1
|
Ureiro-Cueto G, Rodil SE, Santana-Vázquez M, Hoz-Rodriguez L, Arzate H, Montoya-Ayala G. Characterization of aTiO 2 surfaces functionalized with CAP-p15 peptide. J Biomed Mater Res A 2024; 112:1399-1411. [PMID: 38284510 DOI: 10.1002/jbm.a.37676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/30/2024]
Abstract
Functionalization of Titanium implants using adequate organic molecules is a proposed method to accelerate the osteointegration process, which relates to topographical, chemical, mechanical, and physical features. This study aimed to assess the potential of a peptide derived from cementum attachment protein (CAP-p15) adsorbed onto aTiO2 surfaces to promote the deposition of calcium phosphate (CaP) minerals and its impact on the adhesion and viability of human periodontal ligament cells (hPDLCs). aTiO2 surfaces were synthesized by magnetron sputtering technique. The CAP-p15 peptide was physically attached to aTiO2 surfaces and characterized by atomic force microscopy, fluorescence microscopy, and water contact angle measurement. We performed in vitro calcium phosphate nucleation assays using an artificial saliva solution (pH 7.4) to simulate the oral environment. morphological and chemical characterization of the deposits were evaluated by scanning electronic microscopy (SEM) and spectroscopy molecular techniques (Raman Spectroscopy, ATR-FTIR). The aTiO2 surfaces biofunctionalized with CAP-p15 were also analyzed for hPDLCs attachment, proliferation, and in vitro scratch-healing assay. The results let us see that the homogeneous amorphous titanium oxide coating was 70 nanometers thick. The CAP-p15 (1 μg/mL) displayed the ability to adsorb onto the aTiO2 surface, increasing the roughness and maintaining the hydrophilicity of the aTiO2 surfaces. The physical adsorption of CAP-p15 onto the aTiO2 surfaces promoted the precipitation of a uniform layer of crystals with a flake-like morphology and a Ca/P ratio of 1.79. According to spectroscopy molecular analysis, these crystalline deposits correspond to carbonated hydroxyapatite. Regarding cell behavior, the biofunctionalized aTiO2 surfaces improved the adhesion of hPDLCs after 24 h of cell culture, achieving 3.4-fold when compared to pristine surfaces. Moreover, there was an increase in cell proliferation and cell migration processes. Physical adsorption of CAP-p15 onto aTiO2 surfaces enhanced the formation of carbonate hydroxyapatite crystals and promoted the proliferation and migration of human periodontal ligament-derived cells in in vitro studies. This experimental model using the novel bioactive peptide CAP-p15 could be used as an alternative to increasing the osseointegration process of implants.
Collapse
Affiliation(s)
- Guadalupe Ureiro-Cueto
- Laboratorio de Biología Periodontal y Tejidos Mineralizados, División de Estudios de Posgrado e Investigación Facultad de Odontología, Universidad Nacional Autónoma de, México city, Mexico
| | - Sandra E Rodil
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de, México city, Mexico
| | - Maricela Santana-Vázquez
- Laboratorio de Biología Periodontal y Tejidos Mineralizados, División de Estudios de Posgrado e Investigación Facultad de Odontología, Universidad Nacional Autónoma de, México city, Mexico
| | - Lia Hoz-Rodriguez
- Laboratorio de Biología Periodontal y Tejidos Mineralizados, División de Estudios de Posgrado e Investigación Facultad de Odontología, Universidad Nacional Autónoma de, México city, Mexico
| | - Higinio Arzate
- Laboratorio de Biología Periodontal y Tejidos Mineralizados, División de Estudios de Posgrado e Investigación Facultad de Odontología, Universidad Nacional Autónoma de, México city, Mexico
| | - Gonzalo Montoya-Ayala
- Laboratorio de Biología Periodontal y Tejidos Mineralizados, División de Estudios de Posgrado e Investigación Facultad de Odontología, Universidad Nacional Autónoma de, México city, Mexico
| |
Collapse
|
2
|
Hughes KJ, Cheng J, Iyer KA, Ralhan K, Ganesan M, Hsu CW, Zhan Y, Wang X, Zhu B, Gao M, Wang H, Zhang Y, Huang J, Zhou QA. Unveiling Trends: Nanoscale Materials Shaping Emerging Biomedical Applications. ACS NANO 2024; 18:16325-16342. [PMID: 38888229 DOI: 10.1021/acsnano.4c04514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The realm of biomedical materials continues to evolve rapidly, driven by innovative research across interdisciplinary domains. Leveraging big data from the CAS Content Collection, this study employs quantitative analysis through natural language processing (NLP) to identify six emerging areas within nanoscale materials for biomedical applications. These areas encompass self-healing, bioelectronic, programmable, lipid-based, protein-based, and antibacterial materials. Our Nano Focus delves into the multifaceted utilization of nanoscale materials in these domains, spanning from augmenting physical and electronic properties for interfacing with human tissue to facilitating intricate functionalities like programmable drug delivery.
Collapse
Affiliation(s)
- Kevin J Hughes
- CAS, a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Jianjun Cheng
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Kavita A Iyer
- ACS International India Pvt. Ltd., Pune 411044, India
| | | | | | - Chia-Wei Hsu
- CAS, a division of the American Chemical Society, Columbus, Ohio 43210, United States
| | - Yutao Zhan
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Xinning Wang
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Bowen Zhu
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Menghua Gao
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Huaimin Wang
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Yue Zhang
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | - Jiaxing Huang
- Westlake University, 600 Dunyu Rd., Xihu District, Hangzhou, Zhejiang 310030. PR China
| | | |
Collapse
|
3
|
Salamanca E, Choy CS, Aung LM, Tsao TC, Wang PH, Lin WA, Wu YF, Chang WJ. 3D-Printed PLA Scaffold with Fibronectin Enhances In Vitro Osteogenesis. Polymers (Basel) 2023; 15:2619. [PMID: 37376267 DOI: 10.3390/polym15122619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Tricalcium phosphate (TCP, Molecular formula: Ca3(PO4)2) is a hydrophilic bone graft biomaterial extensively used for guided bone regeneration (GBR). However, few studies have investigated 3D-printed polylactic acid (PLA) combined with the osteo-inductive molecule fibronectin (FN) for enhanced osteoblast performance in vitro, and specialized bone defect treatments. AIM This study evaluated PLA properties and efficacy following glow discharge plasma (GDP) treatment and FN sputtering for fused deposition modeling (FDM) 3D printed PLA alloplastic bone grafts. METHODS 3D trabecular bone scaffolds (8 × 1 mm) were printed by the 3D printer (XYZ printing, Inc. 3D printer da Vinci Jr. 1.0 3-in-1). After printing PLA scaffolds, additional groups for FN grafting were continually prepared with GDP treatment. Material characterization and biocompatibility evaluations were investigated at 1, 3 and 5 days. RESULTS SEM images showed the human bone mimicking patterns, and EDS illustrated the increased C and O after fibronectin grafting, XPS and FTIR results together confirmed the presence of FN within PLA material. Degradation increased after 150 days due to FN presence. 3D immunofluorescence at 24 h demonstrated better cell spreading, and MTT assay results showed the highest proliferation with PLA and FN (p < 0.001). Cells cultured on the materials exhibited similar alkaline phosphatase (ALP) production. Relative quantitative polymerase chain reaction (qPCR) at 1 and 5 days revealed a mixed osteoblast gene expression pattern. CONCLUSION In vitro observations over a period of five days, it was clear that PLA/FN 3D-printed alloplastic bone graft was more favorable for osteogenesis than PLA alone, thereby demonstrating great potential for applications in customized bone regeneration.
Collapse
Affiliation(s)
- Eisner Salamanca
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Cheuk Sing Choy
- Department of Community Medicine, En Chu Kong Hospital, New Taipei City 237, Taiwan
- Department of Nursing, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
| | - Lwin Moe Aung
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Ting-Chia Tsao
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Pin-Han Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Wei-An Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Yi-Fan Wu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Wei-Jen Chang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Dental Department, Taipei Medical University, Shuang-Ho Hospital, Taipei 235041, Taiwan
| |
Collapse
|
4
|
Aung LM, Lin JCY, Salamanca E, Wu YF, Pan YH, Teng NC, Huang HM, Sun YS, Chang WJ. Functionalization of zirconia ceramic with fibronectin proteins enhanced bioactivity and osteogenic response of osteoblast-like cells. Front Bioeng Biotechnol 2023; 11:1159639. [PMID: 37180046 PMCID: PMC10167021 DOI: 10.3389/fbioe.2023.1159639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction: To overcome the genuine bioinert properties of zirconia ceramic, functionalization of the surface with the bioactive protein fibronectin was conducted. Methods: Glow discharge plasma (GDP)-Argon was first used to clean the zirconia surface. Then allylamine was treated at three different powers of 50 W, 75 W, and 85 W and immersed into 2 different fibronectin concentrations (5 µg/ml and 10 µg/ml). Results and Discussion: After surface treatment, irregularly folded protein-like substances were attached on the fibronectin coated disks, and a granular pattern was observed for allylamine grafted samples. Infrared spectroscopy detected C-O, N-O, N-H, C-H, and O-H functional groups for fibronectin treated samples. Surface roughness rose and hydrophilicity improved after the surface modification, with MTT assay showing the highest level of cell viability for the A50F10 group. Cell differentiation markers also showed that fibronectin grafted disks with A50F10 and A85F10 were the most active, which in turn encouraged late-stage mineralization activity on 21d. Up-regulation of osteogenic related mRNA expression from 1d to 10d can be observed in RT-qPCR data for ALP, OC, DLX5, SP7, OPG and RANK biomarkers. These physical and biological properties clearly indicate that an allylamine and fibronectin composite grafted surface significantly stimulated the bioactivity of osteoblast-like cells, and can be utilized for future dental implant applications.
Collapse
Affiliation(s)
- Lwin Moe Aung
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jerry Chin-Yi Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Eisner Salamanca
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Fan Wu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hwan Pan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei, Taiwan
- Graduate Institute of Dental and Craniofacial Science, Chang Gung University, Taoyuan, Taiwan
- School of Dentistry, College of Medicine, China Medical University, Taichung, Taiwan
| | - Nai-Chia Teng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Haw-Ming Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ying-Sui Sun
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Jen Chang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
- Dental Department, Shuang-Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| |
Collapse
|
5
|
Park BH, Jeong ES, Lee S, Jang JH. Bio-functionalization and in-vitro evaluation of titanium surface with recombinant fibronectin and elastin fragment in human mesenchymal stem cell. PLoS One 2021; 16:e0260760. [PMID: 34914752 PMCID: PMC8675760 DOI: 10.1371/journal.pone.0260760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022] Open
Abstract
Titanium is a biomaterial that meets a number of important requirements, including excellent mechanical and chemical properties, but has low bioactivity. To improve cellular response onto titanium surfaces and hence its osseointegration, the titanium surface was bio-functionalized to mimic an extracellular matrix (ECM)-like microenvironment that positively influences the behavior of stem cells. In this respect, fibronectin and elastin are important components of the ECM that regulate stem cell differentiation by supporting the biological microenvironment. However, each native ECM is unsuitable due to its high production cost and immunogenicity. To overcome these problems, a recombinant chimeric fibronectin type III9-10 and elastin-like peptide fragments (FN9-10ELP) was developed herein and applied to the bio-functionalized of the titanium surface. An evaluation of the biological activity and cellular responses with respect to bone regeneration indicated a 4-week sustainability on the FN9-10ELP functionalized titanium surface without an initial burst effect. In particular, the adhesion and proliferation of human mesenchymal stem cells (hMSCs) was significantly increased on the FN9-10ELP coated titanium compared to that observed on the non-coated titanium. The FN9-10ELP coated titanium induced osteogenic differentiation such as the alkaline phosphatase (ALP) activity and mineralization activity. In addition, expressions of osteogenesis-related genes such as a collagen type I (Col I), Runt-related transcription factor 2 (RUNX2), osteopontin (OPN), osteocalcin (OCN), bone sialo protein (BSP), and PDZ-binding motif (TAZ) were further increased. Thus, in vitro the FN9-10ELP functionalization titanium not only sustained bioactivity but also induced osteogenic differentiation of hMSCs to improve bone regeneration.
Collapse
Affiliation(s)
- Bo-Hyun Park
- Department of Biochemistry, Inha University School of Medicine, Incheon, Korea
| | - Eui-Seung Jeong
- Department of Biochemistry, Inha University School of Medicine, Incheon, Korea
| | - Sujin Lee
- Department of Biochemistry, Inha University School of Medicine, Incheon, Korea
| | - Jun-Hyeog Jang
- Department of Biochemistry, Inha University School of Medicine, Incheon, Korea
- * E-mail:
| |
Collapse
|
6
|
Leite ML, Soares DG, Anovazzi G, Filipe Koon Wu M, Bordini EAF, Hebling J, DE Souza Costa CA. Bioactivity effects of extracellular matrix proteins on apical papilla cells. J Appl Oral Sci 2021; 29:e20210038. [PMID: 34495108 PMCID: PMC8425894 DOI: 10.1590/1678-7757-2021-0038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/19/2021] [Indexed: 01/27/2023] Open
Abstract
Potent signaling agents stimulate and guide pulp tissue regeneration, especially in endodontic treatment of teeth with incomplete root formation.
Collapse
Affiliation(s)
- Maria Luísa Leite
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Materiais Odontológicos e Prótese, Araraquara, SP, Brasil
| | - Diana Gabriela Soares
- Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Dentística, Endodontia e Materiais Odontológicos, Bauru, SP, Brasil
| | - Giovana Anovazzi
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Morfologia e Clínica Infantil, Araraquara, SP, Brasil
| | - Mon Filipe Koon Wu
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Fisiologia e Patologia, Araraquara, SP, Brasil
| | - Ester Alves Ferreira Bordini
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Materiais Odontológicos e Prótese, Araraquara, SP, Brasil
| | - Josimeri Hebling
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Morfologia e Clínica Infantil, Araraquara, SP, Brasil
| | - Carlos Alberto DE Souza Costa
- Universidade Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departamento de Fisiologia e Patologia, Araraquara, SP, Brasil
| |
Collapse
|
7
|
Role of rhBMP-7, Fibronectin, And Type I Collagen in Dental Implant Osseointegration Process: An Initial Pilot Study on Minipig Animals. MATERIALS 2021; 14:ma14092185. [PMID: 33923213 PMCID: PMC8123155 DOI: 10.3390/ma14092185] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/09/2022]
Abstract
Background: The biological factors involved in dental implant osseointegration need to be investigated to improve implant success. Methods: Twenty-four implants were inserted into the tibias of six minipigs. Bone samples were obtained at 7, 14, and 56 days. Biomolecular analyses evaluated mRNA of BMP-4, -7, Transforming Growth Factor-β2, Interleukin-1β, and Osteocalcin in sites treated with rhBMP-7, Type 1 Collagen, or Fibronectin (FN). Inflammation and osteogenesis were evaluated by histological analyses. Results: At 7 and 14 days, BMP-4 and BMP-7 increased in the sites prepared with rhBMP-7 and FN. BMP-7 remained greater at 56 days in rhBMP-7 and FN sites. BPM-4 at 7 and 14 days increased in Type 1 Collagen sites; BMP-7 increased from day 14. FN increased the TGF-β2 at all experimental times, whilst the rhBMP-7 only did so up to 7 days. IL-1β increased only in collagen-treated sites from 14 days. Osteocalcin was high in FN-treated sites. Neutrophilic granulocytes characterized the inflammatory infiltrate at 7 days, and mononuclear cells at 14 and 56 days. Conclusions: This initial pilot study, in a novel way, evidenced that Type 1 Collagen induced inflammation and did not stimulate bone production; conversely FN or rhBMP-7 showed neo-osteogenetic and anti-inflammatory properties when directly added into implant bone site.
Collapse
|
8
|
Chen L, Mou S, Hou J, Fang H, Zeng Y, Sun J, Wang Z. Simple application of adipose-derived stem cell-derived extracellular vesicles coating enhances cytocompatibility and osteoinductivity of titanium implant. Regen Biomater 2020; 8:rbaa038. [PMID: 33732487 PMCID: PMC7947573 DOI: 10.1093/rb/rbaa038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/06/2020] [Accepted: 08/23/2020] [Indexed: 12/17/2022] Open
Abstract
Surface modification using bioactive molecules is frequently performed to improve the biological properties of medical metal biomaterial titanium (Ti) implants. Developmental evidence suggests that mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) served as potent bioactive component. As a subset of MSC-EV, adipose-derived stem cell-derived extracellular vesicles (ADSC-EVs) could be obtained from abundant adipose tissue. Meanwhile, it possesses multiple regenerative properties and might be used to endow biological activities to medical Ti implant. Here, we present a simple ADSC-EV coating strategy based on physisorption of fibronectin. This ADSC-EV functionalized Ti implants (EV-Ti) revealed enhanced osteoblast compatibility and osteoinductive activity. Cell spreading area of EV-Ti group was 1.62- and 1.48-fold larger than that of Ti group after 6 and 12 h of cell seeding, respectively. Moreover, EV-Ti promoted alkaline phosphatase, collagen 1 and osteocalcin gene expression in osteoblast by 1.51-, 1.68- and 1.82-fold compared with pristine Ti, respectively. Thus, the MSC-EVs modification method reported here provide a clinically translatable strategy to promote the bioactivity of Ti implants.
Collapse
Affiliation(s)
- Lifeng Chen
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan Union Hospital, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Shan Mou
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan Union Hospital, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Jinfei Hou
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan Union Hospital, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Huimin Fang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan Union Hospital, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Yuyang Zeng
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan Union Hospital, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan Union Hospital, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan Union Hospital, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| |
Collapse
|
9
|
Glow Discharge Plasma Treatment on Zirconia Surface to Enhance Osteoblastic-Like Cell Differentiation and Antimicrobial Effects. MATERIALS 2020; 13:ma13173771. [PMID: 32859067 PMCID: PMC7503232 DOI: 10.3390/ma13173771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 01/31/2023]
Abstract
Peri-implantitis is the pathological condition of connective tissue inflammation and the progressive loss of supporting bone around dental implants. One of the primary causes of peri mucositis evolving into peri-implantitis is bacterial infection, including infection from Porphyromonas gingivalis. Enhancing the surface smoothness of implants helps to prevent P. gingivalis adhesion to the implant’s surface. Interaction analyses between bacteria and the surface roughness of zirconia (Zr) discs subjected to a glow discharge plasma (GDP) treatment compared with non-plasma-treated autoclaved control Zr discs were done. Examinations of the material prosperities revealed that the GDP-treated Zr group had a smoother surface for a better wettability. The GDP-treated Zr discs improved the proliferation of the osteoblast-like cells MG-63, and the osteoblastic differentiation was assessed through alkaline phosphatase detection and marker gene bone sialoprotein (Bsp) and osteocalcin (OC) induction. Scanning electron microscopy demonstrated a relatively low P. gingivalis adhesion on GDP-treated Zr disks, as well as lower colonization of P. gingivalis compared with the control. Our findings confirmed that the GDP treatment of Zr discs resulted in a significant reduction of P. gingivalis adhesion and growth, demonstrating a positive correlation between surface roughness and bacteria adhesion. Therefore, the GDP treatment of Zr dental implants can provide a method for reducing the risk of peri-implantitis.
Collapse
|
10
|
Yao WL, Lin JCY, Salamanca E, Pan YH, Tsai PY, Leu SJ, Yang KC, Huang HM, Huang HY, Chang WJ. Er,Cr:YSGG Laser Performance Improves Biological Response on Titanium Surfaces. MATERIALS 2020; 13:ma13030756. [PMID: 32046015 PMCID: PMC7040680 DOI: 10.3390/ma13030756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023]
Abstract
Porphyromonas gingivalis infection is one of the causes of implant failures, which can lead to peri-implantitis. Implant surface roughness is reportedly related strongly to P. gingivalis adhesion, which can lead to peri-implantitis and, later, cell adhesion. Our aim was to evaluate the effects of Er,Cr:YSGG laser on titanium (Ti) disc surfaces and its interaction with bacterial adhesion and fibroblast viability. Ti discs underwent two treatments: autoclaving (control) and erbium, chromium-doped yttrium scandium gallium garnet (Er,Cr:YSGG) laser treatment (test). Ti disc surfaces were examined with scanning electronic microscope (SEM), Energy-dispersive spectrometry (EDX), X-ray photoelectron spectroscopy (XPS). The surface roughness same as wettability were also investigated. Fibroblast viability was assessed with the water-soluble tetrazolium 1 (WST-1) test, and osteoblast differentiation was assessed with the alkaline phosphatase (ALP) assay. Bacterial structure and colony formation were detected with scanning electron microscopy and Gram stain. In comparison to control discs, the test discs showed smoother surfaces, with 0.25-µm decrease in surface roughness (p < 0.05); lower P. gingivalis adhesion (p < 0.01); less P. gingivalis colonization (p < 0.05); and increased fibroblast viability and osteoblast differentiation (p < 0.05). Er,Cr:YSGG laser treatment improved disc surfaces by making them slightly smoother, which reduced P. gingivalis adhesion and increased fibroblast viability and osteoblast differentiation. Er,Cr:YSGG laser treatment can be considered a good option for managing peri-implantitis. Further investigations of laser-assisted therapy are necessary for better guidelines in the treatment of peri-implantitis.
Collapse
Affiliation(s)
- Wan-Ling Yao
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-L.Y.); (J.C.Y.L.); (Y.-H.P.); (H.-M.H.)
| | - Jerry Chin Yi Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-L.Y.); (J.C.Y.L.); (Y.-H.P.); (H.-M.H.)
| | - Eisner Salamanca
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-L.Y.); (J.C.Y.L.); (Y.-H.P.); (H.-M.H.)
| | - Yu-Hwa Pan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-L.Y.); (J.C.Y.L.); (Y.-H.P.); (H.-M.H.)
- Department of General Dentistry, Chang Gung Memorial Hospital, Taipei 106, Taiwan
- Graduate Institute of Dental & Craniofacial Science, Chang Gung University, Taoyuan 333, Taiwan
- School of Dentistry, College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Pei-Yo Tsai
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-L.Y.); (J.C.Y.L.); (Y.-H.P.); (H.-M.H.)
| | - Sy-Jye Leu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Kai-Chiang Yang
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Haw-Ming Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-L.Y.); (J.C.Y.L.); (Y.-H.P.); (H.-M.H.)
| | - Huei-Yu Huang
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Dental Department, Taipei Medical University, Shuang-Ho hospital, Taipei 235, Taiwan
- Correspondence: (H.-Y.H.); (W.-J.C.); Tel.: +886-2-27361661 (H.-Y.H. & W.-J.C.)
| | - Wei-Jen Chang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan; (W.-L.Y.); (J.C.Y.L.); (Y.-H.P.); (H.-M.H.)
- Dental Department, Taipei Medical University, Shuang-Ho hospital, Taipei 235, Taiwan
- Correspondence: (H.-Y.H.); (W.-J.C.); Tel.: +886-2-27361661 (H.-Y.H. & W.-J.C.)
| |
Collapse
|
11
|
Sinibaldi A, Montaño-Machado V, Danz N, Munzert P, Chiavaioli F, Michelotti F, Mantovani D. Real-Time Study of the Adsorption and Grafting Process of Biomolecules by Means of Bloch Surface Wave Biosensors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33611-33618. [PMID: 30152997 DOI: 10.1021/acsami.8b08335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A combined label-free and fluorescence surface optical technique was used to quantify the mass deposited in binary biomolecular coatings. These coatings were constituted by fibronectin (FN), to stimulate endothelialization, and phosphorylcholine (PRC), for its hemocompatibility, which are two properties of relevance for cardiovascular applications. One-dimensional photonic crystals sustaining a Bloch surface wave were used to characterize different FN/PRC coatings deposited by a combination of adsorption and grafting processes. In particular, the label-free results permitted to quantitatively assess the mass deposited in FN adsorbed (185 ng/cm2) and grafted (160 ng/cm2). PRC binding to grafted FN coatings was also quantified, showing a coverage as low as 10 and 12 ng/cm2 for adsorbed and grafted PRC, respectively. Moreover, desorption of FN deposited by adsorption was detected and quantified upon the addition of PRC. The data obtained by the surface optical technique were complemented by water contact angle and X-ray photoelectron spectroscopy (XPS) analyses. The results were in accordance with those obtained previously by qualitative and semiquantitative techniques (XPS, time-of-flight secondary ion mass spectrometry) on several substrates (PTFE and stainless steel), confirming that grafted FN coatings show higher stability than those obtained by FN adsorption.
Collapse
Affiliation(s)
- A Sinibaldi
- Department of Basic and Applied Science for Engineering , SAPIENZA University of Rome , 00161 Rome , Italy
| | - V Montaño-Machado
- Laboratory for Biomaterials and Bioengineering (CRC-I), Department of Min-Met-Materials Engineering & CHU de Quebec Research Center , Laval University , Quebec City G1V0A6 , Canada
| | - N Danz
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF , 07745 Jena , Germany
| | - P Munzert
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF , 07745 Jena , Germany
| | - F Chiavaioli
- Institute of Applied Physics "Nello Carrara" (IFAC), National Research Council of Italy (CNR) , Sesto Fiorentino, 50019 Firenze , Italy
| | - F Michelotti
- Department of Basic and Applied Science for Engineering , SAPIENZA University of Rome , 00161 Rome , Italy
| | - D Mantovani
- Laboratory for Biomaterials and Bioengineering (CRC-I), Department of Min-Met-Materials Engineering & CHU de Quebec Research Center , Laval University , Quebec City G1V0A6 , Canada
| |
Collapse
|
12
|
Salamanca E, Pan YH, Tsai AI, Lin PY, Lin CK, Huang HM, Teng NC, Wang PD, Chang WJ. Enhancement of Osteoblastic-Like Cell Activity by Glow Discharge Plasma Surface Modified Hydroxyapatite/β-Tricalcium Phosphate Bone Substitute. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E1347. [PMID: 29168776 PMCID: PMC5744282 DOI: 10.3390/ma10121347] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/11/2017] [Accepted: 11/21/2017] [Indexed: 11/17/2022]
Abstract
Glow discharge plasma (GDP) treatments of biomaterials, such as hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) composites, produce surfaces with fewer contaminants and may facilitate cell attachment and enhance bone regeneration. Thus, in this study we used argon glow discharge plasma (Ar-GDP) treatments to modify HA/β-TCP particle surfaces and investigated the physical and chemical properties of the resulting particles (HA/β-TCP + Ar-GDP). The HA/β-TCP particles were treated with GDP for 15 min in argon gas at room temperature under the following conditions: power: 80 W; frequency: 13.56 MHz; pressure: 100 mTorr. Scanning electron microscope (SEM) observations showed similar rough surfaces of HA/β-TCP + Ar-GDP HA/β-TCP particles, and energy dispersive spectrometry analyses showed that HA/β-TCP surfaces had more contaminants than HA/β-TCP + Ar-GDP surfaces. Ca/P mole ratios in HA/β-TCP and HA/β-TCP + Ar-GDP were 1.34 and 1.58, respectively. Both biomaterials presented maximal intensities of X-ray diffraction patterns at 27° with 600 a.u. At 25° and 40°, HA/β-TCP + Ar-GDP and HA/β-TCP particles had peaks of 200 a.u., which are similar to XRD intensities of human bone. In subsequent comparisons, MG-63 cell viability and differentiation into osteoblast-like cells were assessed on HA/β-TCP and HA/β-TCP + Ar-GDP surfaces, and Ar-GDP treatments led to improved cell growth and alkaline phosphatase activities. The present data indicate that GDP surface treatment modified HA/β-TCP surfaces by eliminating contaminants, and the resulting graft material enhanced bone regeneration.
Collapse
Affiliation(s)
- Eisner Salamanca
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Yu-Hwa Pan
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei 105, Taiwan.
- Graduate Institute of Dental & Craniofacial Science, Chang Gung University, Taoyuan 333, Taiwan.
- School of Dentistry, College of Medicine, China Medical University, Taichung 404, Taiwan.
| | - Aileen I Tsai
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei 105, Taiwan.
| | - Pei-Ying Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Ching-Kai Lin
- Department of Dentistry, Chang Gung Memorial Hospital, Taipei 105, Taiwan.
| | - Haw-Ming Huang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Nai-Chia Teng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Dental Department, Taipei Medical University Hospital, Taipei 110, Taiwan.
| | - Peter D Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Dental Department, Taipei Medical University Hospital, Taipei 110, Taiwan.
| | - Wei-Jen Chang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
- Dental Department, Taipei Medical University, Shuang-Ho Hospital, Taipei 235, Taiwan.
| |
Collapse
|
13
|
Ko JY, Oh HJ, Lee J, Im GI. Nanotopographic Influence on the In Vitro Behavior of Induced Pluripotent Stem Cells. Tissue Eng Part A 2017; 24:595-606. [PMID: 28726546 DOI: 10.1089/ten.tea.2017.0144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
While the influence of nanotopography on stem cell behavior has been extensively investigated on adult stem cells, far fewer studies have investigated the interaction of induced pluripotent stem cells (iPSCs) with various nanotopographical patterns. The purpose of this study was to identify nanopatterns that can influence the stemness and proliferation, as well as the adhesive properties in iPSCs, and thereby explore the feasibility of applying these nano-features for regenerative medicine. Three kinds of nanopatterns were fabricated from polydimethylsiloxane membranes, irregular patterned membrane (IPM), groove patterned membrane (GPM), and postpatterned membrane (PPM), in addition to flat patterned membrane (FPM) which did not have any nanotopographic features and was used as the control pattern. On the surfaces of GPM or PPM, iPSCs showed tendency for aggregation and did not spread out well at passage 1. However, with continued passaging (P6, P10), the tendency to form aggregates was greatly reduced. While iPSCs cultured on GPM and PPM had low population doubling time values compared with FPM and IPM at P1, the differences disappeared in later passages. The expression of the cell proliferation marker Ki67 in iPSCs gradually decreased with continued passaging in cells cultured on FPM and IPM, but not in those cultured on GPM and PPM. The expression of Oct3/4 and Nanog, marker of stemness, was significantly higher on GPM and PPM than on FPM at P6 and P10. At P5, numerous filopodia were demonstrated in the peripheral attachments of iPSC colonies on FPM and IPM, while GPM and PPM generally had globular appearance. The expression of the focal adhesion (FA) molecules α-actinin, vinculin, phalloidin, or FA kinase was significantly greater on GPM and PPM than on FPM and IPM at P6 or P10. In conclusion, continued passaging on regular nanopatterns, including groove- and post-forms, was effective in maintaining an undifferentiated state and proliferation of iPSCs and also in increasing the expression of FA molecules.
Collapse
Affiliation(s)
- Ji-Yun Ko
- 1 Department of Orthopaedics, Dongguk University Ilsan Hospital , Goyang, Republic of Korea
| | - Hyun-Jik Oh
- 2 Department of Biomedical Engineering, College of Health Science, Korea University , Seoul, Republic of Korea.,3 MicroFIT R&BD Institute , Gyeonggi-do, Republic of Korea
| | - Jimin Lee
- 1 Department of Orthopaedics, Dongguk University Ilsan Hospital , Goyang, Republic of Korea
| | - Gun-Il Im
- 1 Department of Orthopaedics, Dongguk University Ilsan Hospital , Goyang, Republic of Korea
| |
Collapse
|
14
|
Fibronectin-Grafted Titanium Dental Implants: An In Vivo Study. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2414809. [PMID: 27366739 PMCID: PMC4913050 DOI: 10.1155/2016/2414809] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/23/2016] [Accepted: 05/09/2016] [Indexed: 12/29/2022]
Abstract
Modification of the physiochemical properties of titanium surfaces using glow discharge plasma (GDP) and fibronectin coating has been shown to enhance the surface hydrophilicity, surface roughness, cell adhesion, migration, and proliferation. This in vivo study aimed to evaluate the bone integration efficacy of a biologically modified implant surface. Two different surface-modified implants (Ar-GDP and GDP-fib) were placed in the mandibular premolar area of six beagle dogs for 2–8 weeks. Three techniques [histologic evaluation, resonance frequency analysis (RFA), and microcomputed tomography (micro-CT) evaluation] were used to detect the implant stability and bone-implant contact. The implant stability quotient values of GDP-fib implants were significantly greater than the Ar-GDP implants at 2 and 4 weeks (P < 0.01). The bone volume/total volume ratio of GDP-fib implants was greater than the Ar-GDP implants in micro-CT evaluation. A high positive correlation was observed between RFA and micro-CT measurements. At 2 weeks, osteoblasts were seen to line the implant surface, and multinuclear osteoclasts could be seen on the surface of old parent bone. After 8 weeks, a majority of the space in the wound chamber appeared to be replaced by bone. Enhancement of the stability of biologically modified implants was proved by the results of RFA, micro-CT, and histological analysis. This enhanced stability may help fasten treatment and be clinically beneficial.
Collapse
|