.114828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/14/2023] [Accepted: 04/30/2023] [Indexed: 05/12/2023] Open
Abstract
Maslinic acid (MA) is a natural pentacyclic triterpenoid with inherent antitumor activity which has a very low solubility in water. MA solid lipid nanoparticles (SLNs) were prepared using Poloxamer 407 and Dicarboxylic acid-Poloxamer 407 as surfactants. Both MA SLNs are monodisperse, with sizes around 130 nm, and stable. Curcumin has been encapsulated in both types of nanoparticles without altering their colloidal properties. Moreover, SLNs greatly improve the solubility of MA and Curcumin. The cytotoxicity of MA and SLNs has been evaluated in BxPC3 human pancreatic cancer cells, MCF7 human breast cancer cells, and in a human fibroblast primary cell line. MA shows higher cytotoxic effect in BxPC3 and MCF7 cancer cells than in human primary fibroblasts. Nile Red loaded MA SLNs are quickly uptaken by BxPC3 and MCF7 cells, and show different cytoplasmic distributions depending on the cellular line. The oral or intravenous administration of MA SLNs in mice does not report any toxic effect, and the intravenous administration of fluorescent MA SLNs shows a homogeneous distribution in mice, without site-specific accumulation. Results suggest the great potential of MA SLNs as nanocarriers of anticancer drugs and as promising targeted theranostic nanodevices.
Collapse
Affiliation(s)
- Aixa Aguilera-Garrido
- Department of Applied Physics, University of Granada, Fuentenueva, s/n, Granada 18071, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, Fuentenueva, s/n, Granada 18071, Spain
| | - Pablo Graván
- Department of Applied Physics, University of Granada, Fuentenueva, s/n, Granada 18071, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, Fuentenueva, s/n, Granada 18071, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18016, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), University of Granada, Granada 18012, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada 18016, Spain; BioFab i3D, Biofabrication and 3D (bio)printing laboratory, University of Granada, Granada 18100, Spain
| | - Saúl A Navarro-Marchal
- Excellence Research Unit Modelling Nature (MNat), University of Granada, Fuentenueva, s/n, Granada 18071, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada 18016, Spain; Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Marta Medina-O'Donnell
- Department of Organic Chemistry, University of Granada, Fuentenueva, s/n, Granada 18071, Spain
| | - Andrés Parra
- Department of Organic Chemistry, University of Granada, Fuentenueva, s/n, Granada 18071, Spain
| | - María José Gálvez-Ruiz
- Department of Applied Physics, University of Granada, Fuentenueva, s/n, Granada 18071, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, Fuentenueva, s/n, Granada 18071, Spain
| | - Juan Antonio Marchal
- Excellence Research Unit Modelling Nature (MNat), University of Granada, Fuentenueva, s/n, Granada 18071, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada 18016, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), University of Granada, Granada 18012, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada 18016, Spain; BioFab i3D, Biofabrication and 3D (bio)printing laboratory, University of Granada, Granada 18100, Spain.
| | - Francisco Galisteo-González
- Department of Applied Physics, University of Granada, Fuentenueva, s/n, Granada 18071, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, Fuentenueva, s/n, Granada 18071, Spain.
| |
Collapse
|
6
|
Ooi KX, Poo CL, Subramaniam M, Cordell GA, Lim YM. Maslinic acid exerts anticancer effects by targeting cancer hallmarks. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154631. [PMID: 36621168 DOI: 10.1016/j.phymed.2022.154631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/14/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Natural products have long been regarded as a source of anticancer compounds with low toxicity. Evidence revealed that maslinic acid (MA), a widely distributed pentacyclic triterpene in common foodstuffs, exhibited pronounced inhibitory effects against various cancer cell lines. Most cancer cells thrive by acquiring cancer hallmarks, as coined by Hanahan and Weinberg in 2000 and 2011. PURPOSE This represents the first systematic review concerning the anticancer properties of MA as these cancer hallmarks are targeted. It aims to summarize the antineoplastic activities of MA, discuss the diverse mechanisms of action based on the effects of MA exerted on each hallmark. METHODS A comprehensive literature search was conducted using the search terms "maslinic," "cancer," "tumor," and "neoplasm," to retrieve articles from the databases MEDLINE, EMBASE, Web of Science, and Scopus published up to September 2022. Study selection was conducted by three reviewers independently from title and abstract screening until full-text evaluation. Data extraction was done by one reviewer and counterchecked by the second reviewer. RESULTS Of the 330 articles assessed, 40 papers met the inclusion criteria and revealed that MA inhibited 16 different cancer cell types. MA impacted every cancer hallmark by targeting multiple pathways. CONCLUSION This review provides insights regarding the inhibitory effects of MA against various cancers and its remarkable biological properties as a pleiotropic bioactive compound, which encourage further investigations.
Collapse
Affiliation(s)
- Kai Xin Ooi
- Centre for Cancer Research, Universiti Tunku Abdul Rahman, Kajang, 43000, Selangor, Malaysia
| | - Chin Long Poo
- Herbal Medicine Research Centre, Institute for Medical Research, Setia Alam, 40170, Selangor, Malaysia
| | - Menaga Subramaniam
- Centre for Cancer Research, Universiti Tunku Abdul Rahman, Kajang, 43000, Selangor, Malaysia
| | - Geoffrey A Cordell
- Natural Products Inc., Evanston, IL, USA; Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Yang Mooi Lim
- Centre for Cancer Research, Universiti Tunku Abdul Rahman, Kajang, 43000, Selangor, Malaysia; Department of Pre-Clinical Sciences, Universiti Tunku Abdul Rahman, Kajang, 43000, Selangor, Malaysia.
| |
Collapse
|
7
|
He Y, Wang Y, Yang K, Jiao J, Zhan H, Yang Y, Lv D, Li W, Ding W. Maslinic Acid: A New Compound for the Treatment of Multiple Organ Diseases. Molecules 2022; 27:8732. [PMID: 36557864 PMCID: PMC9786823 DOI: 10.3390/molecules27248732] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Maslinic acid (MA) is a pentacyclic triterpene acid, which exists in many plants, including olive, and is highly safe for human beings. In recent years, it has been reported that MA has anti-inflammatory, antioxidant, anti-tumor, hypoglycemic, neuroprotective and other biological activities. More and more experimental data has shown that MA has a good therapeutic effect on multiple organ diseases, indicating that it has great clinical application potential. In this paper, the extraction, purification, identification and analysis, biological activity, pharmacokinetics in vivo and molecular mechanism of MA in treating various organ diseases are reviewed. It is hoped to provide a new idea for MA to treat various organ diseases.
Collapse
Affiliation(s)
- Yan He
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Yi Wang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Kun Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Jia Jiao
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Hong Zhan
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Youjun Yang
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - De Lv
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Weihong Li
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| | - Weijun Ding
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu 611137, China
| |
Collapse
|
8
|
Aguilera-Garrido A, Arranz E, Gálvez-Ruiz MJ, Marchal JA, Galisteo-González F, Giblin L. Solid lipid nanoparticles to improve bioaccessibility and permeability of orally administered maslinic acid. Drug Deliv 2022; 29:1971-1982. [PMID: 35762633 PMCID: PMC9246121 DOI: 10.1080/10717544.2022.2086937] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Maslinic acid (MA) is a plant-derived, low water-soluble compound with antitumor activity. We have formulated MA in the form of solid lipid nanoparticles (SLNs) with three different shell compositions: Poloxamer 407 (PMA), dicarboxylic acid-Poloxamer 407 (PCMA), and HA-coated PCMA (PCMA-HA). These SLNs improved the solubility of MA up to 7.5 mg/mL, are stable in a wide range of pH, and increase the bioaccessibility of MA after in vitro gastrointestinal (GI) digestion. Gastrointestinal digested SLNs afforded MA delivery across in vitro gut barrier models (21 days old Caco-2 and mucus-producing Caco-2/HT29-MTX co-cultures). The cellular fraction of Caco-2/HT29-MTX co-cultures retained more MA from GI digested PCMA-HA than the Caco-2 monolayers. The concentration of MA reached in the basolateral chamber inhibited growth of pancreatic cancer cells, BxPC3. Finally, confocal microscopy images provided evidence that Nile Red incorporated in MA SLNs was capable of crossing Caco-2 monolayers to be taken up by basolaterally located BxPC3 cells. We have demonstrated that SLNs can be used as nanocarriers of hydrophobic antitumor compounds and that these SLNs are suitable for oral consumption and delivery of the bioactive across the gut barrier.
Collapse
Affiliation(s)
- Aixa Aguilera-Garrido
- Department of Applied Physics, University of Granada, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - Elena Arranz
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - María José Gálvez-Ruiz
- Department of Applied Physics, University of Granada, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - Juan Antonio Marchal
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain.,Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada - University of Granada, Granada, Spain.,BioFab i3D - Biofabrication and 3D (Bio)Printing Laboratory, University of Granada, Granada, Spain.,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Francisco Galisteo-González
- Department of Applied Physics, University of Granada, Granada, Spain.,Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - Linda Giblin
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| |
Collapse
|
9
|
Involvement of the PI3K/AKT Intracellular Signaling Pathway in the AntiCancer Activity of Hydroxytyrosol, a Polyphenol from Olea europaea, in Hematological Cells and Implication of HSP60 Levels in Its Anti-Inflammatory Activity. Int J Mol Sci 2022; 23:ijms23137053. [PMID: 35806065 PMCID: PMC9266908 DOI: 10.3390/ijms23137053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/06/2022] [Accepted: 06/22/2022] [Indexed: 12/24/2022] Open
Abstract
Hydroxytyrosol (HT), the main representative of polyphenols of olive oil, has been described as one of the most powerful natural antioxidants, also showing anti-inflammatory, antimicrobial, cardioprotective and anticancer activity in different type of cancers, but has been little studied in hematological neoplasms. The objective of this work was to evaluate the anticancer potential of HT in acute human leukemia T cells (Jurkat and HL60) and the anti-inflammatory potential in murine macrophages (Raw264.7). For this, cytotoxicity tests were performed for HT, showing IC50 values, at 24 h, for Jurkat, HL60 and Raw264.7 cells, of 27.3 µg·mL−1, 109.8 µg·mL−1 and 45.7 µg·mL−1, respectively. At the same time, HT caused cell arrest in G0/G1 phase in both Jurkat and HL60 cells by increasing G0/G1 phase and significantly decreasing S phase. Apoptosis and cell cycle assays revealed an antiproliferative effect of HT, decreasing the percentage of dividing cells and increasing apoptosis. Furthermore, HT inhibited the PI3K signaling pathway and, consequently, the MAPK pathway was activated. Inflammation tests revealed that HT acts as an anti-inflammatory agent, reducing NO levels in Raw264.7 cells previously stimulated by lipopolysaccharide (LPS). These processes were confirmed by the changes in the expression of the main markers of inflammation and cancer. In conclusion, HT has an anticancer and anti-inflammatory effect in the cell lines studied, which were Raw264.7, Jurkat, and HL60, and could be used as a natural drug in the treatment of liquid cancers, leukemias, myelomas and lymphomas.
Collapse
|
10
|
Rufino-Palomares EE, Pérez-Jiménez A, García-Salguero L, Mokhtari K, Reyes-Zurita FJ, Peragón-Sánchez J, Lupiáñez JA. Nutraceutical Role of Polyphenols and Triterpenes Present in the Extracts of Fruits and Leaves of Olea europaea as Antioxidants, Anti-Infectives and Anticancer Agents on Healthy Growth. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072341. [PMID: 35408740 PMCID: PMC9000726 DOI: 10.3390/molecules27072341] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022]
Abstract
There is currently a worldwide consensus and recognition of the undoubted health benefits of the so-called Mediterranean diet, with its intake being associated with a lower risk of mortality. The most important characteristics of this type of diet are based on the consumption of significant amounts of fruit, vegetables, legumes, and nuts, which provide, in addition to some active ingredients, fiber and a proportion of vegetable protein, together with extra virgin olive oil (EVOO) as the main sources of vegetable fat. Fish and meat from poultry and other small farm animals are the main sources of protein. One of the main components, as already mentioned, is EVOO, which is rich in monounsaturated fatty acids and to a lesser extent in polyunsaturated fatty acids. The intake of this type of nutrient also provides an important set of phytochemicals whose health potential is widely spread and agreed upon. These phytochemicals include significant amounts of anthocyanins, stilbenes, flavonoids, phenolic acids, and terpenes of varying complexities. Therefore, the inclusion in the diet of this type of molecules, with a proven healthy effect, provides an unquestionable preventive and/or curative activity on an important group of pathologies related to cardiovascular, infectious, and cancerous diseases, as well as those related to the metabolic syndrome. The aim of this review is therefore to shed light on the nutraceutical role of two of the main phytochemicals present in Olea europaea fruit and leaf extracts, polyphenols, and triterpenes, on healthy animal growth. Their immunomodulatory, anti-infective, antioxidant, anti-aging, and anti-carcinogenic capabilities show them to be potential nutraceuticals, providing healthy growth.
Collapse
Affiliation(s)
- Eva E. Rufino-Palomares
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Avenida Fuentenueva, 18071 Granada, Spain; (E.E.R.-P.); (L.G.-S.); (F.J.R.-Z.)
| | - Amalia Pérez-Jiménez
- Department of Zoology, Faculty of Sciences, University of Granada, Avenida Fuentenueva, 18071 Granada, Spain;
| | - Leticia García-Salguero
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Avenida Fuentenueva, 18071 Granada, Spain; (E.E.R.-P.); (L.G.-S.); (F.J.R.-Z.)
| | - Khalida Mokhtari
- Department of Biology, Faculty of Sciences, Mohammed I University, Oujda BP 717 60000, Morocco;
| | - Fernando J. Reyes-Zurita
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Avenida Fuentenueva, 18071 Granada, Spain; (E.E.R.-P.); (L.G.-S.); (F.J.R.-Z.)
| | - Juan Peragón-Sánchez
- Department of Experimental Biology, Biochemistry and Molecular Biology Section, Faculty of Experimental Biology, University of Jaén, 23071 Jaén, Spain;
| | - José A. Lupiáñez
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Avenida Fuentenueva, 18071 Granada, Spain; (E.E.R.-P.); (L.G.-S.); (F.J.R.-Z.)
- Correspondence: ; Tel.: +34-958-243-089; Fax: +34-958-249-945
| |
Collapse
|
11
|
Romsuk J, Yasumoto S, Fukushima EO, Miura K, Muranaka T, Seki H. High-yield bioactive triterpenoid production by heterologous expression in Nicotiana benthamiana using the Tsukuba system. FRONTIERS IN PLANT SCIENCE 2022; 13:991909. [PMID: 36082301 PMCID: PMC9447470 DOI: 10.3389/fpls.2022.991909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 07/27/2022] [Indexed: 05/14/2023]
Abstract
Oleanolic acid is a pentacyclic triterpenoid found in numerous plant species and is a precursor to several bioactive triterpenoids with commercial potential. However, oleanolic acid accumulates at low levels in plants, and its chemical synthesis is challenging. Here, we established a method for producing oleanolic acid in substantial quantities via heterologous expression of pathway enzymes in Nicotiana benthamiana. The "Tsukuba system" is one of the most efficient agroinfiltration-based transient protein expression systems using the vector pBYR2HS, which contains geminiviral replication machinery and a double terminator for boosting expression. Additionally, the pBYR2HS vector contains an expression cassette for the gene-silencing suppressor p19 protein from tomato bushy stunt virus, which can also contribute to enhancing the expression of target proteins. In this study, we evaluated the applicability of this system to heterologous triterpenoid production in N. benthamiana. Medicago truncatula cytochrome P450 monooxygenase (CYP) 716A12 is the first enzyme to be functionally characterized as β-amyrin C-28 oxidase producing oleanolic acid. A mutant CYP716A12 (D122Q) with improved catalytic activity engineered in our previous study was co-expressed with other enzymes in N. benthamiana leaves. Using pBYR2HS, oleanolic acid yield was increased 13.1-fold compared with that using the conventional binary vector, indicating the advantage of the Tsukuba system. We also demonstrated the efficacy of co-expressing a mutant Arabidopsis thaliana HMGR1 catalytic domain, additional NADPH-cytochrome P450 reductase (CPR) transferring electrons to heterologous CYPs, and application of ascorbic acid for preventing leaf necrosis after agroinfiltration, to improve product yield. As a result, the product yields of both simple (β-amyrin) and oxidized (oleanolic acid and maslinic acid) triterpenoids were significantly improved compared with the previously reported yield in heterologous triterpenoid production in N. benthamiana leaves.
Collapse
Affiliation(s)
- Jutapat Romsuk
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | - Shuhei Yasumoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
| | - Ery Odette Fukushima
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Plant Translational Research Group, Universidad Regional Amazónica IKIAM, Tena, Ecuador
| | - Kenji Miura
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Toshiya Muranaka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
| | - Hikaru Seki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
- *Correspondence: Hikaru Seki,
| |
Collapse
|
12
|
Lupiáñez JA, Rufino-Palomares EE. Phytochemicals: "A Small Defensive Advantage for Plants and Fungi; a Great Remedy for the Health of Mankind". Molecules 2021; 26:molecules26206159. [PMID: 34684740 PMCID: PMC8538969 DOI: 10.3390/molecules26206159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- José A. Lupiáñez
- Correspondence: (J.A.L.); (E.E.R.-P.); Tel.: +34-958-243089 (J.A.L.); +34-958-243252 (E.E.R.-P.); Fax: +34-958-249945 (J.A.L. & E.E.R.-P.)
| | - Eva E. Rufino-Palomares
- Correspondence: (J.A.L.); (E.E.R.-P.); Tel.: +34-958-243089 (J.A.L.); +34-958-243252 (E.E.R.-P.); Fax: +34-958-249945 (J.A.L. & E.E.R.-P.)
| |
Collapse
|
13
|
Yu L, Xie X, Cao X, Chen J, Chen G, Chen Y, Li G, Qin J, Peng F, Peng C. The Anticancer Potential of Maslinic Acid and Its Derivatives: A Review. Drug Des Devel Ther 2021; 15:3863-3879. [PMID: 34526766 PMCID: PMC8437384 DOI: 10.2147/dddt.s326328] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/14/2021] [Indexed: 12/25/2022] Open
Abstract
Cancer is still an insurmountable problem for humans and critically attacking human health. In recent years, natural products have gained increasing attention in the field of anti-tumor due to their extensive sources and minimal side effects. Maslinic acid (MA), a pentacyclic triterpene acid mainly derived from the olive tree (Olea europaea L.) has been confirmed to possess great anti-cancer effects. This paper reviewed the inhibitory effect of MA and its derivatives on lung cancer, colon cancer, ovarian cancer, gastric cancer, lymphatic, leukemia, breast cancer, pancreatic cancer, melanoma, prostate cancer, renal cell carcinoma, gallbladder cancer, and bladder cancer, among others. MA inhibited the proliferation of various tumor cells and showed lower IC50 values in melanoma 518A2 cells and gastric cancer MKN28 cells compared with other cell lines. A series of semi-synthetic derivatives obtained by modifying MA chemical structure have been shown to have high cytotoxicity to human tumor cell lines, but low cytotoxicity to non-malignant cells, which is conducive to developing its potential as a chemotherapeutic agent. These studies suggest that MA derivatives have broad prospects in the development of antitumor therapeutics in the future and warrant further study.
Collapse
Affiliation(s)
- Lei Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xiaoyu Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Junren Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Guanru Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Yan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Gangmin Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Junyuan Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| |
Collapse
|
14
|
Are Ancestral Medical Practices the Future Solution to Today's Medical Problems? Molecules 2021; 26:molecules26154701. [PMID: 34361852 PMCID: PMC8348408 DOI: 10.3390/molecules26154701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 01/11/2023] Open
|
15
|
Deng J, Wang H, Mu X, He X, Zhao F, Meng Q. Advances in Research on the Preparation and Biological Activity of Maslinic Acid. Mini Rev Med Chem 2021; 21:79-89. [PMID: 32703128 DOI: 10.2174/1389557520666200722134208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/26/2019] [Accepted: 04/20/2020] [Indexed: 11/22/2022]
Abstract
Maslinic acid, a pentacyclic triterpene acid, is mainly isolated from olives. Maslinic acid and its derivatives exhibit a broad range of biological properties, such as anti-inflammatory, anticancer, anti-diabetic, antimicrobial, neuroprotective and hepatoprotective activities. In this minireview, the progress of research on maslinic acid with regard to its bioactivities, extraction, semisynthetic preparation and patents is reported. The relationships between the structure and the activity of maslinic acid and its derivatives are also discussed.
Collapse
Affiliation(s)
- Jianqiang Deng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China
| | - Huiyun Wang
- College of Pharmacy, Jining Medical University, Rizhao, 276826, China
| | - Xiaodong Mu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China
| | - Xiuting He
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China
| | - Fenglan Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China
| | - Qingguo Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, China
| |
Collapse
|
16
|
Morgan HJN, Delgado AQ, Saldanha LL, Camaforte NADP, Dokkedal AL, Bosqueiro JR. Vochysia tucanorum Mart. butanol fraction presents antitumoral activity in vivo and prevents the installation of cachexia in solid Ehrlich tumor model. BMC Complement Med Ther 2021; 21:20. [PMID: 33413302 PMCID: PMC7791751 DOI: 10.1186/s12906-020-03190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/15/2020] [Indexed: 11/25/2022] Open
Abstract
Background Cancer is a multifactorial disease caused by uncontrolled proliferation of cells. About 50–80% of cancer patients develop cachexia, a complex metabolic syndrome associated with an increase of mortality and morbidity. However, there are no effective therapies in medical clinic for cancer cachexia. Vochysia tucanorum Mart. is a common three of the Brazilian “Cerrado”. The butanolic fraction of V. tucanorum (Fr-BuVt), very rich in triterpenes with various biological activities, might be interesting in being tested in cancer cachexia syndrome. Hence, the present study was undertaken to investigate the antitumoral activity of Fr-BuVt and its potential against cachexia development. Methods Ehrlich tumor was used as model of cancer cachexia. Ascitic Ehrlich tumor cells were collected, processed and inoculated subcutaneously in saline solution (1 × 107/100 μl; ≥95% viability) for the obtention of solid Ehrlich carcinoma. After inoculation, solid Ehrlich carcinoma-bearing mice were treated by 14 consecutive days by gavage with Fr-BuVt (200 mg/kg). Body weight and tumor volume were measure during the treatment period. Tumors were removed, weighed and properly processed to measure the content and phosphorylation levels of key-proteins involved to apoptotic and proliferation process by Western Blot. Muscles and adipose tissues were removed for weighed. Serum was collected to cytokines levels and energetic blood markers measurements. Results The treatment with the Fr-BuVt (200 mg/kg, 14 days) decreased the solid Ehrlich tumor volume and weight besides increased the expression of the pro-apoptotic proteins caspase-3 and BAX, but also decreased the expression of the proteins involved in proliferation NFκB, mTOR and ERK. In addition, our data shows that the administration of Fr-BuVt was able to prevent the installation of cancer cachexia in Ehrlich carcinoma-bearing mice, since prevented the loss of body weight, as well as the loss of muscle and adipose tissue. Moreover, an improvement in some blood parameters such as decrease in cytokines TNF-α and IL-6 levels is observed. Conclusions The study revealed that Fr-BuVt has antitumoral activity and prevent installation of cancer cachexia in Ehrlich model. Therefore, Fr-BuVt may represent an alternative treatment for cancer cachexia. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-020-03190-1.
Collapse
Affiliation(s)
- Henrique Jorge Novaes Morgan
- Laboratory of Metabolism Control, Ribeirão Preto Medical School, Department of Physiology, University of São Paulo, Ribeirão Preto, State of São Paulo, Brazil
| | - Aislan Quintiliano Delgado
- Laboratory of Endocrine Pancreas Physiology, Faculty of Science, Department of Physical Education, São Paulo State University, Av. Eng. Luiz Edmundo Carrijo Coube 14-01, Bauru, São Paulo, Postal Code: 17033-360, Brazil
| | - Luiz Leonardo Saldanha
- Laboratory of Natural Products Chemistry, Faculty of Science, Department of Biological Sciences, São Paulo State University, Bauru, State of São Paulo, Brazil
| | - Nathalia Aparecida De Paula Camaforte
- Laboratory of Endocrine Pancreas Physiology, Faculty of Science, Department of Physical Education, São Paulo State University, Av. Eng. Luiz Edmundo Carrijo Coube 14-01, Bauru, São Paulo, Postal Code: 17033-360, Brazil
| | - Anne Lígia Dokkedal
- Laboratory of Natural Products Chemistry, Faculty of Science, Department of Biological Sciences, São Paulo State University, Bauru, State of São Paulo, Brazil
| | - José Roberto Bosqueiro
- Laboratory of Endocrine Pancreas Physiology, Faculty of Science, Department of Physical Education, São Paulo State University, Av. Eng. Luiz Edmundo Carrijo Coube 14-01, Bauru, São Paulo, Postal Code: 17033-360, Brazil.
| |
Collapse
|
17
|
Lau WM, Subramaniam M, Goh HH, Lim YM. Temporal gene expression profiling of maslinic acid-treated Raji cells. Mol Omics 2021; 17:252-259. [PMID: 33346776 DOI: 10.1039/d0mo00168f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Maslinic acid is a novel phytochemical reported to target multiple signaling pathways. A complete gene expression profile was therefore constructed to illustrate the anti-tumourigenesis effects of maslinic acid in Raji cells across five time-points. Microarray analysis was used to identify genes that were differentially expressed in maslinic acid treated Raji cells at 0, 4, 8, 12, 24 and 48 h. Extracted RNA was hybridized using the AffymetrixGeneChip to obtain expression profiles. A total of 109 genes were found to be significantly expressed over a period of 48 hours. By 12 hours, maslinic acid regulates the majority of genes involved in the cell cycle, p53 and NF-κB signaling pathways. At the same time, XAF1, APAF1, SESN3, and TP53BP2 were evidently up-regulated, while oncogenes, FAIM, CD27, and RRM2B, were down-regulated by at least 2-fold. In conclusion, maslinic acid shows an hourly progression of gene expression in Raji cells.
Collapse
Affiliation(s)
- Wai Meng Lau
- Centre for Cancer Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, PT21144, Jalan Sungai Long, Bandar Sungai Long, 43000 Kajang, Selangor, Malaysia.
| | - Menaga Subramaniam
- Centre for Cancer Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, PT21144, Jalan Sungai Long, Bandar Sungai Long, 43000 Kajang, Selangor, Malaysia.
| | - Hoe Han Goh
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Bangi, Malaysia
| | - Yang Mooi Lim
- Centre for Cancer Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, PT21144, Jalan Sungai Long, Bandar Sungai Long, 43000 Kajang, Selangor, Malaysia. and Department of Pre-Clinical Science, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Lot PT21144, Jalan Sungai Long, Bandar Sungai Long, 43000 Kajang, Selangor, Malaysia
| |
Collapse
|
18
|
A Diamine-PEGylated Oleanolic Acid Derivative Induced Efficient Apoptosis through a Death Receptor and Mitochondrial Apoptotic Pathway in HepG2 Human Hepatoma Cells. Biomolecules 2020; 10:biom10101375. [PMID: 32998255 PMCID: PMC7601263 DOI: 10.3390/biom10101375] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer. Our recent studies have shown that the diamine-(PEG)ylated oleanolic acid (OADP) has strong anti-tumor effects in HCCs. In this study, we evaluated the anti-tumor mechanisms of OADP in the HepG2 HCC cell line. The cytotoxicity results showed that HepG2 cell viability was markedly reduced, with a very low 50% of cell growth inhibitory concentration (IC50, 0.14 µg/mL). We then investigated the anti-tumor mechanisms of OADP in HepG2 cells. The flow-cytometry analysis was used to evaluate cell apoptosis, indicating that 74–95% of cells were apoptotic. OADP caused cell cycle arrest in the G0/G1 phase and the loss of the mitochondrial membrane potential (MMP). Western blot analysis was performed to assess the expression levels of key proteins associated with the underlying molecular mechanism. The results showed the clear upregulation of caspase-8, caspase-9, caspase-3, Bak, p21, and p53, accompanied by the downregulation of Bcl-2. Similar results were obtained by the cotreatment with OADP and the c-Jun N-terminal kinase (JNK) inhibitor SP600125. Agents such as OADP, which are capable of activating extrinsic and intrinsic apoptotic pathways, may represent potential HCC cancer therapies.
Collapse
|
19
|
Unveiling the Differential Antioxidant Activity of Maslinic Acid in Murine Melanoma Cells and in Rat Embryonic Healthy Cells Following Treatment with Hydrogen Peroxide. Molecules 2020; 25:molecules25174020. [PMID: 32899159 PMCID: PMC7504795 DOI: 10.3390/molecules25174020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 01/20/2023] Open
Abstract
Maslinic acid (MA) is a natural triterpene from Olea europaea L. with multiple biological properties. The aim of the present study was to examine MA’s effect on cell viability (by the MTT assay), reactive oxygen species (ROS levels, by flow cytometry) and key antioxidant enzyme activities (by spectrophotometry) in murine skin melanoma (B16F10) cells compared to those on healthy cells (A10). MA induced cytotoxic effects in cancer cells (IC50 42 µM), whereas no effect was found in A10 cells treated with MA (up to 210 µM). In order to produce a stress situation in cells, 0.15 mM H2O2 was added. Under stressful conditions, MA protected both cell lines against oxidative damage, decreasing intracellular ROS, which were higher in B16F10 than in A10 cells. The treatment with H2O2 and without MA produced different responses in antioxidant enzyme activities depending on the cell line. In A10 cells, all the enzymes were up-regulated, but in B16F10 cells, only superoxide dismutase, glutathione S-transferase and glutathione peroxidase increased their activities. MA restored the enzyme activities to levels similar to those in the control group in both cell lines, highlighting that in A10 cells, the highest MA doses induced values lower than control. Overall, these findings demonstrate the great antioxidant capacity of MA.
Collapse
|
20
|
Maslinic acid suppresses macrophage foam cells formation: Regulation of monocyte recruitment and macrophage lipids homeostasis. Vascul Pharmacol 2020; 128-129:106675. [DOI: 10.1016/j.vph.2020.106675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/20/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023]
|
21
|
Liao X, Hu F, Chen Z. A HPLC-MS method for profiling triterpenoid acids and triterpenoid esters in Osmanthus fragrans fruits. Analyst 2020; 144:6981-6988. [PMID: 31631209 DOI: 10.1039/c9an01542f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Triterpenoids, as an important family of plant secondary metabolites, have important biological activities associated with health and disease prevention. In this work, we proposed a HPLC-MS method for profiling multiple groups of triterpenoid acids and triterpenoid esters differing only in one position of the hydroxyl or methyl group in O. fragrans fruits. A total of thirty-one compounds were identified, and twenty-seven components were discovered in O. fragrans fruits for the first time. The HPLC-MS profiling method was applied in the analysis of the triterpenoids of O. fragrans flowers, and the time courses of triterpenoids of O. fragrans fruits.
Collapse
Affiliation(s)
- Xiaoyan Liao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), and School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | | | | |
Collapse
|
22
|
Storniolo CE, Martínez-Hovelman N, Martínez-Huélamo M, Lamuela-Raventos RM, Moreno JJ. Extra Virgin Olive Oil Minor Compounds Modulate Mitogenic Action of Oleic Acid on Colon Cancer Cell Line. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11420-11427. [PMID: 31545039 DOI: 10.1021/acs.jafc.9b04816] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Experimental and clinical findings suggest that olive oil has a protective effect, whereas oleic acid consumption induces colorectal cancer (CRC). Considering this apparent contradiction and that olive oil is a complex mix of fatty acids, mainly oleic acid and minor compounds such as phenolic compounds, lignans, hydrocarbons, and triterpenes, we study its effects on intestinal epithelial cell growth. Our results show that oleic acid (1-100 μM) but not elaidic acid induced DNA synthesis and Caco-2 cell growth (2-fold higher than cells without growth factors, p < 0.05). These effects were inhibited by 5-lipoxygenase inhibitors as well as the leukotriene antagonist (p < 0.05), suggesting the implication of this pathway in this mitogenic action. Hydroxytyrosol, oleuropein, pinoresinol, squalene, and maslinic acid (0.1-10 μM) reverted DNA synthesis and Caco-2 cell growth induced by oleic acid. These effects were not the consequence of the cell cycle arrest or the impairment of cell viability with the exception of hydroxytyrosol and maslinic acid that induced cell detachment and apoptosis (35.6 ± 2.3 and 43.2 ± 2.4%, respectively) at the higher concentration assayed. Oleuropein effects can be related with hydroxytyrosol release as a consequence of oleuropein hydrolysis by Caco-2 cells (up to 25%). Furthermore, hydroxytyrosol modulates the arachidonic acid cascade, and this event can be associated with its antimitogenic action. In conclusion, oleic acid and oleic acid in the presence of olive oil representative minor components have opposite effects, suggesting that the consumption of seed oils, high oleic acid seed oils, or olive oil will probably have different effects on CRC.
Collapse
Affiliation(s)
| | | | - Miriam Martínez-Huélamo
- CIBER 06/003 Physiology of Obesity and Nutrition CIBEROBN , Institute of Health Carlos III , Madrid 28029 , Spain
| | - Rosa M Lamuela-Raventos
- CIBER 06/003 Physiology of Obesity and Nutrition CIBEROBN , Institute of Health Carlos III , Madrid 28029 , Spain
| | - Juan J Moreno
- CIBER 06/003 Physiology of Obesity and Nutrition CIBEROBN , Institute of Health Carlos III , Madrid 28029 , Spain
| |
Collapse
|
23
|
Serbian I, Siewert B, Al-Harrasi A, Csuk R. 2-O-(2-chlorobenzoyl) maslinic acid triggers apoptosis in A2780 human ovarian carcinoma cells. Eur J Med Chem 2019; 180:457-464. [DOI: 10.1016/j.ejmech.2019.07.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/28/2019] [Accepted: 07/15/2019] [Indexed: 02/08/2023]
|
24
|
Huang XM, Yang ZJ, Xie Q, Zhang ZK, Zhang H, Ma JY. Natural products for treating colorectal cancer: A mechanistic review. Biomed Pharmacother 2019; 117:109142. [DOI: 10.1016/j.biopha.2019.109142] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 12/17/2022] Open
|
25
|
Baluchi I, Anani H, Hassanshahi G, Fatemi A, Khalilabadi RM. The effect of maslinic acid on apoptotic genes in u266 multiple myeloma cell line. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Hydrogen sulfide donor GYY4137 suppresses proliferation of human colorectal cancer Caco-2 cells by inducing both cell cycle arrest and cell death. Heliyon 2019; 5:e02244. [PMID: 31440595 PMCID: PMC6699460 DOI: 10.1016/j.heliyon.2019.e02244] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 06/24/2019] [Accepted: 08/02/2019] [Indexed: 01/01/2023] Open
Abstract
Conflicting data regarding the ability of hydrogen sulfide (H2S), which reaches high levels in the large intestine owing to biosynthesis in the intestinal cells and intestinal bacteria, to promote or inhibit colorectal cancer cell proliferation have been reported recently. In the present study, the effect of H2S on the proliferation of the human colorectal cancer cell line Caco-2 was examined by using the H2S donor GYY4137. At concentrations of 0.5 mM and 1.0 mM, GYY4137 significantly inhibited Caco-2 cell viability. Cell cycle analysis, and apoptosis and necrosis detection revealed that the anti-proliferative effect of GYY4137 was partially attributable to the induction of S-G2/M cell cycle arrest, apoptosis and necrosis. These results suggest that H2S has the potential to suppress human colorectal cancer cell proliferation by influencing both cell cycle and cell death.
Collapse
|
27
|
Baldelli G, De Santi M, Fraternale D, Brandi G, Fanelli M, Schiavano GF. Chemopreventive Potential of Apple Pulp Callus Against Colorectal Cancer Cell Proliferation and Tumorigenesis. J Med Food 2019; 22:614-622. [PMID: 31058564 DOI: 10.1089/jmf.2018.0188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
This study focused on the evaluation of the chemopreventive potential of tissue in vitro culture of the "Mela Rosa Marchigiana" apple (MRM callus) that allows the amplification of secondary metabolites. The MRM pulp and MRM callus chemopreventive potential was evaluated in terms of antiproliferative activity, inhibition of tumorigenesis in soft agar cultures, cell cycle and western blotting analyses in CaCo2 and LoVo colon cancer cell lines and in JB6 promotion-sensitive (JB6 P+) cells. MRM callus induced a strong concentration-dependent inhibition of colon cancer cell proliferation and suppressed 12-o-tetra-decanoyl-phorbol-13-acetate-induced tumorigenesis of JB6 P+ cells in soft agar cultures. MRM callus inhibited the phosphorylation of JNK, p38, and eIF2alpha. Our data indicate that the MRM callus exerts a good antiproliferative and antitumorigenic potential through the MAP kinase inhibition and could provide natural compounds with chemopreventive properties.
Collapse
Affiliation(s)
- Giulia Baldelli
- 1 Department of Biomolecular Sciences, Hygiene Unit, University of Urbino Carlo Bo, Urbino, Italy
| | - Mauro De Santi
- 1 Department of Biomolecular Sciences, Hygiene Unit, University of Urbino Carlo Bo, Urbino, Italy
| | - Daniele Fraternale
- 2 Department of Biomolecular Sciences, Plant Biology Unit, University of Urbino Carlo Bo, Urbino, Italy
| | - Giorgio Brandi
- 1 Department of Biomolecular Sciences, Hygiene Unit, University of Urbino Carlo Bo, Urbino, Italy
| | - Mirco Fanelli
- 3 Department of Biomolecular Sciences, Biotechnology Unit, University of Urbino Carlo Bo, Fano, Italy
| | | |
Collapse
|
28
|
Reduction of Preneoplastic Lesions Induced by 1,2-Dimethylhydrazine in Rat Colon by Maslinic Acid, a Pentacyclic Triterpene from Olea europaea L. Molecules 2019; 24:molecules24071266. [PMID: 30939812 PMCID: PMC6479602 DOI: 10.3390/molecules24071266] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/25/2019] [Accepted: 03/29/2019] [Indexed: 02/06/2023] Open
Abstract
Maslinic acid triggers compelling antiproliferative and pro-apoptotic effects in different human cancer cell lines. Hence, the chemopreventive activity was investigated on early stages of carcinogenesis induced by 1,2-dimethylhydrazine (DMH) which is a model that mimics human sporadic colorectal cancer. Male Sprague-Dawley rats were orally administered either maslinic acid at 5, 10 or 25 mg/kg dissolved in (2-hydroxypropyl)-β-cyclodextrin 20% (w/v) or the solvent for 49 days. After one week of treatment, animals received three weekly intraperitoneal injections of DMH at the dose of 20 mg/kg. Maslinic acid reduced the preneoplastic biomarkers, aberrant crypt foci (ACF) and mucin-depleted foci (MDF), already at 5 mg/kg in a 15% and 27%, respectively. The decline was significant at 25 mg/kg with decreases of 33% and 51%, respectively. Correlation analysis showed a significant association between the concentrations of maslinic acid found in the colon and the reduction of ACF (r = 0.999, p = 0.019) and MDF (r = 0.997, p = 0.049). The present findings demonstrate that maslinic acid induced an inhibition of the initiation stages of carcinogenesis. The assessment of this pentacyclic triterpene at the colon sheds light for designing diets with foods rich in maslinic acid to exert a chemopreventive activity in colorectal cancer.
Collapse
|
29
|
Olive Oil Effects on Colorectal Cancer. Nutrients 2018; 11:nu11010032. [PMID: 30583613 PMCID: PMC6357067 DOI: 10.3390/nu11010032] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/11/2018] [Accepted: 12/15/2018] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer is the fourth cause of cancer-related death worldwide. A Mediterranean diet showed protective action against colorectal cancer due to the intake of different substances. Olive oil is a fundamental component of the Mediterranean diet. Olive oil is rich in high-value health compounds (such as monounsaturated free fatty acids, squalene, phytosterols, and phenols). Phenolic compounds exert favourable effects on free radicals, inflammation, gut microbiota, and carcinogenesis. The interaction between gut microbiota and olive oil consumption could modulate colonic microbial composition or activity, with a possible role in cancer prevention. Gut microbiota is able to degrade some substances found in olive oil, producing active metabolites with chemopreventive action. Further clinical research is needed to clarify the beneficial effects of olive oil and its components. A better knowledge of the compounds found in olive oil could lead to the development of nutritional supplements or chemotherapeutic agents with a potential in the prevention and treatment of colorectal cancer.
Collapse
|
30
|
Ortega-Muñoz M, Rodríguez-Serrano F, De los Reyes-Berbel E, Mut-Salud N, Hernández-Mateo F, Rodríguez-López A, Garrido JM, López-Jaramillo FJ, Santoyo-González F. Biological Evaluation and Docking Studies of Synthetic Oleanane-type Triterpenoids. ACS OMEGA 2018; 3:11455-11468. [PMID: 30320262 PMCID: PMC6173505 DOI: 10.1021/acsomega.8b01034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
Saponins are potential wide-spectrum antitumor drugs, and copper(I) catalyzed azide-alkyne 1,3-dipolar cycloaddition is a suitable approach to synthesizing saponin-like compounds by regioselective glycosylation of the C2/C3 hydroxyl and C28 carboxylic groups of triterpene aglycones maslinic acid (MA) and oleanolic acid (OA). Biological studies on the T-84 human colon carcinoma cell line support the role of the hydroxyl groups at C2/C3, the influence of the aglycone, and the bulky nature of the substituents in C28. OA bearing a α-d-mannose moiety at C28 (compound 18) focused our interest because the estimated inhibitory concentration 50 was similar to that reported for ginsenoside Rh2 against colon cancer cells and it inhibits the G1-S phase transition affecting the cell viability and apoptosis. Considering that triterpenoids from natural sources have been identified as inhibitors of nuclear factor kappa-light-chain-enhancer of activated B cell (NF-κB) signaling, docking studies were conducted to evaluate whether NF-κB may be a potential target. Results are consistent with the biological study and predict a similar binding mode of MA and compound 18 to the p52 subunit from NF-κB but not for OA. The fact that the binding site is shared by the NF-κB inhibitor 6,6-dimethyl-2-(phenylimino)-6,7-dihydrobenzo[d][1,3]oxathiol-4(5H)-one supports the result and points to NF-κB as a potential target of both MA and compound 18.
Collapse
Affiliation(s)
- Mariano Ortega-Muñoz
- Department
of Organic Chemistry, Faculty of Sciences, Department of Organic
Chemistry, Biotechnology Institute, Institute of Biopathology and Regenerative Medicine
(IBIMER), and Department of Human Anatomy and Embryology, University of Granada, 18071 Granada, Spain
| | - Fernando Rodríguez-Serrano
- Department
of Organic Chemistry, Faculty of Sciences, Department of Organic
Chemistry, Biotechnology Institute, Institute of Biopathology and Regenerative Medicine
(IBIMER), and Department of Human Anatomy and Embryology, University of Granada, 18071 Granada, Spain
- Biosanitary
Research Institute of Granada (ibs.GRANADA), 18071 Granada, Spain
| | - Eduardo De los Reyes-Berbel
- Department
of Organic Chemistry, Faculty of Sciences, Department of Organic
Chemistry, Biotechnology Institute, Institute of Biopathology and Regenerative Medicine
(IBIMER), and Department of Human Anatomy and Embryology, University of Granada, 18071 Granada, Spain
| | - Nuria Mut-Salud
- Department
of Organic Chemistry, Faculty of Sciences, Department of Organic
Chemistry, Biotechnology Institute, Institute of Biopathology and Regenerative Medicine
(IBIMER), and Department of Human Anatomy and Embryology, University of Granada, 18071 Granada, Spain
| | - Fernando Hernández-Mateo
- Department
of Organic Chemistry, Faculty of Sciences, Department of Organic
Chemistry, Biotechnology Institute, Institute of Biopathology and Regenerative Medicine
(IBIMER), and Department of Human Anatomy and Embryology, University of Granada, 18071 Granada, Spain
| | - Andrea Rodríguez-López
- Department
of Organic Chemistry, Faculty of Sciences, Department of Organic
Chemistry, Biotechnology Institute, Institute of Biopathology and Regenerative Medicine
(IBIMER), and Department of Human Anatomy and Embryology, University of Granada, 18071 Granada, Spain
| | - José M. Garrido
- Department
of Organic Chemistry, Faculty of Sciences, Department of Organic
Chemistry, Biotechnology Institute, Institute of Biopathology and Regenerative Medicine
(IBIMER), and Department of Human Anatomy and Embryology, University of Granada, 18071 Granada, Spain
- Biosanitary
Research Institute of Granada (ibs.GRANADA), 18071 Granada, Spain
- Department
of Cardiovascular Surgery, Virgen de las
Nieves University Hospital, 18071 Granada, Spain
| | - F. Javier López-Jaramillo
- Department
of Organic Chemistry, Faculty of Sciences, Department of Organic
Chemistry, Biotechnology Institute, Institute of Biopathology and Regenerative Medicine
(IBIMER), and Department of Human Anatomy and Embryology, University of Granada, 18071 Granada, Spain
| | - Francisco Santoyo-González
- Department
of Organic Chemistry, Faculty of Sciences, Department of Organic
Chemistry, Biotechnology Institute, Institute of Biopathology and Regenerative Medicine
(IBIMER), and Department of Human Anatomy and Embryology, University of Granada, 18071 Granada, Spain
| |
Collapse
|
31
|
Abstract
Clinical trials of drugs for Alzheimer’s disease have called into question the role of amyloid in the disease. The reasons several drugs recently failed clinical trials for Alzheimer’s disease are presented. An alternative approach with a traditional plant medicine is discussed. The pharmacology of the phytochemicals found in the plant medicine is provided.
Collapse
|
32
|
Li F, Li Q, Shi X, Guo Y. Maslinic acid inhibits impairment of endothelial functions induced by high glucose in HAEC cells through improving insulin signaling and oxidative stress. Biomed Pharmacother 2017; 95:904-913. [DOI: 10.1016/j.biopha.2017.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/16/2017] [Accepted: 09/01/2017] [Indexed: 11/16/2022] Open
|
33
|
Maslinic acid promotes autophagy by disrupting the interaction between Bcl2 and Beclin1 in rat pheochromocytoma PC12 cells. Oncotarget 2017; 8:74527-74538. [PMID: 29088805 PMCID: PMC5650360 DOI: 10.18632/oncotarget.20210] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/24/2017] [Indexed: 12/23/2022] Open
Abstract
Maslinic acid (2α, 3β-dihydroxyolean-12-en-28-oic acid, MA) was isolated from natural plants and showed anti-cancer activity in rat Pheochromocytoma PC12 cells in our previous studies. We now discover that MA disrupts the interaction between Bcl2 and autophagy scaffold protein Beclin1 in the above cell line, leading to the up-regulation of autophagy. We investigated the effect of MA on the interaction between Bcl2 and Beclin1 by biochemical and biophysical methods in combination with autophagy characterization in the above cell line. Our results suggest that MA may serve as an autophagy activator by directly blocking the Bcl2-Beclin1 interaction to release free Beclin1 required for the recruitment of autophagy positive regulators, implying MA may exert its anti-cancer activity by regulating autophagy.
Collapse
|
34
|
Spyridopoulou K, Tiptiri-Kourpeti A, Lampri E, Fitsiou E, Vasileiadis S, Vamvakias M, Bardouki H, Goussia A, Malamou-Mitsi V, Panayiotidis MI, Galanis A, Pappa A, Chlichlia K. Dietary mastic oil extracted from Pistacia lentiscus var. chia suppresses tumor growth in experimental colon cancer models. Sci Rep 2017. [PMID: 28630399 PMCID: PMC5476564 DOI: 10.1038/s41598-017-03971-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Plant-derived bioactive compounds attract considerable interest as potential chemopreventive anticancer agents. We analyzed the volatile dietary phytochemicals (terpenes) present in mastic oil extracted from the resin of Pistacia lentiscus var. chia and comparatively investigated their effects on colon carcinoma proliferation, a) in vitro against colon cancer cell lines and b) in vivo on tumor growth in mice following oral administration. Mastic oil inhibited - more effectively than its major constituents- proliferation of colon cancer cells in vitro, attenuated migration and downregulated transcriptional expression of survivin (BIRC5a). When administered orally, mastic oil inhibited the growth of colon carcinoma tumors in mice. A reduced expression of Ki-67 and survivin in tumor tissues accompanied the observed effects. Notably, only mastic oil -which is comprised of 67.7% α-pinene and 18.8% myrcene- induced a statistically significant anti-tumor effect in mice but not α-pinene, myrcene or a combination thereof. Thus, mastic oil, as a combination of terpenes, exerts growth inhibitory effects against colon carcinoma, suggesting a nutraceutical potential in the fight against colon cancer. To our knowledge, this is the first report showing that orally administered mastic oil induces tumor-suppressing effects against experimental colon cancer.
Collapse
Affiliation(s)
- Katerina Spyridopoulou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus-Dragana, Alexandroupolis, 68100, Greece
| | - Angeliki Tiptiri-Kourpeti
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus-Dragana, Alexandroupolis, 68100, Greece
| | - Evangeli Lampri
- Department of Pathology, School of Health Sciences, University of Ioannina, University Campus, Ioannina, 45110, Greece
| | - Eleni Fitsiou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus-Dragana, Alexandroupolis, 68100, Greece
| | - Stavros Vasileiadis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus-Dragana, Alexandroupolis, 68100, Greece
| | - Manolis Vamvakias
- VIORYL S.A., 28th km National Road Athens - Lamia, Afidnes, 19014, Greece
| | - Haido Bardouki
- VIORYL S.A., 28th km National Road Athens - Lamia, Afidnes, 19014, Greece
| | - Anna Goussia
- Department of Pathology, School of Health Sciences, University of Ioannina, University Campus, Ioannina, 45110, Greece
| | - Vasiliki Malamou-Mitsi
- Department of Pathology, School of Health Sciences, University of Ioannina, University Campus, Ioannina, 45110, Greece
| | - Mihalis I Panayiotidis
- Department of Applied Sciences, Faculty of Health & Life Sciences, Northumbria University, Ellison Building A516, Newcastle Upon Tyne, NE1 8ST, United Kingdom
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus-Dragana, Alexandroupolis, 68100, Greece
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus-Dragana, Alexandroupolis, 68100, Greece
| | - Katerina Chlichlia
- Department of Molecular Biology and Genetics, Democritus University of Thrace, University Campus-Dragana, Alexandroupolis, 68100, Greece.
| |
Collapse
|
35
|
Medina-O'Donnell M, Rivas F, Reyes-Zurita FJ, Martinez A, Galisteo-González F, Lupiañez JA, Parra A. Synthesis and in vitro antiproliferative evaluation of PEGylated triterpene acids. Fitoterapia 2017; 120:25-40. [PMID: 28552598 DOI: 10.1016/j.fitote.2017.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 11/24/2022]
Abstract
A set of PEGylated derivatives of oleanolic and maslinic acids has been semi-synthesised, attaching ethylene glycol, diethylene glycol, triethylene glycol or tetraethylene glycol to the C-28 carboxyl group of these natural triterpenes and some derivatives. Another set of PEGylated derivatives has been semi-synthesised by connecting the same four ethylene glycols to the hydroxyl groups of the A ring of these triterpenic acids, through a carbonate linker, by reaction with trichloromethyl chloroformate. The aqueous solubility of some of these PEGylated derivatives has been compared with that of maslinic acid. The cytotoxic effects of 28 triterpenic PEGylated derivatives in three cancer-cell lines (B16-F10, HT29, and Hep G2) have been assayed. The best results have been achieved with the HT29 cell line, and specifically with the oleanolic acid derivatives having ethylene glycol or tetraethylene glycol attached to the C-28 carboxyl group, which are approximately 27-fold more effective than their natural precursor. Eight PEGylated derivatives have been selected to compare the cytotoxicity results in the HT29 cancer-cell line with those of a non-tumour cell line of the same tissue (IEC-18), four of which were less cytotoxic in the non-tumour cell line. These compounds showed apoptotic effects on treated cells, with percentages of total apoptosis between 20% and 53%, relative to control, at 72h and IC50 concentration, and between 29% to 62%, relative to control, for the same time and IC80 concentration. We have also found that with the treatment of these compounds in HT29 cancer cells, cell-cycle arrest occurred in the G0/G1 phase. Finally, we have also studied changes in mitochondrial membrane potential during apoptosis of HT29 cancer cells, and the results suggest an activation of the extrinsic apoptotic pathway for these compounds.
Collapse
Affiliation(s)
- Marta Medina-O'Donnell
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain
| | - Francisco Rivas
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain.
| | - Fernando J Reyes-Zurita
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain.
| | - Antonio Martinez
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain
| | | | - Jose A Lupiañez
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain
| | - Andres Parra
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain.
| |
Collapse
|
36
|
An T, Gong Y, Li X, Kong L, Ma P, Gong L, Zhu H, Yu C, Liu J, Zhou H, Mao B, Li Y. USP7 inhibitor P5091 inhibits Wnt signaling and colorectal tumor growth. Biochem Pharmacol 2017; 131:29-39. [PMID: 28216017 DOI: 10.1016/j.bcp.2017.02.011] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 02/14/2017] [Indexed: 12/30/2022]
Abstract
Aberrant activation of Wnt/β-catenin signaling is closely associated with the development of various human cancers, especially colorectal cancers (CRC). The ubiquitin proteasome system (UPS) is essential in the regulation of Wnt signaling and inhibitors targeting the UPS could have great potential in CRC therapy. Ubiquitin-specific protease 7 (USP7), a deubiquitinating enzyme, plays a significant role in neoplastic diseases due to its well-known function of regulating the MDM2-p53 complex. Inspired by our recent study identifying the positive role of USP7 in the Wnt signaling, we report here that USP7 is overexpressed in colorectal carcinoma cell lines and tissues, which is closely related with the poor prognosis. USP7 knockdown inhibits the proliferation of CRC cells with different p53 status, and USP7 inhibition by its inhibitor P5091 attenuates the activity of Wnt signaling via enhanced ubiquitination and the subsequent degradation of β-catenin. In vitro, P5091 inhibited the proliferation and induced apoptosis of CRC cells. P5091 also suppressed in vivo tumor growth in the HCT116 xenograft mouse model, which is consistently associated with reduced expression of β-catenin and Wnt target genes. In conclusion, our preclinical study indicated that USP7 could be a potential drug target and its inhibitor P5091 deserves further development as anticancer agent for Wnt hyper-activated CRC therapy.
Collapse
Affiliation(s)
- Tao An
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yaxiao Gong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xue Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; University of Chinese Academy of Sciences, Beijing, China
| | - Lingmei Kong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; University of Chinese Academy of Sciences, Beijing, China
| | - Pengcheng Ma
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Liang Gong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; University of Chinese Academy of Sciences, Beijing, China
| | - Huifang Zhu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chunlei Yu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jianmei Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China; University of Chinese Academy of Sciences, Beijing, China
| | - Hongyu Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yan Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
37
|
Pérez-Jiménez A, Rufino-Palomares EE, Fernández-Gallego N, Ortuño-Costela MC, Reyes-Zurita FJ, Peragón J, García-Salguero L, Mokhtari K, Medina PP, Lupiáñez JA. Target molecules in 3T3-L1 adipocytes differentiation are regulated by maslinic acid, a natural triterpene from Olea europaea. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1301-1311. [PMID: 27765349 DOI: 10.1016/j.phymed.2016.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/15/2016] [Accepted: 07/01/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Metabolic syndrome is a set of pathologies among which stand out the obesity, which is related to the lipid droplet accumulation and changes to cellular morphology regulated by several molecules and transcription factors. Maslinic acid (MA) is a natural product with demonstrated pharmacological functions including anti-inflammation, anti-tumor and anti-oxidation, among others. PURPOSE Here we report the effects of MA on the adipogenesis process in 3T3-L1 cells. METHODS Cell viability, glucose uptake, cytoplasmic triglyceride droplets, triglycerides quantification, gene transcription factors such as peroxisome proliferator-activated receptor γ (PPARγ) and adipocyte fatty acid-binding protein (aP2) and intracellular Ca2+ levels were determined in pre-adipocytes and adipocytes of 3T3-L1 cells. RESULTS MA increased glucose uptake. MA also decreased lipid droplets and triglyceride levels, which is in concordance with the down-regulation of PPARγ and aP2. Finally, MA increased the intracellular Ca2+ concentration, which could also be involved in the demonstrated antiadipogenic effect of this triterpene. CONCLUSION MA has been demonstrated as potential antiadipogenic compound in 3T3-L1 cells.
Collapse
Affiliation(s)
- Amalia Pérez-Jiménez
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, 18071 Granada, Spain; Department of i+D+I, Biomaslinic S.L., Polígono Industrial de Escúzar, 18130 Granada, Spain.
| | - Eva E Rufino-Palomares
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, 18071 Granada, Spain; Pfizer Pharmaceutical-University of Granada-Government of Andalusian, Centre of Genomic and Oncologic Investigation (GENyO), Technological Park of Health Sciences, 18016 Granada, Spain.
| | - Nieves Fernández-Gallego
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - M Carmen Ortuño-Costela
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Fernando J Reyes-Zurita
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Juan Peragón
- Department of Experimental Biology, Biochemistry Section, Faculty of Experimental Biology, University of Jaén, 23071 Jaén, Spain
| | - Leticia García-Salguero
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, 18071 Granada, Spain
| | - Khalida Mokhtari
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, 18071 Granada, Spain; Department of Biology, Faculty of Sciences, Mohammed I University, BP 717 60000 Oujda, Morocco
| | - Pedro P Medina
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, 18071 Granada, Spain; Pfizer Pharmaceutical-University of Granada-Government of Andalusian, Centre of Genomic and Oncologic Investigation (GENyO), Technological Park of Health Sciences, 18016 Granada, Spain
| | - José A Lupiáñez
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, 18071 Granada, Spain.
| |
Collapse
|
38
|
Rufino-Palomares EE, Reyes-Zurita FJ, García-Salguero L, Peragón J, de la Higuera M, Lupiáñez JA. NADPH production, a growth marker, is stimulated by maslinic acid in gilthead sea bream by increased NADP-IDH and ME expression. Comp Biochem Physiol C Toxicol Pharmacol 2016; 187:32-42. [PMID: 27178358 DOI: 10.1016/j.cbpc.2016.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/24/2016] [Accepted: 05/07/2016] [Indexed: 12/14/2022]
Abstract
NADPH plays a central role in reductive biosynthesis of membrane lipids, maintenance of cell integrity, protein synthesis and redox balance maintenance. Hence, NADPH is involved in the growth and proliferation processes. In addition, it has been shown that changes in nutritional conditions produced changes in NADPH levels and growth rate. Maslinic acid (MA), a pentacyclic triterpene of natural origin, is able to stimulate NADPH production, through regulation of the two oxidative phase dehydrogenases of the pentose phosphate pathway. Our main objective was to study the effects of MA on the kinetic behaviour and on the molecular expression of two NADPH-generating systems, NADP-dependent isocitrate dehydrogenase (NADP-IDH) and malic enzyme (ME), in the liver and white muscle of gilthead sea bream (Sparus aurata). Four groups of 12g of a mean body mass were fed for 210days in a fish farm, with diets containing 0 (control), and 0.1g of MA per kg of diet. Two groups were fed ad libitum (C-AL and MA-AL) and another's two, with restricted diet of 1% of fish weight (C-R and MA-R). Results showed that MA significantly increased the main kinetic parameter of the NADPH-forming enzymes (NADP-IDH and ME). In this sense, specific activity, maximum velocity, catalytic efficiency and activity ratio values were higher in MA conditions than control groups. Moreover, these changes were observed in both feeding regimen, AL and R. Meanwhile, the Michaelis constant changed mainly in groups fed with the MA and restricted diet, these changes are related to the best substrate affinity by enzyme. Moreover, in the Western-blot result, we found that MA increased both protein levels studied, this behaviour being consistent with the regulation of the number of enzyme molecules. All results, indicate that MA, independently of the fed regimen, could potentially be a nutritional additive for fish as it improved the metabolic state of fish, as consequence of increased activity and expression of NADP-IDH and ME enzymes.
Collapse
Affiliation(s)
- Eva E Rufino-Palomares
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada, Spain.
| | - Fernando J Reyes-Zurita
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada, Spain
| | - Leticia García-Salguero
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada, Spain
| | - Juan Peragón
- Department of Experimental Biology, Biochemistry and Molecular Biology Section, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - Manuel de la Higuera
- Department of Animal Biology, Faculty of Sciences, University of Granada, Granada, Spain
| | - José A Lupiáñez
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada, Spain.
| |
Collapse
|
39
|
Reyes-Zurita FJ, Medina-O'Donnell M, Ferrer-Martin RM, Rufino-Palomares EE, Martin-Fonseca S, Rivas F, Martínez A, García-Granados A, Pérez-Jiménez A, García-Salguero L, Peragón J, Mokhtari K, Medina PP, Parra A, Lupiáñez JA. The oleanolic acid derivative, 3-O-succinyl-28-O-benzyl oleanolate, induces apoptosis in B16–F10 melanoma cells via the mitochondrial apoptotic pathway. RSC Adv 2016. [DOI: 10.1039/c6ra18879f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Antiproliferative and proapoptotic effects of 3-O-succinyl-28-O-benzyl oleanolate on B16–F10 skin-melanoma cells.
Collapse
|