1
|
Pasparakis C, Lohroff T, Biefel F, Cocherell DE, Carson EW, Hung TC, Connon RE, Fangue NA, Todgham AE. Effects of turbidity, temperature and predation cue on the stress response of juvenile delta smelt. CONSERVATION PHYSIOLOGY 2023; 11:coad036. [PMID: 37383481 PMCID: PMC10295165 DOI: 10.1093/conphys/coad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/21/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
The San Francisco Estuary (SFE) is one of the most degraded ecosystems in the United States, and organisms that inhabit it are exposed to a suite of environmental stressors. The delta smelt (Hypomesus transpacificus), a small semi-anadromous fish endemic to the SFE and considered an indicator species, is close to extinction in the wild. The goal of this study was to investigate how environmental alterations to the SFE, such as reductions in turbidities, higher temperatures and increased prevalence of invasive predators affect the physiology and stress response of juvenile delta smelt. Juvenile delta smelt were exposed to two temperatures (17 and 21°C) and two turbidities (1-2 and 10-11 NTU) for 2 weeks. After the first week of exposure, delta smelt were exposed to a largemouth bass (Micropterus salmoides) predator cue at the same time every day for 7 days. Fish were measured and sampled on the first (acute) and final (chronic) day of exposures to predator cues and later analyzed for whole-body cortisol, glucose, lactate, and protein. Length and mass measurements were used to calculate condition factor of fish in each treatment. Turbidity had the greatest effect on juvenile delta smelt and resulted in reduced cortisol, increased glucose and lactate, and greater condition factor. Elevated temperatures reduced available energy in delta smelt, indicated by lower glucose and total protein, whereas predator cue exposure had negligible effects on their stress response. This is the first study to show reduced cortisol in juvenile delta smelt held in turbid conditions and adds to the growing data that suggest this species performs best in moderate temperatures and turbidities. Multistressor experiments are necessary to understand the capacity of delta smelt to respond to the multivariate and dynamic changes in their natural environment, and results from this study should be considered for management-based conservation efforts.
Collapse
Affiliation(s)
- Christina Pasparakis
- Department of Environmental Toxicology, University of California Davis, 1 Shields Ave., Davis, CA, USA
- Bodega Marine Laboratory, University of California Davis, 2099 Westshore Rd., Bodega Bay, CA, USA
| | - Toni Lohroff
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, 1 Shields Ave., Davis, CA, USA
- Department of Animal Science, University of California Davis, 1 Shields Ave., Davis, CA, USA
| | - Felix Biefel
- School of Veterinary Medicine, Department of Anatomy, Physiology and Cell Biology, University of California Davis, 1 Shields Ave., Davis, CA, USA
| | - Dennis E Cocherell
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, 1 Shields Ave., Davis, CA, USA
| | - Evan W Carson
- San Francisco Bay-Delta Fish and Wildlife Office, U.S. Fish and Wildlife Service, 650 Capitol Mall, Sacramento, CA, USA
| | - Tien-Chieh Hung
- Fish Conservation and Culture Laboratory, Department of Biological and Agricultural Engineering, University of California Davis, 1 Shields Ave., Davis, CA, USA
| | - Richard E Connon
- School of Veterinary Medicine, Department of Anatomy, Physiology and Cell Biology, University of California Davis, 1 Shields Ave., Davis, CA, USA
| | - Nann A Fangue
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, 1 Shields Ave., Davis, CA, USA
| | - Anne E Todgham
- Department of Animal Science, University of California Davis, 1 Shields Ave., Davis, CA, USA
| |
Collapse
|
2
|
Zhao G, Tian S, Wang Y, Liang R, Li K. Quantitative assessment methodology framework of the impact of global climate change on the aquatic habitat of warm-water fish species in rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162686. [PMID: 36889409 DOI: 10.1016/j.scitotenv.2023.162686] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Global climate change (GCC), with global warming as the main characteristic, has become a global issue widely concerned by people. GCC impacts the hydrological regime at the watershed scale and affects the hydrodynamic force and the habitat conditions of freshwater ecosystems at the river scale. The impact of GCC on water resources and the water cycle is a research hotspot. However, there are few studies on water environment ecology related to hydrology and the influence of changes in discharge and water temperature on warm-water fish habitats. This study proposes a quantitative assessment methodology framework for predicting and analyzing the impact of GCC on the warm-water fish habitat. This system integrates GCC, downscaling, hydrological, hydrodynamic, water temperature and habitat models and was applied to the middle and lower reaches of the Hanjiang River (MLHR), where there are four major Chinese carps resource reduction problems. The results showed that the calibration and validation of the statistical downscaling model (SDSM) and the hydrological, hydrodynamic, and water temperature models were carried out using the observed meteorological factors, discharge, water level, flow velocity and water temperature data. The change rule of the simulated value was in good agreement with the observed value, and the models and methods used in the quantitative assessment methodology framework were applicable and accurate. The rise of water temperature caused by GCC will ease the problem of low-temperature water in the MLHR, and the weighted usable area (WUA) for spawning of the four major Chinese carps will appear in advance. Meanwhile, the increase in future annual discharge will play a positive role in WUA. In general, the rise in confluence discharge and water temperature caused by GCC will increase WUA, which is beneficial to the spawning ground of four major Chinese carps.
Collapse
Affiliation(s)
- Gaolei Zhao
- Henan Key Laboratory of Ecological Environment Protection and Restoration of Yellow River Basin, Yellow River Institute of Hydraulic Research, YRCC, Zhengzhou 450003, China
| | - Shimin Tian
- Henan Key Laboratory of Ecological Environment Protection and Restoration of Yellow River Basin, Yellow River Institute of Hydraulic Research, YRCC, Zhengzhou 450003, China
| | - Yuanming Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Ruifeng Liang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China.
| | - Kefeng Li
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
3
|
Hung TC, Hammock BG, Sandford M, Stillway M, Park M, Lindberg JC, Teh SJ. Temperature and salinity preferences of endangered Delta Smelt (Hypomesus transpacificus, Actinopterygii, Osmeridae). Sci Rep 2022; 12:16558. [PMID: 36192440 PMCID: PMC9530165 DOI: 10.1038/s41598-022-20934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Temperature and salinity often define the distributions of aquatic organisms. This is at least partially true for Delta Smelt, an imperiled species endemic to the upper San Francisco Estuary. While much is known about the tolerances and distribution of Delta Smelt in relation to these parameters, little is known regarding the temperature and salinity preferences of the species. Therefore, the temperature and salinity preferences of sub-adult Delta Smelt were investigated across a wide range of thermal (8–28 °C) and salinity (0–23 ppt) conditions. Replicates of ten fish were allowed to swim between two circular chambers with different temperature or salinity, and the distribution of fish between the chambers was recorded. We found that Delta Smelt showed no temperature preference below 15 °C, a modest aversion to the warmer tank from 15 to 28 °C, and a strong aversion to the warmer tank with elevated mortality at temperatures above 28 °C. Delta Smelt also preferred lower salinities, and this preference became more pronounced as salinity increased toward 23 ppt. These results indicate that Delta Smelt can tolerate high temperatures and salinities for a short time, and that their preferences for lower temperature and salinity strengthens as these variables increase.
Collapse
Affiliation(s)
- Tien-Chieh Hung
- Fish Conservation and Culture Laboratory, Department of Biological and Agricultural Engineering, University of California, Davis, CA, 95616, USA.
| | - Bruce G Hammock
- Aquatic Health Program, Veterinary Medicine: Anatomy, Physiology, and Cell Biology, University of California, Davis, CA, 95616, USA
| | - Marade Sandford
- Fish Conservation and Culture Laboratory, Department of Biological and Agricultural Engineering, University of California, Davis, CA, 95616, USA
| | - Marie Stillway
- Aquatic Health Program, Veterinary Medicine: Anatomy, Physiology, and Cell Biology, University of California, Davis, CA, 95616, USA
| | - Michael Park
- Aquatic Health Program, Veterinary Medicine: Anatomy, Physiology, and Cell Biology, University of California, Davis, CA, 95616, USA
| | - Joan C Lindberg
- Fish Conservation and Culture Laboratory, Department of Biological and Agricultural Engineering, University of California, Davis, CA, 95616, USA
| | - Swee J Teh
- Aquatic Health Program, Veterinary Medicine: Anatomy, Physiology, and Cell Biology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
4
|
Halverson GH, Lee CM, Hestir EL, Hulley GC, Cawse-Nicholson K, Hook SJ, Bergamaschi BA, Acuña S, Tufillaro NB, Radocinski RG, Rivera G, Sommer TR. Decline in Thermal Habitat Conditions for the Endangered Delta Smelt as Seen from Landsat Satellites (1985-2019). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:185-193. [PMID: 34932322 DOI: 10.1021/acs.est.1c02837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study uses Landsat 5, 7, and 8 level 2 collection 2 surface temperature to examine habitat suitability conditions spanning 1985-2019, relative to the thermal tolerance of the endemic and endangered delta smelt (Hypomesus transpacificus) and two non-native fish, the largemouth bass (Micropterus salmoides) and Mississippi silverside (Menidia beryllina) in the upper San Francisco Estuary. This product was validated using thermal radiometer data collected from 2008 to 2019 from a validation site on a platform in the Salton Sea (RMSE = 0.78 °C, r = 0.99, R2 = 0.99, p < 0.01, and n = 237). Thermally unsuitable habitat, indicated by annual maximum water surface temperatures exceeding critical thermal maximum temperatures for each species, increased by 1.5 km2 yr-1 for the delta smelt with an inverse relationship to the delta smelt abundance index from the California Department of Fish and Wildlife (r = -0.44, R2 = 0.2, p < 0.01). Quantile and Theil-Sen regression showed that the delta smelt are unable to thrive when the thermally unsuitable habitat exceeds 107 km2. A habitat unsuitable for the delta smelt but survivable for the non-natives is expanding by 0.82 km2 yr-1. Warming waters in the San Francisco Estuary are reducing the available habitat for the delta smelt.
Collapse
Affiliation(s)
- Gregory H Halverson
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, California 91109, United States
| | - Christine M Lee
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, California 91109, United States
| | - Erin L Hestir
- University of California, Merced, 5200 Lake Road, Merced, California 95343, United States
| | - Glynn C Hulley
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, California 91109, United States
| | - Kerry Cawse-Nicholson
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, California 91109, United States
| | - Simon J Hook
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, California 91109, United States
| | - Brian A Bergamaschi
- USGS California Water Science Center, 6000 J Street, Sacramento, California 95819, United States
| | - Shawn Acuña
- Metropolitan Water District of Southern California, 1121 L Street Suite 900, Sacramento, California 95814, United States
| | - Nicholas B Tufillaro
- Oregon State University, 1500 S.W. Jefferson Way, Corvallis, Oregon 97331, United States
| | - Robert G Radocinski
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, California 91109, United States
| | - Gerardo Rivera
- NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, California 91109, United States
| | - Ted R Sommer
- California Department of Water Resources, 1416 9th Street, Sacramento, California 95814, United States
| |
Collapse
|
5
|
Williamson ER, Sergeant CJ. Independent validation of downscaled climate estimates from a coastal Alaska watershed using local historical weather journals. PeerJ 2021; 9:e12055. [PMID: 34595065 PMCID: PMC8436960 DOI: 10.7717/peerj.12055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/04/2021] [Indexed: 11/20/2022] Open
Abstract
Downscaling coarse global and regional climate models allows researchers to access weather and climate data at finer temporal and spatial resolution, but there remains a need to compare these models with empirical data sources to assess model accuracy. Here, we validate a widely used software for generating North American downscaled climate data, ClimateNA, with a novel empirical data source, 20th century weather journals kept by Admiralty Island, Alaska homesteader, Allen Hasselborg. Using Hasselborg's journals, we calculated monthly precipitation and monthly mean of the maximum daily air temperature across the years 1926 to 1954 and compared these to ClimateNA data generated from the Hasselborg homestead location and adjacent areas. To demonstrate the utility and potential implications of this validation for other disciplines such as hydrology, we used an established regression equation to generate time series of 95% low duration flow estimates for the month of August using mean annual precipitation from ClimateNA predictions and Hasselborg data. Across 279 months, we found strong correlation between modeled and observed measurements of monthly precipitation (ρ = 0.74) and monthly mean of the maximum daily air temperature (ρ = 0.98). Monthly precipitation residuals (calculated as ClimateNA data - Hasselborg data) generally demonstrated heteroscedasticity around zero, but a negative trend in residual values starting during the last decade of observations may have been due to a shift to the cold-phase Pacific Decadal Oscillation. Air temperature residuals demonstrated a consistent but small positive bias, with ClimateNA tending to overestimate air temperature relative to Hasselborg's journals. The degree of correlation between weather patterns observed at the Hasselborg homestead site and ClimateNA data extracted from spatial grid cells across the region varied by wet and dry climate years. Monthly precipitation from both data sources tended to be more similar across a larger area during wet years (mean ρ across grid cells = 0.73) compared to dry years (mean ρ across grid cells = 0.65). The time series of annual 95% low duration flow estimates for the month of August generated using ClimateNA and Hasselborg data were moderately correlated (ρ = 0.55). Our analysis supports previous research in other regions which also found ClimateNA to be a robust source for past climate data estimates.
Collapse
Affiliation(s)
- Emily R. Williamson
- College of Fisheries and Ocean Sciences, University of Alaska–Fairbanks, Fairbanks, AK, United States of America
| | - Christopher J. Sergeant
- College of Fisheries and Ocean Sciences, University of Alaska–Fairbanks, Fairbanks, AK, United States of America
- Flathead Lake Biological Station, University of Montana, Polson, MT, United States of America
| |
Collapse
|
6
|
Friedland KD, Smoliński S, Tanaka KR. Contrasting patterns in the occurrence and biomass centers of gravity among fish and macroinvertebrates in a continental shelf ecosystem. Ecol Evol 2021; 11:2050-2063. [PMID: 33717441 PMCID: PMC7920786 DOI: 10.1002/ece3.7150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 11/24/2022] Open
Abstract
The distribution of a group of fish and macroinvertebrates (n = 52) resident in the US Northeast Shelf large marine ecosystem were characterized with species distribution models (SDM), which in turn were used to estimate occurrence and biomass center of gravity (COG). The SDMs were fit using random forest machine learning and were informed with a range of physical and biological variables. The estimated probability of occurrence and biomass from the models provided the weightings to determine depth, distance to the coast, and along-shelf distance COG. The COGs of occupancy and biomass habitat tended to be separated by distances averaging 50 km, which approximates half of the minor axis of the subject ecosystem. During the study period (1978-2018), the biomass COG has tended to shift to further offshore positions whereas occupancy habitat has stayed at a regular spacing from the coastline. Both habitat types have shifted their along-shelf distances, indicating a general movement to higher latitude or to the Northeast for this ecosystem. However, biomass tended to occur at lower latitudes in the spring and higher latitude in the fall in a response to seasonal conditions. Distribution of habitat in relation to depth reveals a divergence in response with occupancy habitat shallowing over time and biomass habitat distributing in progressively deeper water. These results suggest that climate forced change in distribution will differentially affect occurrence and biomass of marine taxa, which will likely affect the organization of ecosystems and the manner in which human populations utilize marine resources.
Collapse
Affiliation(s)
| | - Szymon Smoliński
- Demersal Fish Research GroupInstitute of Marine ResearchBergenNorway
- Department of Fisheries ResourcesNational Marine Fisheries Research InstituteGdyniaPoland
| | - Kisei R. Tanaka
- Pacific Islands Fisheries Science CenterNational Oceanic and Atmospheric AdministrationHonoluluHIUSA
| |
Collapse
|
7
|
Mahardja B, Tobias V, Khanna S, Mitchell L, Lehman P, Sommer T, Brown L, Culberson S, Conrad JL. Resistance and resilience of pelagic and littoral fishes to drought in the San Francisco Estuary. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02243. [PMID: 33098718 PMCID: PMC7988542 DOI: 10.1002/eap.2243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/17/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Many estuarine ecosystems and the fish communities that inhabit them have undergone substantial changes in the past several decades, largely due to multiple interacting stressors that are often of anthropogenic origin. Few are more impactful than droughts, which are predicted to increase in both frequency and severity with climate change. In this study, we examined over five decades of fish monitoring data from the San Francisco Estuary, California, USA, to evaluate the resistance and resilience of fish communities to disturbance from prolonged drought events. High resistance was defined by the lack of decline in species occurrence from a wet to a subsequent drought period, while high resilience was defined by the increase in species occurrence from a drought to a subsequent wet period. We found some unifying themes connecting the multiple drought events over the 50-yr period. Pelagic fishes consistently declined during droughts (low resistance), but exhibit a considerable amount of resiliency and often rebound in the subsequent wet years. However, full recovery does not occur in all wet years following droughts, leading to permanently lower baseline numbers for some pelagic fishes over time. In contrast, littoral fishes seem to be more resistant to drought and may even increase in occurrence during dry years. Based on the consistent detrimental effects of drought on pelagic fishes within the San Francisco Estuary and the inability of these fish populations to recover in some years, we conclude that freshwater flow remains a crucial but not sufficient management tool for the conservation of estuarine biodiversity.
Collapse
Affiliation(s)
- Brian Mahardja
- United States Bureau of Reclamation801 I Street, Suite 140SacramentoCalifornia95814USA
| | - Vanessa Tobias
- United States Fish and Wildlife Service850 South Guild AvenueLodiCalifornia95240USA
| | - Shruti Khanna
- California Department of Fish and Wildlife2109 Arch‐Airport RoadStocktonCalifornia95206USA
| | - Lara Mitchell
- United States Fish and Wildlife Service850 South Guild AvenueLodiCalifornia95240USA
| | - Peggy Lehman
- California Department of Water Resources3500 Industrial BoulevardWest SacramentoCalifornia95691USA
| | - Ted Sommer
- California Department of Water Resources3500 Industrial BoulevardWest SacramentoCalifornia95691USA
| | - Larry Brown
- United States Geological Survey6000 J StreetSacramentoCalifornia95819USA
| | - Steve Culberson
- Delta Stewardship Council980 9th StreetSacramentoCalifornia95814USA
| | - J. Louise Conrad
- Delta Stewardship Council980 9th StreetSacramentoCalifornia95814USA
| |
Collapse
|
8
|
Mundy PC, Huff Hartz KE, Fulton CA, Lydy MJ, Brander SM, Hung TC, Fangue NA, Connon RE. Exposure to permethrin or chlorpyrifos causes differential dose- and time-dependent behavioral effects at early larval stages of an endangered teleost species. ENDANGER SPECIES RES 2021; 44:89-103. [PMID: 34354772 PMCID: PMC8336651 DOI: 10.3354/esr01091] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pyrethroid and organophosphate pesticides are two of the most commonly used classes of insecticide worldwide. At sublethal concentrations, permethrin (a pyrethroid) and chlorpyrifos (an organophosphate) impact behavior in model fish species. We investigated behavioral effects of environmentally relevant concentrations of permethrin or chlorpyrifos on early larval delta smelt Hypomesus transpacificus, a Critically Endangered teleost species endemic to the San Francisco Bay Delta, California, USA. Using a photomotor behavioral assay of oscillating light and dark periods, we measured distance moved, turn angle, meander, angular velocity, rotations, thigmotaxis (time spent in the border versus center), and swim speed duration and frequency. The lowest concentrations of permethrin used in the tests (0.05 and 0.5 μg l−1) caused significant increases in distance moved at 72 and 96 h, respectively. At 48, 72, and 96 h of exposure, 5 μg l−1 of permethrin caused a hyperactive state in which the larvae significantly decreased thigmotaxis, quickly turning in short bouts of activity, characterized by significant increases in rotations and freezing events. Larvae exposed to 0.05 μg l−1 chlorpyrifos significantly increased thigmotaxis at 72 and 96 h. In response to 5 μg l−1 chlorpyrifos, larvae significantly increased velocity at 72 h exposure, and significantly increased freezing events at 96 h. Behavioral data on larval delta smelt exposed to contaminants present in their limited habitat have the potential to aid evaluations of the suitability of spawning and rearing habitats for this endangered species, thus improving conservation management strategies focused on this sensitive life stage.
Collapse
Affiliation(s)
- Paige C Mundy
- Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Kara E Huff Hartz
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Corie A Fulton
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Michael J Lydy
- Center for Fisheries, Aquaculture and Aquatic Sciences and Department of Zoology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Susanne M Brander
- Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Oregon State University, Corvallis, OR 97331, USA
| | - Tien-Chieh Hung
- Fish Conservation and Culture Laboratory, Department of Biological and Agricultural Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Nann A Fangue
- Department of Wildlife, Fish & Conservation Biology, University of California, Davis, Davis, CA 95616, USA
| | - Richard E Connon
- Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
9
|
Komoroske LM, Jeffries KM, Whitehead A, Roach JL, Britton M, Connon RE, Verhille C, Brander SM, Fangue NA. Transcriptional flexibility during thermal challenge corresponds with expanded thermal tolerance in an invasive compared to native fish. Evol Appl 2020. [DOI: 10.1111/eva.13172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Lisa M. Komoroske
- Department of Environmental Conservation University of Massachusetts Amherst Amherst MA USA
- Department of Wildlife, Fish & Conservation Biology University of California, Davis Davis CA USA
| | - Ken M. Jeffries
- Department of Biological Sciences University of Manitoba Winnipeg MB Canada
| | - Andrew Whitehead
- Department of Environmental Toxicology University of California, Davis Davis CA USA
| | - Jennifer L. Roach
- Department of Environmental Toxicology University of California, Davis Davis CA USA
| | - Monica Britton
- Bioinformatics Core Facility, Genome Center University of California, Davis Davis CA USA
| | - Richard E. Connon
- Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine University of California, Davis Davis CA USA
| | | | - Susanne M. Brander
- Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station Oregon State University Corvallis OR USA
| | - Nann A. Fangue
- Department of Wildlife, Fish & Conservation Biology University of California, Davis Davis CA USA
| |
Collapse
|
10
|
Mundy PC, Carte MF, Brander SM, Hung TC, Fangue N, Connon RE. Bifenthrin exposure causes hyperactivity in early larval stages of an endangered fish species at concentrations that occur during their hatching season. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 228:105611. [PMID: 32949974 PMCID: PMC7938764 DOI: 10.1016/j.aquatox.2020.105611] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/12/2020] [Accepted: 08/20/2020] [Indexed: 05/29/2023]
Abstract
Bifenthrin is a pyrethroid insecticide commonly used in agricultural and urban sectors, and is found in watersheds worldwide. As a sodium channel blocker, at sublethal concentrations it causes off-target effects, including disruption of calcium signaling and neuronal growth. At the whole organism level, sublethal concentrations of bifenthrin cause behavioral effects in fish species, raising concerns about the neurotoxic properties of the compound on fish populations. Here we describe the application of a high-throughput behavioral system to evaluate contaminant impacts on the sensitive early-life stages of Delta smelt (Hypomesus transpacificus), a critically endangered teleost species endemic to the San Francisco Bay Delta (SFBD), California, USA. Leveraging the natural behavior of early-larval Delta smelt, whereby they increase movement in bright light and decrease movement in the dark, we developed a test using a cycle of light and dark periods in a closed chamber to test hyper- or hypoactivity for this species. We show that early-larval Delta smelt have a significant preference to move toward light, and utilized the behavioral test to evaluate the impact of exposure to bifenthrin at concentrations found in habitats where Delta smelt reportedly spawn, ranging up to concentrations detected in tributaries to these habitats. All tested concentrations of bifenthrin (nominal 2, 10, or 100 ng/L) caused hyperactivity, over a 96 h exposure, with noted significance determined during the light period of the test. To further understand the impact of bifenthrin exposure, expression of a suite of genes relevant to neurodevelopment, the mechanistic target of rapamycin (mTOR) signaling pathway, and biotransformation in exposed larvae were also measured. Following exposure to picomolar concentrations of bifenthrin, expression of genes in the mTOR signaling and neurogenesis pathways were altered alongside behavior. This study demonstrates how light and dark cycle behavioral tests can be used to assess sensitive alterations in swimming activity in Delta smelt at early developmental stages and how gene expression can complement these assays. This approach can be used to assess the impact of multiple compounds that occur within the restricted habitat of Delta smelt, thus having the potential to greatly inform conservation management strategies for this critically sensitive life stage.
Collapse
Affiliation(s)
- Paige C Mundy
- Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, 95616 CA, USA
| | - Meggie F Carte
- Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, 95616 CA, USA; Department of Biology, University of Namur, de Bruxelles 61, B-5000, Namur, Belgium
| | - Susanne M Brander
- Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Oregon State University, Corvallis, OR 97331, USA
| | - Tien-Chieh Hung
- Fish Conservation and Culture Laboratory, Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA
| | - Nann Fangue
- Department of Wildlife, Fish and Conservation Biology, University of California, Davis, CA 95616, USA
| | - Richard E Connon
- Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, 95616 CA, USA.
| |
Collapse
|
11
|
Ralston DK, Moore SK. Modeling harmful algal blooms in a changing climate. HARMFUL ALGAE 2020; 91:101729. [PMID: 32057346 PMCID: PMC7027680 DOI: 10.1016/j.hal.2019.101729] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 05/06/2023]
Abstract
This review assesses harmful algal bloom (HAB) modeling in the context of climate change, examining modeling methodologies that are currently being used, approaches for representing climate processes, and time scales of HAB model projections. Statistical models are most commonly used for near-term HAB forecasting and resource management, but statistical models are not well suited for longer-term projections as forcing conditions diverge from past observations. Process-based models are more complex, difficult to parameterize, and require extensive calibration, but can mechanistically project HAB response under changing forcing conditions. Nevertheless, process-based models remain prone to failure if key processes emerge with climate change that were not identified in model development based on historical observations. We review recent studies on modeling HABs and their response to climate change, and the various statistical and process-based approaches used to link global climate model projections and potential HAB response. We also make several recommendations for how the field can move forward: 1) use process-based models to explicitly represent key physical and biological factors in HAB development, including evaluating HAB response to climate change in the context of the broader ecosystem; 2) quantify and convey model uncertainty using ensemble approaches and scenario planning; 3) use robust approaches to downscale global climate model results to the coastal regions that are most impacted by HABs; and 4) evaluate HAB models with long-term observations, which are critical for assessing long-term trends associated with climate change and far too limited in extent.
Collapse
Affiliation(s)
- David K Ralston
- Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | - Stephanie K Moore
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| |
Collapse
|
12
|
Cooke SJ, Madliger CL, Cramp RL, Beardall J, Burness G, Chown SL, Clark TD, Dantzer B, de la Barrera E, Fangue NA, Franklin CE, Fuller A, Hawkes LA, Hultine KR, Hunt KE, Love OP, MacMillan HA, Mandelman JW, Mark FC, Martin LB, Newman AEM, Nicotra AB, Robinson SA, Ropert-Coudert Y, Rummer JL, Seebacher F, Todgham AE. Reframing conservation physiology to be more inclusive, integrative, relevant and forward-looking: reflections and a horizon scan. CONSERVATION PHYSIOLOGY 2020; 8:coaa016. [PMID: 32274063 PMCID: PMC7125050 DOI: 10.1093/conphys/coaa016] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/27/2020] [Accepted: 02/10/2020] [Indexed: 05/21/2023]
Abstract
Applying physiological tools, knowledge and concepts to understand conservation problems (i.e. conservation physiology) has become commonplace and confers an ability to understand mechanistic processes, develop predictive models and identify cause-and-effect relationships. Conservation physiology is making contributions to conservation solutions; the number of 'success stories' is growing, but there remain unexplored opportunities for which conservation physiology shows immense promise and has the potential to contribute to major advances in protecting and restoring biodiversity. Here, we consider how conservation physiology has evolved with a focus on reframing the discipline to be more inclusive and integrative. Using a 'horizon scan', we further explore ways in which conservation physiology can be more relevant to pressing conservation issues of today (e.g. addressing the Sustainable Development Goals; delivering science to support the UN Decade on Ecosystem Restoration), as well as more forward-looking to inform emerging issues and policies for tomorrow. Our horizon scan provides evidence that, as the discipline of conservation physiology continues to mature, it provides a wealth of opportunities to promote integration, inclusivity and forward-thinking goals that contribute to achieving conservation gains. To advance environmental management and ecosystem restoration, we need to ensure that the underlying science (such as that generated by conservation physiology) is relevant with accompanying messaging that is straightforward and accessible to end users.
Collapse
Affiliation(s)
- Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, ON, K1S 5B6, Canada
- Corresponding author: Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, ON, K1S 5B6, Canada.
| | - Christine L Madliger
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental and Interdisciplinary Science, Carleton University, 1125 Colonel By Dr., Ottawa, ON, K1S 5B6, Canada
| | - Rebecca L Cramp
- School of Biological Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - John Beardall
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Gary Burness
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON, K9L 0G2, Canada
| | - Steven L Chown
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Timothy D Clark
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 14 3216, Australia
| | - Ben Dantzer
- Department of Psychology, Department of Ecology & Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Erick de la Barrera
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro 8701, Morelia, Michoacán, 58190, Mexico
| | - Nann A Fangue
- Department of Wildlife, Fish & Conservation Biology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Craig E Franklin
- School of Biological Sciences, The University of Queensland, Brisbane, 4072, Australia
| | - Andrea Fuller
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, 7 York Rd, Parktown, 2193, South Africa
| | - Lucy A Hawkes
- College of Life and Environmental Sciences, Hatherly Laboratories, University of Exeter, Prince of Wales Road, Exeter, EX4 4PS, UK
| | - Kevin R Hultine
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, AZ 85008, USA
| | - Kathleen E Hunt
- Department of Biology, George Mason University, Fairfax, VA 22030, USA
| | - Oliver P Love
- Department of Integrative Biology, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada
| | - Heath A MacMillan
- Department of Biology and Institute of Biochemistry, Carleton University, 1125 Colonel By Dr., Ottawa, ON K1S 5B6, Canada
| | - John W Mandelman
- Anderson Cabot Center for Ocean Life, New England Aquarium, 1 Central Wharf, Boston, MA 02110, USA
| | - Felix C Mark
- Department of Integrative Ecophysiology, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Am Handelshafen 12, 27574 Bremerhaven, Germany
| | - Lynn B Martin
- Global Health and Infectious Disease Research, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL 33612, USA
| | - Amy E M Newman
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Adrienne B Nicotra
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Sharon A Robinson
- School of Earth, Atmospheric and Life Sciences (SEALS) and Centre for Sustainable Ecosystem Solutions, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Yan Ropert-Coudert
- Centre d'Etudes Biologiques de Chizé, CNRS UMR 7372 - La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Jodie L Rummer
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 5811, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, NSW 2006, Australia
| | - Anne E Todgham
- Department of Animal Science, University of California Davis, One Shields Ave. Davis, CA, 95616, USA
| |
Collapse
|
13
|
Davis BE, Cocherell DE, Sommer T, Baxter RD, Hung TC, Todgham AE, Fangue NA. Sensitivities of an endemic, endangered California smelt and two non-native fishes to serial increases in temperature and salinity: implications for shifting community structure with climate change. CONSERVATION PHYSIOLOGY 2019; 7:coy076. [PMID: 30842886 PMCID: PMC6387996 DOI: 10.1093/conphys/coy076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/29/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
In many aquatic systems, native fishes are in decline and the factors responsible are often elusive. In the San Francisco Estuary (SFE) in California, interactions among native and non-native species are key factors contributing to the decline in abundance of endemic, endangered Delta Smelt (Hypomesus transpacificus). Climate change and drought-related stressors are further exacerbating declines. To assess how multiple environmental changes affect the physiology of native Delta Smelt and non-native Mississippi Silverside (Menidia beryllina) and Largemouth Bass (Micropterus salmoides), fishes were exposed to serial exposures of a single stressor (elevated temperature or salinity) followed by two stressors (elevated temperature and salinity) to determine how a single stressor affects the capacity to cope with the addition of a second stressor. Critical thermal maximum (CTMax; a measure of upper temperature tolerance) was determined after 0, 2, 4 and 7 days following single and multiple stressors of elevated temperature (16°C vs. 20°C) and salinity (2.4 vs. 8-12 ppt, depending on species). Under control conditions, non-native fishes had significantly higher CTMax than the native Delta Smelt. An initial temperature or salinity stressor did not negatively affect the ability of any species to tolerate a subsequent multiple stressor. While elevated salinity had little effect on CTMax, a 4°C increase in temperature increased CTMax. Bass experienced an additive effect of increased temperature and salinity on CTMax, such that CTMax further increased under multiple stressors. In addition, Bass demonstrated physiological sensitivity to multiple stressors demonstrated by changes in hematocrit and plasma osmolality, whereas the physiology of Silversides remained unaffected. Non-native Bass and Mississippi Silversides showed consistently higher thermal tolerance limits than the native Delta Smelt, supporting their abundance in warmer SFE habitats. Continued increases in SFE water temperatures predicted with climate change may further impact endangered Delta Smelt populations directly if habitat temperatures exceed thermal limits.
Collapse
Affiliation(s)
- Brittany E Davis
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, CA, USA
- Department of Animal Sciences, University of California Davis, Davis, CA, USA
- California Department of Water Resources, Division of Environmental Services, PO Box 942836, Sacramento, CA, USA
| | - Dennis E Cocherell
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, CA, USA
| | - Ted Sommer
- California Department of Water Resources, Division of Environmental Services, PO Box 942836, Sacramento, CA, USA
| | - Randall D Baxter
- California Department of Fish and Wildlife, Bay-Delta Region 3, 2109 Arch-Airport Rd., Suite 100, Stockton, CA, USA
| | - Tien-Chieh Hung
- Department of Biological and Agricultural Engineering, University of California, Davis, CA, USA
| | - Anne E Todgham
- Department of Animal Sciences, University of California Davis, Davis, CA, USA
| | - Nann A Fangue
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, CA, USA
| |
Collapse
|
14
|
Mahardja B, Hobbs JA, Ikemiyagi N, Benjamin A, Finger AJ. Role of freshwater floodplain-tidal slough complex in the persistence of the endangered delta smelt. PLoS One 2019; 14:e0208084. [PMID: 30601817 PMCID: PMC6314582 DOI: 10.1371/journal.pone.0208084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 11/12/2018] [Indexed: 11/18/2022] Open
Abstract
Seasonal floodplain wetland is one of the most variable and diverse habitats found in coastal ecosystems, yet it is also one of the most highly altered by humans. The Yolo Bypass, the primary floodplain of the Sacramento River in California's Central Valley, USA, has been shown to provide various benefits to native fishes when inundated. However, the Yolo Bypass exists as a tidal dead-end slough during dry periods and its value to native fishes has been less studied in this state. During the recent drought (2012-2016), we found higher abundance of the endangered Delta Smelt (Hypomesus transpacificus), than the previous 14 years of fish monitoring within the Yolo Bypass. Meanwhile, Delta Smelt abundance elsewhere in the estuary was at record lows during this time. To determine the value of the Yolo Bypass as a nursery habitat for Delta Smelt, we compared growth, hatch dates, and diets of juvenile Delta Smelt collected within the Yolo Bypass with fish collected among other putative nursery habitats in the San Francisco Estuary between 2010 and 2016. Our results indicated that when compared to other areas of the estuary, fish in the Yolo Bypass spawned earlier, and offspring experienced both higher quality feeding conditions and growth rates. The occurrence of healthy juvenile Delta Smelt in the Yolo Bypass suggested that the region may have acted as a refuge for the species during the drought years of 2012-2016. However, our results also demonstrated that no single region provided the best rearing habitat for juvenile Delta Smelt. It will likely require a mosaic of habitats that incorporates floodplain-tidal sloughs in order to promote the resilience of this declining estuarine fish species.
Collapse
Affiliation(s)
- Brian Mahardja
- California Department of Water Resources, Division of Environmental Services, West Sacramento, California, United States of America
- * E-mail:
| | - James A. Hobbs
- University of California–Davis, Department of Wildlife, Fish and Conservation Biology, Davis, California, United States of America
| | - Naoaki Ikemiyagi
- California Department of Water Resources, Division of Environmental Services, West Sacramento, California, United States of America
| | - Alyssa Benjamin
- University of California–Davis, Department of Animal Science, Genomic Variation Laboratory, Davis, California, United States of America
| | - Amanda J. Finger
- University of California–Davis, Department of Animal Science, Genomic Variation Laboratory, Davis, California, United States of America
| |
Collapse
|
15
|
Connon RE, Jeffries KM, Komoroske LM, Todgham AE, Fangue NA. The utility of transcriptomics in fish conservation. ACTA ACUST UNITED AC 2018; 221:221/2/jeb148833. [PMID: 29378879 DOI: 10.1242/jeb.148833] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There is growing recognition of the need to understand the mechanisms underlying organismal resilience (i.e. tolerance, acclimatization) to environmental change to support the conservation management of sensitive and economically important species. Here, we discuss how functional genomics can be used in conservation biology to provide a cellular-level understanding of organismal responses to environmental conditions. In particular, the integration of transcriptomics with physiological and ecological research is increasingly playing an important role in identifying functional physiological thresholds predictive of compensatory responses and detrimental outcomes, transforming the way we can study issues in conservation biology. Notably, with technological advances in RNA sequencing, transcriptome-wide approaches can now be applied to species where no prior genomic sequence information is available to develop species-specific tools and investigate sublethal impacts that can contribute to population declines over generations and undermine prospects for long-term conservation success. Here, we examine the use of transcriptomics as a means of determining organismal responses to environmental stressors and use key study examples of conservation concern in fishes to highlight the added value of transcriptome-wide data to the identification of functional response pathways. Finally, we discuss the gaps between the core science and policy frameworks and how thresholds identified through transcriptomic evaluations provide evidence that can be more readily used by resource managers.
Collapse
Affiliation(s)
- Richard E Connon
- Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Ken M Jeffries
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, Canada R3T 2N2
| | - Lisa M Komoroske
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA 92037, USA.,Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Anne E Todgham
- Department of Animal Science, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Nann A Fangue
- Wildlife, Fish & Conservation Biology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
16
|
Mahardja B, Farruggia MJ, Schreier B, Sommer T. Evidence of a Shift in the Littoral Fish Community of the Sacramento-San Joaquin Delta. PLoS One 2017; 12:e0170683. [PMID: 28118393 PMCID: PMC5261730 DOI: 10.1371/journal.pone.0170683] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/09/2017] [Indexed: 11/19/2022] Open
Abstract
Many estuarine and freshwater ecosystems worldwide have undergone substantial changes due to multiple anthropogenic stressors. Over the past two decades, the Sacramento-San Joaquin Delta (Delta) in California, USA, saw a severe decline in pelagic fishes, a shift in zooplankton community composition, and a rapid expansion of invasive aquatic vegetation. To evaluate whether major changes have also occurred in the littoral fish community, we analyzed a beach seine survey dataset collected from 1995 to 2015 from 26 sites within the Delta. We examined changes in the Delta fish community at three different ecological scales (species, community, and biomass), using clustering analyses, trend tests, and change-point analyses. We found that the annual catch per effort for many introduced species and some native species have increased since 1995, while few experienced a decline. We also observed a steady pattern of change over time in annual fish community composition, driven primarily by a steady increase in non-native Centrarchid species. Lastly, we found that littoral fish biomass has essentially doubled over the 21-year study period, with Mississippi Silverside Menidia audens and fishes in the Centrarchidae family driving most of this increase. The changes in the catch per effort, fish community composition, and biomass per volume indicate that a shift has occurred in the Delta littoral fish community and that the same factors affecting the Delta's pelagic food web may have been a key driver of change.
Collapse
Affiliation(s)
- Brian Mahardja
- California Department of Water Resources, Division of Environmental Services, West Sacramento, California, United States of America
| | - Mary Jade Farruggia
- California Department of Water Resources, Division of Environmental Services, West Sacramento, California, United States of America
| | - Brian Schreier
- California Department of Water Resources, Division of Environmental Services, West Sacramento, California, United States of America
| | - Ted Sommer
- California Department of Water Resources, Division of Environmental Services, West Sacramento, California, United States of America
| |
Collapse
|