1
|
Samulevich ML, Carman LE, Aneskievich BJ. Critical Analysis of Cytoplasmic Progression of Inflammatory Signaling Suggests Potential Pharmacologic Targets for Wound Healing and Fibrotic Disorders. Biomedicines 2024; 12:2723. [PMID: 39767629 PMCID: PMC11726985 DOI: 10.3390/biomedicines12122723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
Successful skin wound healing is dependent on an interplay between epidermal keratinocytes and dermal fibroblasts as they react to local extracellular factors (DAMPs, PAMPs, cytokines, etc.) surveyed from that environment by numerous membrane receptors (e.g., TLRs, cytokine receptors, etc.). In turn, those receptors are the start of a cytoplasmic signaling pathway where balance is key to effective healing and, as needed, cell and matrix regeneration. When directed through NF-κB, these signaling routes lead to transient responses to the benefit of initiating immune cell recruitment, cell replication, local chemokine and cytokine production, and matrix protein synthesis. The converse can also occur, where ongoing canonical NF-κB activation leads to chronic, hyper-responsive states. Here, we assess three key players, TAK1, TNFAIP3, and TNIP1, in cytoplasmic regulation of NF-κB activation, which, because of their distinctive and yet inter-related functions, either promote or limit that activation. Their balanced function is integral to successful wound healing, given their significant control over the expression of inflammation-, fibrosis-, and matrix remodeling-associated genes. Intriguingly, these three proteins have also been emphasized in dysregulated NF-κB signaling central to systemic sclerosis (SSc). Notably, diffuse SSc shares some tissue features similar to an excessive inflammatory/fibrotic wound response without eventual resolution. Taking a cue from certain instances of aberrant wound healing and SSc having some shared aspects, e.g., chronic inflammation and fibrosis, this review looks for the first time, to our knowledge, at what those pathologies might have in common regarding the cytoplasmic progression of NF-κB-mediated signaling. Additionally, while TAK1, TNFAIP3, and TNIP1 are often investigated and reported on individually, we propose them here as three proteins whose consequences of function are very highly interconnected at the signaling focus of NF-κB. We thus highlight the emerging promise for the eventual clinical benefit derived from an improved understanding of these integral signal progression modulators. Depending on the protein, its indirect or direct pharmacological regulation has been reported. Current findings support further intensive studies of these points in NF-κB regulation both for their basic function in healthy cells as well as with the goal of targeting them for translational benefit in multiple cutaneous wound healing situations, whether stemming from acute injury or a dysregulated inflammatory/fibrotic response.
Collapse
Affiliation(s)
- Michael L. Samulevich
- Graduate Program in Pharmacology & Toxicology, University of Connecticut, Storrs, CT 06269-3092, USA; (M.L.S.); (L.E.C.)
| | - Liam E. Carman
- Graduate Program in Pharmacology & Toxicology, University of Connecticut, Storrs, CT 06269-3092, USA; (M.L.S.); (L.E.C.)
| | - Brian J. Aneskievich
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269-3092, USA
| |
Collapse
|
2
|
Dong Y, Dong Y, Zhu C, Yang L, Wang H, Li J, Zheng Z, Zhao H, Xie W, Chen M, Jie Z, Li J, Zang Y, Shi J. Targeting CCL2-CCR2 signaling pathway alleviates macrophage dysfunction in COPD via PI3K-AKT axis. Cell Commun Signal 2024; 22:364. [PMID: 39014433 PMCID: PMC11253350 DOI: 10.1186/s12964-024-01746-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/11/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) remains a leading cause of morbidity and mortality worldwide, characterized by persistent respiratory symptoms and airflow limitation. The involvement of C-C motif chemokine ligand 2 (CCL2) in COPD pathogenesis, particularly in macrophage regulation and activation, is poorly understood despite its recognized role in chronic inflammation. Our study aims to elucidate the regulatory role and molecular mechanisms of CCL2 in the pathogenesis of COPD, providing new insights for therapeutic strategies. METHODS This study focused on the CCL2-CCR2 signaling pathway, exploring its role in COPD pathogenesis using both Ccl2 knockout (KO) mice and pharmacological inhibitors. To dissect the underlying mechanisms, we employed various in vitro and in vivo methods to analyze the secretion patterns and pathogenic effects of CCL2 and its downstream molecular signaling through the CCL2-CCR2 axis. RESULTS Elevated Ccl2 expression was confirmed in the lungs of COPD mice and was associated with enhanced recruitment and activation of macrophages. Deletion of Ccl2 in knockout mice, as well as treatment with a Ccr2 inhibitor, resulted in protection against CS- and LPS-induced alveolar injury and airway remodeling. Mechanistically, CCL2 was predominantly secreted by bronchial epithelial cells in a process dependent on STAT1 phosphorylation and acted through the CCR2 receptor on macrophages. This interaction activated the PI3K-AKT signaling pathway, which was pivotal for macrophage activation and the secretion of inflammatory cytokines, further influencing the progression of COPD. CONCLUSIONS The study highlighted the crucial role of CCL2 in mediating inflammatory responses and remodeling in COPD. It enhanced our understanding of COPD's molecular mechanisms, particularly how CCL2's interaction with the CCR2 activates critical signaling pathways. Targeting the CCL2-CCR2 axis emerged as a promising strategy to alleviate COPD pathology.
Collapse
Affiliation(s)
- Yue Dong
- Department of Respiratory and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
- Lingang Laboratory, 100-19 Banxia Road, Pudong New District, Shanghai, 200120, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ying Dong
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chengyue Zhu
- Department of Respiratory and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
- Lingang Laboratory, 100-19 Banxia Road, Pudong New District, Shanghai, 200120, China
| | - Lan Yang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hanlin Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Junqing Li
- Department of Respiratory and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Zixuan Zheng
- Department of General Medicine, Zhuanqiao Community Healthcare Service Center of Minhang District, Shanghai, China
| | - Hanwei Zhao
- Department of General Medicine, Zhuanqiao Community Healthcare Service Center of Minhang District, Shanghai, China
| | - Wanji Xie
- Department of General Medicine, Hongqiao Community Healthcare Service Center of Minhang District, Shanghai, China
| | - Meiting Chen
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Zhijun Jie
- Department of Respiratory and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
- Center of Community-Based Health Research, Fudan University, Shanghai, China
| | - Jia Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China
| | - Yi Zang
- Lingang Laboratory, 100-19 Banxia Road, Pudong New District, Shanghai, 200120, China.
| | - Jindong Shi
- Department of Respiratory and Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
- Center of Community-Based Health Research, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Kumase F, Takeuchi K, Morizane Y, Suzuki J, Matsumoto H, Kataoka K, Al-Moujahed A, Maidana DE, Miller JW, Vavvas DG. Correction: AMPK-Activated Protein Kinase Suppresses Ccr2 Expression by Inhibiting the NF-κB Pathway in RAW264.7 Macrophages. PLoS One 2024; 19:e0304894. [PMID: 38814938 PMCID: PMC11139279 DOI: 10.1371/journal.pone.0304894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0147279.].
Collapse
|
4
|
Hassan SF, Ghoneim AI, Ghareeb DA, Nematalla HA. Portulaca oleracea L. (purslane) improves the anti-inflammatory, antioxidant and autophagic actions of metformin in the hippocampus of diabetic demented rats. Fitoterapia 2023; 168:105566. [PMID: 37295752 DOI: 10.1016/j.fitote.2023.105566] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
Great body of evidence links cognitive decline to diabetes/insulin resistance. In this study the effect of Portulaca oleracea (PUR) (100 mg/kg), Metformin (MET) (200 mg/kg), a first line diabetes mellitus type 2 therapy, and their combination on cognitive function and hippocampal markers in diabetic rats were assessed. Male rats were injected with streptozotocin (30 mg/kg on two successive weeks) followed by 4 weeks of treatment. Possible antioxidant, anti-inflammatory, and autophagy enhancing mechanisms of these drugs were investigated in the hippocampal tissue using spectrophotometry, ELISA, and western blotting. Diabetic rats suffered significant cognitive impairment in Morris's water maze, hippocampal TBARS elevation, GSH depletion, and SOD upregulation. In addition, diabetes promoted the secretion of hippocampal inflammatory cytokines, TNF-α and IL-1β, and depleted anti-inflammatory cytokines as IL-10. Such detrimental changes were reversed by MET and/or PUR. Notably, AMPK was upregulated by diabetes, then restored to normal by MET and/or PUR. The pattern of change in AMPK expression was concomitant with changes in oxidative and inflammatory burden. Hence, AMPK is believed to be a key mediator in most of the measured pre-AD markers in this study. However, from our results, PUR is believed to have non-AMPK dependent actions as well. In conclusion, antidiabetic agents as metformin and purslane extract proved to be invaluable in addressing the cognitive decline and hippocampal changes that arise as a complication of diabetes. They mainly acted through AMPK pathway; however, their usefulness was not limited to AMPK pathways since their combination was suggested to have a different mechanism.
Collapse
Affiliation(s)
- Salma F Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour 22514, Egypt; Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), Borg Al-Arab, Alexandria 21934, Egypt.
| | - Asser I Ghoneim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour 22514, Egypt; Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Beirut Arab University, Beirut 115020, Lebanon.
| | - Doaa A Ghareeb
- Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt; Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), Borg Al-Arab, Alexandria 21934, Egypt.
| | - Hisham A Nematalla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour 22514, Egypt.
| |
Collapse
|
5
|
Bidirectional Regulation of Sodium Acetate on Macrophage Activity and Its Role in Lipid Metabolism of Hepatocytes. Int J Mol Sci 2023; 24:ijms24065536. [PMID: 36982619 PMCID: PMC10051801 DOI: 10.3390/ijms24065536] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
Short-chain fatty acids (SCFAs) are important metabolites of the intestinal flora that are closely related to the development of non-alcoholic fatty liver disease (NAFLD). Moreover, studies have shown that macrophages have an important role in the progression of NAFLD and that a dose effect of sodium acetate (NaA) on the regulation of macrophage activity alleviates NAFLD; however, the exact mechanism of action remains unclear. This study aimed to assess the effect and mechanism of NaA on regulating the activity of macrophages. RAW264.7 and Kupffer cells cell lines were treated with LPS and different concentrations of NaA (0.01, 0.05, 0.1, 0.5, 1, 1.5, 2, and 5 mM). Low doses of NaA (0.1 mM, NaA-L) significantly increased the expression of inflammatory factors tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin 1 beta (IL-1β); it also increased the phosphorylation of inflammatory proteins nuclear factor-κB p65 (NF-κB p65) and c-Jun (p < 0.05), and the M1 polarization ratio of RAW264.7 or Kupffer cells. Contrary, a high concentration of NaA (2 mM, NaA-H) reduced the inflammatory responses of macrophages. Mechanistically, high doses of NaA increased intracellular acetate concentration in macrophages, while a low dose had the opposite effect, consisting of the trend of changes in regulated macrophage activity. Besides, GPR43 and/or HDACs were not involved in the regulation of macrophage activity by NaA. NaA significantly increased total intracellular cholesterol (TC), triglycerides (TG), and lipid synthesis gene expression levels in macrophages and hepatocytes at either high or low concentrations. Furthermore, NaA regulated the intracellular AMP/ATP ratio and AMPK activity, achieving a bidirectional regulation of macrophage activity, in which the PPARγ/UCP2/AMPK/iNOS/IκBα/NF-κB signaling pathway has an important role. In addition, NaA can regulate lipid accumulation in hepatocytes by NaA-driven macrophage factors through the above-mentioned mechanism. The results revealed that the mode of NaA bi-directionally regulating the macrophages further affects hepatocyte lipid accumulation.
Collapse
|
6
|
Nagatake T, Kishino S, Urano E, Murakami H, Kitamura N, Konishi K, Ohno H, Tiwari P, Morimoto S, Node E, Adachi J, Abe Y, Isoyama J, Sawane K, Honda T, Inoue A, Uwamizu A, Matsuzaka T, Miyamoto Y, Hirata SI, Saika A, Shibata Y, Hosomi K, Matsunaga A, Shimano H, Arita M, Aoki J, Oka M, Matsutani A, Tomonaga T, Kabashima K, Miyachi M, Yasutomi Y, Ogawa J, Kunisawa J. Intestinal microbe-dependent ω3 lipid metabolite αKetoA prevents inflammatory diseases in mice and cynomolgus macaques. Mucosal Immunol 2022; 15:289-300. [PMID: 35013573 PMCID: PMC8866125 DOI: 10.1038/s41385-021-00477-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023]
Abstract
Dietary ω3 fatty acids have important health benefits and exert their potent bioactivity through conversion to lipid mediators. Here, we demonstrate that microbiota play an essential role in the body's use of dietary lipids for the control of inflammatory diseases. We found that amounts of 10-hydroxy-cis-12-cis-15-octadecadienoic acid (αHYA) and 10-oxo-cis-12-cis-15-octadecadienoic acid (αKetoA) increased in the feces and serum of specific-pathogen-free, but not germ-free, mice when they were maintained on a linseed oil diet, which is high in α-linolenic acid. Intake of αKetoA, but not αHYA, exerted anti-inflammatory properties through a peroxisome proliferator-activated receptor (PPAR)γ-dependent pathway and ameliorated hapten-induced contact hypersensitivity by inhibiting the development of inducible skin-associated lymphoid tissue through suppression of chemokine secretion from macrophages and inhibition of NF-κB activation in mice and cynomolgus macaques. Administering αKetoA also improved diabetic glucose intolerance by inhibiting adipose tissue inflammation and fibrosis through decreased macrophage infiltration in adipose tissues and altering macrophage M1/M2 polarization in mice fed a high-fat diet. These results collectively indicate that αKetoA is a novel postbiotic derived from α-linolenic acid, which controls macrophage-associated inflammatory diseases and may have potential for developing therapeutic drugs as well as probiotic food products.
Collapse
Affiliation(s)
- Takahiro Nagatake
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan
| | - Shigenobu Kishino
- grid.258799.80000 0004 0372 2033Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Emiko Urano
- grid.482562.fLaboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, NIBIOHN, 1-1 Hachimandai, Tsukuba, Ibaraki, 305-0843 Japan
| | - Haruka Murakami
- grid.482562.fDepartment of Physical Activity Research, NIBIOHN, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8636 Japan
| | - Nahoko Kitamura
- grid.258799.80000 0004 0372 2033Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Kana Konishi
- grid.482562.fDepartment of Physical Activity Research, NIBIOHN, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8636 Japan
| | - Harumi Ohno
- grid.482562.fDepartment of Physical Activity Research, NIBIOHN, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8636 Japan
| | - Prabha Tiwari
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan
| | - Sakiko Morimoto
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan
| | - Eri Node
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan
| | - Jun Adachi
- Laboratory of Proteome Research and Laboratory of Proteomics for Drug Discovery, NIBIOHN, 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan
| | - Yuichi Abe
- Laboratory of Proteome Research and Laboratory of Proteomics for Drug Discovery, NIBIOHN, 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan ,grid.410800.d0000 0001 0722 8444Division of Molecular Diagnostics, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya, 464-8681 Japan
| | - Junko Isoyama
- Laboratory of Proteome Research and Laboratory of Proteomics for Drug Discovery, NIBIOHN, 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan
| | - Kento Sawane
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan ,grid.136593.b0000 0004 0373 3971Graduate School of Pharmaceutical Sciences, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871 Japan
| | - Tetsuya Honda
- grid.258799.80000 0004 0372 2033Department of Dermatology, Kyoto University Graduate School of Medicine, 54 Shogoin Kawara-cho, Kyoto, 606-8507 Japan ,grid.505613.40000 0000 8937 6696Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka, 431-3192 Japan
| | - Asuka Inoue
- grid.69566.3a0000 0001 2248 6943Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578 Japan
| | - Akiharu Uwamizu
- grid.69566.3a0000 0001 2248 6943Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578 Japan ,grid.26999.3d0000 0001 2151 536XGraduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Takashi Matsuzaka
- grid.20515.330000 0001 2369 4728Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575 Japan ,grid.20515.330000 0001 2369 4728Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575 Japan
| | - Yoichi Miyamoto
- Laboratory of Nuclear Transport Dynamics, NIBIOHN, 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan
| | - So-ichiro Hirata
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan ,grid.31432.370000 0001 1092 3077Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017 Japan
| | - Azusa Saika
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan ,grid.136593.b0000 0004 0373 3971Graduate School of Pharmaceutical Sciences, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871 Japan
| | - Yuki Shibata
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan ,grid.136593.b0000 0004 0373 3971Graduate School of Pharmaceutical Sciences, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871 Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan
| | - Ayu Matsunaga
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan ,grid.412904.a0000 0004 0606 9818Faculty of Agriculture, Takasaki University of Health and Welfare, 54 Nakaoruimachi, Takasaki, Gumma 370-0033 Japan
| | - Hitoshi Shimano
- grid.20515.330000 0001 2369 4728Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575 Japan
| | - Makoto Arita
- grid.26091.3c0000 0004 1936 9959Division of Physiological Chemistry and Metabolism, Keio University Faculty of Pharmacy, 1-5-30 Shibakouen, Minato-ku, Tokyo, 105-8512 Japan ,grid.509459.40000 0004 0472 0267Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan ,grid.268441.d0000 0001 1033 6139Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Junken Aoki
- grid.69566.3a0000 0001 2248 6943Department of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578 Japan ,grid.26999.3d0000 0001 2151 536XGraduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Masahiro Oka
- Laboratory of Nuclear Transport Dynamics, NIBIOHN, 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan
| | - Akira Matsutani
- Department of Internal Medicine, Shunan City Shin-nanyo Hospital, 2-3-15 Miyanomae, Shunan, Yamaguchi, 746-0017 Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research and Laboratory of Proteomics for Drug Discovery, NIBIOHN, 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan
| | - Kenji Kabashima
- grid.258799.80000 0004 0372 2033Department of Dermatology, Kyoto University Graduate School of Medicine, 54 Shogoin Kawara-cho, Kyoto, 606-8507 Japan
| | - Motohiko Miyachi
- grid.482562.fDepartment of Physical Activity Research, NIBIOHN, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8636 Japan
| | - Yasuhiro Yasutomi
- grid.482562.fLaboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, NIBIOHN, 1-1 Hachimandai, Tsukuba, Ibaraki, 305-0843 Japan
| | - Jun Ogawa
- grid.258799.80000 0004 0372 2033Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Asagi Saito, Ibaraki, Osaka, 567-0085 Japan ,grid.136593.b0000 0004 0373 3971Graduate School of Pharmaceutical Sciences, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871 Japan ,grid.31432.370000 0001 1092 3077Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017 Japan ,grid.26999.3d0000 0001 2151 536XInternational Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639 Japan ,grid.136593.b0000 0004 0373 3971Graduate School of Medicine, Graduate School of Dentistry, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871 Japan ,grid.5290.e0000 0004 1936 9975Research Organization for Nano and Life Innovation, Waseda University, Tokyo, 162-0041 Japan
| |
Collapse
|
7
|
Study on the regulatory effect of herbal cake-partitioned moxibustion on colonic CD206, AMPK and TSC2 in rats with Crohn disease. JOURNAL OF ACUPUNCTURE AND TUINA SCIENCE 2021. [DOI: 10.1007/s11726-021-1263-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Mayer KA, Smole U, Zhu C, Derdak S, Minervina AA, Salnikova M, Witzeneder N, Christamentl A, Boucheron N, Waidhofer-Söllner P, Trauner M, Hoermann G, Schmetterer KG, Mamedov IZ, Bilban M, Ellmeier W, Pickl WF, Gualdoni GA, Zlabinger GJ. The energy sensor AMPK orchestrates metabolic and translational adaptation in expanding T helper cells. FASEB J 2021; 35:e21217. [PMID: 33715236 PMCID: PMC8252394 DOI: 10.1096/fj.202001763rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 12/21/2022]
Abstract
The importance of cellular metabolic adaptation in inducing robust T cell responses is well established. However, the mechanism by which T cells link information regarding nutrient supply to clonal expansion and effector function is still enigmatic. Herein, we report that the metabolic sensor adenosine monophosphate-activated protein kinase (AMPK) is a critical link between cellular energy demand and translational activity and, thus, orchestrates optimal expansion of T cells in vivo. AMPK deficiency did not affect T cell fate decision, activation, or T effector cell generation; however, the magnitude of T cell responses in murine in vivo models of T cell activation was markedly reduced. This impairment was global, as all T helper cell subsets were similarly sensitive to loss of AMPK which resulted in reduced T cell accumulation in peripheral organs and reduced disease severity in pathophysiologically as diverse models as T cell transfer colitis and allergic airway inflammation. T cell receptor repertoire analysis confirmed similar clonotype frequencies in different lymphoid organs, thereby supporting the concept of a quantitative impairment in clonal expansion rather than a skewed qualitative immune response. In line with these findings, in-depth metabolic analysis revealed a decrease in T cell oxidative metabolism, and gene set enrichment analysis indicated a major reduction in ribosomal biogenesis and mRNA translation in AMPK-deficient T cells. We, thus, provide evidence that through its interference with these delicate processes, AMPK orchestrates the quantitative, but not the qualitative, manifestation of primary T cell responses in vivo.
Collapse
Affiliation(s)
- Katharina A Mayer
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ursula Smole
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ci Zhu
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.,Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Sophia Derdak
- Core Facilities, Medical University of Vienna, Vienna, Austria
| | - Anastasia A Minervina
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Maria Salnikova
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - Nadine Witzeneder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.,Division of Hematology and Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Anna Christamentl
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Nicole Boucheron
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Petra Waidhofer-Söllner
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Gregor Hoermann
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.,MLL Munich Leukemia Laboratory, Munich, Germany
| | - Klaus G Schmetterer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Ilgar Z Mamedov
- Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.,Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Martin Bilban
- Core Facilities, Medical University of Vienna, Vienna, Austria.,Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Wilfried Ellmeier
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Winfried F Pickl
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Guido A Gualdoni
- Division of Nephrology and Dialysis, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Gerhard J Zlabinger
- Institute of Immunology, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Aslani M, Ahmadzadeh A, Aghazadeh Z, Zaki-Dizaji M, Sharifi L, Hosseini M, Mirshafiey A. Influence of β-D-mannuronic Acid, as a New Member of Non-steroidal Anti- Inflammatory Drugs Family, on the Expression Pattern of Chemokines and their Receptors in Rheumatoid Arthritis. Curr Drug Discov Technol 2021; 18:65-74. [PMID: 31657689 DOI: 10.2174/1570163816666191023103118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/15/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Based on the encouraging results of phase III clinical trial of β-Dmannuronic acid (M2000) (as a new anti-inflammatory drug) in patients with RA, in this study, we aimed to evaluate the effects of this drug on the expression of chemokines and their receptors in PBMCs of RA patients. METHODS PBMCs of RA patients and healthy controls were separated and the patients' cells were treated with low, moderate and high doses (5, 25 and 50 μg/mL) of M2000 and optimum dose (1 μg/mL) of diclofenac, as a control in RPMI-1640 medium. Real-time PCR was used for evaluating the mRNA expression of CXCR3, CXCR4, CCR2, CCR5 and CCL2/MCP-1. Cell surface expression of CCR2 was investigated using flow cytometry. RESULTS CCR5 mRNA expression reduced significantly, after treatment of the patients' cells with all three doses of M2000 and optimum dose of diclofenac. CXCR3 mRNA expression was downregulated significantly followed by the treatment of these cells with moderate and high doses of M2000 and optimum dose of diclofenac. CXCR4 mRNA expression declined significantly after the treatment of these cells with moderate and high doses of M2000. CCL2 mRNA expression significantly reduced only followed by the treatment of these cells with a high dose of M2000, whereas, mRNA and cell surface expressions of CCR2 diminished significantly followed by the treatment of these cells with a high dose of M2000 and optimum dose of diclofenac. CONCLUSION According to our results, M2000 through the down-regulation of chemokines and their receptors may restrict the infiltration of immune cells into the synovium.
Collapse
Affiliation(s)
- Mona Aslani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Arman Ahmadzadeh
- Department of Rheumatology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Aghazadeh
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Zaki-Dizaji
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Laleh Sharifi
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Hosseini
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Acadesine suppresses TNF-α induced complement component 3 (C3), in retinal pigment epithelial (RPE) cells. PLoS One 2020; 15:e0244307. [PMID: 33362238 PMCID: PMC7757886 DOI: 10.1371/journal.pone.0244307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/07/2020] [Indexed: 01/02/2023] Open
Abstract
Rationale Age-related macular degeneration (AMD) is the most prevalent form of irreversible blindness in the developed world. Aging, inflammation and complement dysregulation affecting the retinal pigment epithelium (RPE), are considered significant contributors in its pathogenesis and several evidences have linked tumor necrosis factor alpha (TNF-α) and complement component 3 (C3) with AMD. Acadesine, an analog of AMP and an AMP-activated protein kinase (AMPK) activator, has been shown to have cytoprotective effects in human clinical trials as well as having anti-inflammatory and anti-vascular exudative effects in animals. The purpose of this study was to evaluate if acadesine is able to suppress TNF-α induced C3 in RPE cells. Methods ARPE-19 and human primary RPE cells were cultured and allowed to grow to confluence. TNF-α was used for C3 induction in the presence or absence of acadesine. Small molecule inhibitors and siRNA were used to determine if acadesine exerts its effect via the extracellular or intracellular pathway and to evaluate the importance of AMPK for these effects. The expression level of C3 was determined by immunoblot analysis. Results Acadesine suppresses TNF-α induced C3 in a dose dependent manner. When we utilized the adenosine receptor inhibitor dipyridamole (DPY) along with acadesine, acadesine’s effects were abolished, indicating the necessity of acadesine to enter the cell in order to exert it’s action. However, pretreatment with 5-iodotubericidin (5-Iodo), an adenosine kinase (AK) inhibitor, didn’t prevent acadesine from decreasing TNF-α induced C3 expression suggesting that acadesine does not exert its effect through AMP conversion and subsequent activation of AMPK. Consistent with this, knockdown of AMPK α catalytic subunit did not affect the inhibitory effect of acadesine on TNF-α upregulation of C3. Conclusions Our results suggest that acadesine suppresses TNF-α induced C3, likely through an AMPK-independent pathway, and could have potential use in complement over activation diseases.
Collapse
|
11
|
In Vitro and In Vivo Antibiotic Capacity of Two Host Defense Peptides. Antimicrob Agents Chemother 2020; 64:AAC.00145-20. [PMID: 32366718 DOI: 10.1128/aac.00145-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/25/2020] [Indexed: 12/23/2022] Open
Abstract
Two nonamidated host defense peptides named Pin2[G] and FA1 were evaluated against three types of pathogenic bacteria: two (Staphylococcus aureus UPD13 and Pseudomonas aeruginosa UPD3) isolated from diabetic foot ulcer patients, and another (Salmonella enterica serovar Typhimurium [ATCC 14028]) from a commercial collection. In vitro experiments showed that the antimicrobial performance of the synthetic peptides Pin2[G] and FA1 was modest, although FA1 was more effective than Pin2[G]. In contrast, Pin2[G] had superior in vivo anti-infective activity to FA1 in rabbit wound infections by the diabetic foot ulcer pathogens S. aureus UPD13 and P. aeruginosa UPD3. Indeed, Pin2[G] reduced bacterial colony counts of both S. aureus UPD13 and P. aeruginosa UPD3 by >100,000-fold after 48 to 72 h on skin wounds of infected rabbits, while in similar infected wounds, FA1 had no major effects at 72 to 96 h of treatment. Ceftriaxone was equally effective versus Pseudomonas but less effective versus S. aureus infections. Additionally, the two peptides were evaluated in mice against intragastrically inoculated S. enterica serovar Typhimurium (ATCC 14028). Only Pin2[G] at 0.56 mg/kg was effective in reducing systemic (liver) infection by >67-fold, equivalent to the effect of treatment with levofloxacin. Pin2[G] showed superior immunomodulatory activity in increasing chemokine production by a human bronchial cell line and suppressing polyinosinic-polycytidylic acid (poly[I:C])-induced proinflammatory IL-6 production. These data showed that the in vitro antimicrobial activity of these peptides was not correlated with their in vivo anti-infective activity and suggest that other factors such as immunomodulatory activity were more important.
Collapse
|
12
|
Yang Y, Wang J, Guo S, Pourteymour S, Xu Q, Gong J, Huang Z, Shen Z, Diabakte K, Cao Z, Wu G, Natalia S, Tian Z, Jin H, Tian Y. Non-lethal sonodynamic therapy facilitates the M1-to-M2 transition in advanced atherosclerotic plaques via activating the ROS-AMPK-mTORC1-autophagy pathway. Redox Biol 2020; 32:101501. [PMID: 32179242 PMCID: PMC7078437 DOI: 10.1016/j.redox.2020.101501] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/03/2020] [Accepted: 03/07/2020] [Indexed: 12/17/2022] Open
Abstract
Emerging evidence indicates that macrophage functional polarization is critically involved in the development of atherosclerosis (AS). Here, we examined the role of 5-aminolaevulinic acid (ALA)-mediated non-lethal sonodynamic therapy (NL-SDT) in macrophage-subset polarization and atherosclerotic lesion stability and explored the potential underlying mechanisms. Using Western diet-fed apolipoprotein E (apoE)−/− and green fluorescent protein (GFP)-positive bone marrow (BM) chimeric mouse models, we demonstrated that NL-SDT promoted phenotypic switching of both BM-derived and resident macrophages from M1 to M2 and significantly inhibited AS progression. Further mechanistic studies indicated that NL-SDT enhanced macrophage differentiation toward the M2 phenotype by activating the reactive oxygen species (ROS)–5′ AMP-activated protein kinase (AMPK)–mammalian target of rapamycin complex 1 (mTORC1)–autophagy signaling pathway in murine BM-derived M1 macrophages (BMDM1s). Moreover, NL-SDT drastically reduced lipid droplets, mainly by promoting apoAI-mediated cholesterol efflux in vitro. Specifically, administration of pharmacological inhibitors to the animal model showed a reciprocal effect on NL-SDT-induced macrophage polarization. These findings indicate that NL-SDT engages a virtuous cycle that enhances M1-to-M2 polarization, cholesterol efflux, and anti-inflammatory reactions in advanced plaque in vivo and in BMDM1s in vitro by activating the ROS–AMPK–mTORC1–autophagy pathway. This discovery might help elucidate the mechanism underlying NL-SDT as a potential treatment to prevent atherothrombotic events. NL-SDT enhances M1-to-M2 shift and significantly inhibits atherosclerosis progression in a mouse model. NL-SDT induces autophagy by activating the AMPK signaling pathway. M2-like macrophages promoted by NL-SDT facilitate cholesterol efflux and attenuate intracellular cholesterol deposition. The ROS–AMPK–mTORC1–autophagy pathway is critical for NL-SDT-mediated effects on M2 macrophage polarization.
Collapse
Affiliation(s)
- Yang Yang
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, 150001, PR China
| | - Jiayu Wang
- Department of Pathophysiology and Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Key Laboratory of Cardiovascular Research (Harbin Medical University), Ministry of Education, Harbin, 150086, PR China
| | - Shuyuan Guo
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, 150001, PR China
| | | | - Qiulian Xu
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, 150001, PR China
| | - Jie Gong
- Department of Pathophysiology and Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Key Laboratory of Cardiovascular Research (Harbin Medical University), Ministry of Education, Harbin, 150086, PR China
| | - Zhen Huang
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, 150001, PR China
| | - Zhaoqian Shen
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, 150001, PR China
| | - Kamal Diabakte
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, 150001, PR China
| | - Zhengyu Cao
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, 150001, PR China
| | - Guodong Wu
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, 150001, PR China
| | - Sukhareva Natalia
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, 150001, PR China
| | - Zhen Tian
- Department of Pathophysiology and Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Key Laboratory of Cardiovascular Research (Harbin Medical University), Ministry of Education, Harbin, 150086, PR China
| | - Hong Jin
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Ye Tian
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, 150001, PR China; Department of Pathophysiology and Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, Key Laboratory of Cardiovascular Research (Harbin Medical University), Ministry of Education, Harbin, 150086, PR China.
| |
Collapse
|
13
|
Xian Z, Choi YH, Zheng M, Jiang J, Zhao Y, Wang C, Li J, Li Y, Li L, Piao H, Yan G. Imperatorin alleviates ROS-mediated airway remodeling by targeting the Nrf2/HO-1 signaling pathway. Biosci Biotechnol Biochem 2020; 84:898-910. [PMID: 31900049 DOI: 10.1080/09168451.2019.1710107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this study, we investigated the role and mechanism of imperatorin (IMP) in chronic inflammation and airway remodeling. The levels of TNF-α, IL-1β, IL-6, IL-8, VEGF, α-SMA, and ROS were detected by ELISA, immunohistochemistry (IHC), immunofluorescence, and Western blot. In addition, we evaluated the effect of IMP on MAPK, PI3K/Akt, NF-κB, and Nrf2/HO-1 signaling pathways. IMP treatment obviously attenuated the production of inflammatory cytokines and inflammatory cells in bronchoalveolar lavage fluid of OVA-induced airway remodeling model. Meanwhile, it significantly inhibited inflammatory cell infiltration, goblet cell hyperplasia, collagen deposition, VEGF production, α-SMA, and ROS expression. Our study has shown that IMP could regulate the signaling pathways including MAPK, PI3K/Akt, NF-κB, and Nrf2/HO-1 to release the inflammatory responses. IMP might attenuate airway remodeling by the down-regulation of Nrf2/HO-1/ROS/PI3K/Akt, Nrf2/HO-1/ROS/MAPK, and Nrf2/HO-1/ROS/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Zhemin Xian
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, P.R. China
| | - Yun Ho Choi
- Department of Anatomy, Medical School, Institute for Medical Sciences, Chonbuk National University, Jeonju, Republic of Korea
| | - Mingyu Zheng
- College of Pharmacy, Yanbian University, Yanji, P.R. China
| | - Jingzhi Jiang
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, P.R. China
| | - Yuzhe Zhao
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, P.R. China
| | - Chongyang Wang
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, P.R. China
| | - Junfeng Li
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, P.R. China
| | - Yan Li
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, P.R. China
| | - Liangchang Li
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, P.R. China
| | - Hongmei Piao
- Department of Respiratory Medicine, Affiliated Hospital of Yanbian University, Yanji, P.R. China
| | - Guanghai Yan
- Department of Anatomy, Histology and Embryology, Yanbian University Medical College, Yanji, P.R. China
| |
Collapse
|
14
|
Aslani M, Ahmadzadeh A, Rezaieyazdi Z, Mortazavi-Jahromi SS, Barati A, Hosseini M, Mirshafiey A. The Situation of Chemokine Ligands and Receptors Gene Expression, Following the Oral Administration of Drug Mannuronic Acid in Rheumatoid Arthritis Patients. RECENT PATENTS ON INFLAMMATION & ALLERGY DRUG DISCOVERY 2020; 14:69-77. [PMID: 31729947 PMCID: PMC7509734 DOI: 10.2174/1872213x13666191114111822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/02/2019] [Accepted: 11/02/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Regarding the leukocytes infiltration into the synovium of Rheumatoid Arthritis (RA) patients is mostly mediated by chemokine ligands and receptors, and following the efficient and motivating results of international Phase III clinical trial of β-D-Mannuronic acid (M2000) patented EP067919 (2017), as a novel anti-inflammatory drug, in patients with RA, the present research was designed. OBJECTIVES This study aimed to assess the oral administration effects of this new drug on gene expression of some chemokine receptors and ligands, including CXCR4, CXCR3, CCR2, CCR5 and CCL2/MCP-1 in PBMCs of patients with active form of RA. METHODS Twelve patients suffering from RA, with inadequate response to conventional drugs were selected (Clinical trial identifier IRCT2017100213739N10) and 1000mg/day of M2000 was orally administrated to them for 12 weeks. The mRNA expression of target molecules was then evaluated in PBMCs of the patients before and after treatment with M2000 using real-time PCR and was compared to healthy controls. Patents related to this study were also reviewed. RESULTS The results showed that M2000 was able to significantly down-regulate the mRNA expression of CXCR4, CCR2 and CCL2/MCP-1 in the PBMCs of the RA patients. It should be noted that the gene expression situation of the target molecules was in coordinate with the clinical and paraclinical assessments in the patients. CONCLUSION Taken together, the results of this investigation revealed the part of molecular and immunological mechanisms of drug Mannuronic acid (M2000) in the treatment of RA, based on chemokine ligands and receptors mediated processes.
Collapse
Affiliation(s)
- Mona Aslani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Arman Ahmadzadeh
- Department of Rheumatology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Rezaieyazdi
- Rheumatic Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Anis Barati
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Hosseini
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Centre for Immunodeficiencies, Children's Medical Centre, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Jansen T, Kröller-Schön S, Schönfelder T, Foretz M, Viollet B, Daiber A, Oelze M, Brandt M, Steven S, Kvandová M, Kalinovic S, Lagrange J, Keaney JF, Münzel T, Wenzel P, Schulz E. α1AMPK deletion in myelomonocytic cells induces a pro-inflammatory phenotype and enhances angiotensin II-induced vascular dysfunction. Cardiovasc Res 2019; 114:1883-1893. [PMID: 29982418 DOI: 10.1093/cvr/cvy172] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/02/2018] [Indexed: 12/17/2022] Open
Abstract
Aims Immune cell function involves energy-dependent processes including growth, proliferation, and cytokine production. Since the AMP-activated protein kinase (AMPK) is a crucial regulator of intracellular energy homeostasis, its expression and activity may also affect innate and adaptive immune cell responses. Therefore, we aimed to investigate the consequences of α1AMPK deletion in myelomonocytic cells on vascular function, inflammation, and hypertension during chronic angiotensin II (ATII) treatment. Methods and results We generated a mouse strain with α1AMPK deletion in lysozyme M+ myelomonocytic cells. Compared to controls, chronic ATII infusion (1 mg/kg/day for 7 days) lead to increased vascular oxidative stress and aggravated endothelial dysfunction in LysM-Cre+ x α1AMPKfl/fl mice. This was accompanied by an increased aortic infiltration of CD11b+F4/80+ macrophages and enhanced pro-inflammatory cytokine release (tumour necrosis factor-alpha, interferon-gamma, and interleukin-6). Mechanistically, we found that increased expression of C-C chemokine receptor 2 (CCR2) in α1AMPK deficient myelomonocytic cells facilitated their recruitment to the vascular wall. In addition, expression of the ATII receptor type 1a and the oxidative burst was increased in these cells, indicating an increased susceptibility towards pro-oxidant stimuli. Conclusions In summary, α1AMPK deletion in myelomonocytic cells aggravates vascular oxidative stress and dysfunction by enhancing their recruitment to the vascular wall and increasing their susceptibility towards pro-oxidant stimuli. Our observations suggest that metabolic control in myelomonocytic cells has profound implications for their inflammatory phenotype and may trigger the development of vascular disease.
Collapse
Affiliation(s)
- Thomas Jansen
- Department of Cardiology 1, Center for Cardiology, Universitätsmedizin Mainz, Mainz, Germany
| | - Swenja Kröller-Schön
- Department of Cardiology 1, Center for Cardiology, Universitätsmedizin Mainz, Mainz, Germany
| | - Tanja Schönfelder
- Center for Thrombosis and Hemostasis (CTH), Universitätsmedizin Mainz, Mainz, Germany
| | - Marc Foretz
- Institut Cochin, INSERM U1016, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris cité, 24 rue du faubourg Saint Jacques, Paris, France
| | - Benoit Viollet
- Institut Cochin, INSERM U1016, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris cité, 24 rue du faubourg Saint Jacques, Paris, France
| | - Andreas Daiber
- Department of Cardiology 1, Center for Cardiology, Universitätsmedizin Mainz, Mainz, Germany
| | - Matthias Oelze
- Department of Cardiology 1, Center for Cardiology, Universitätsmedizin Mainz, Mainz, Germany
| | - Moritz Brandt
- Department of Cardiology 1, Center for Cardiology, Universitätsmedizin Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis (CTH), Universitätsmedizin Mainz, Mainz, Germany
| | - Sebastian Steven
- Department of Cardiology 1, Center for Cardiology, Universitätsmedizin Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis (CTH), Universitätsmedizin Mainz, Mainz, Germany
| | - Miroslava Kvandová
- Department of Cardiology 1, Center for Cardiology, Universitätsmedizin Mainz, Mainz, Germany
| | - Sanela Kalinovic
- Department of Cardiology 1, Center for Cardiology, Universitätsmedizin Mainz, Mainz, Germany
| | - Jeremy Lagrange
- Center for Thrombosis and Hemostasis (CTH), Universitätsmedizin Mainz, Mainz, Germany
| | - John F Keaney
- Division of Cardiovascular Medicine, UMass Medical School, 55 Lake Avenue North, Worcester, MA, USA
| | - Thomas Münzel
- Department of Cardiology 1, Center for Cardiology, Universitätsmedizin Mainz, Mainz, Germany
| | - Philip Wenzel
- Department of Cardiology 1, Center for Cardiology, Universitätsmedizin Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis (CTH), Universitätsmedizin Mainz, Mainz, Germany
| | - Eberhard Schulz
- Department of Cardiology 1, Center for Cardiology, Universitätsmedizin Mainz, Mainz, Germany
| |
Collapse
|
16
|
Salminen A, Kauppinen A, Kaarniranta K. AMPK activation inhibits the functions of myeloid-derived suppressor cells (MDSC): impact on cancer and aging. J Mol Med (Berl) 2019; 97:1049-1064. [PMID: 31129755 PMCID: PMC6647228 DOI: 10.1007/s00109-019-01795-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/10/2019] [Accepted: 05/08/2019] [Indexed: 02/06/2023]
Abstract
AMP-activated protein kinase (AMPK) has a crucial role not only in the regulation of tissue energy metabolism but it can also control immune responses through its cooperation with immune signaling pathways, thus affecting immunometabolism and the functions of immune cells. It is known that AMPK signaling inhibits the activity of the NF-κB system and thus suppresses pro-inflammatory responses. Interestingly, AMPK activation can inhibit several major immune signaling pathways, e.g., the JAK-STAT, NF-κB, C/EBPβ, CHOP, and HIF-1α pathways, which induce the expansion and activation of myeloid-derived suppressor cells (MDSC). MDSCs induce an immunosuppressive microenvironment in tumors and thus allow the escape of tumor cells from immune surveillance. Chronic inflammation has a key role in the expansion and activation of MDSCs in both tumors and inflammatory disorders. The numbers of MDSCs also significantly increase during the aging process concurrently with the immunosenescence associated with chronic low-grade inflammation. Increased fatty acid oxidation and lactate produced by aerobic glycolysis are important immunometabolic enhancers of MDSC functions. However, it seems that AMPK signaling regulates the functions of MDSCs in a context-dependent manner. Currently, the activators of AMPK signaling are promising drug candidates for cancer therapy and possibly for the extension of healthspan and lifespan. We will describe in detail the AMPK-mediated regulation of the signaling pathways controlling the expansion and activation of immunosuppressive MDSCs. We will propose that the beneficial effects mediated by AMPK activation, e.g., in cancers and the aging process, could be induced by the inhibition of MDSC functions.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029, Kuopio, Finland
| |
Collapse
|
17
|
Saxagliptin regulates M1/M2 macrophage polarization via CaMKKβ/AMPK pathway to attenuate NAFLD. Biochem Biophys Res Commun 2018; 503:1618-1624. [DOI: 10.1016/j.bbrc.2018.07.090] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 07/19/2018] [Indexed: 01/13/2023]
|
18
|
Ou Z, Kong X, Sun X, He X, Zhang L, Gong Z, Huang J, Xu B, Long D, Li J, Li Q, Xu L, Xuan A. Metformin treatment prevents amyloid plaque deposition and memory impairment in APP/PS1 mice. Brain Behav Immun 2018; 69:351-363. [PMID: 29253574 DOI: 10.1016/j.bbi.2017.12.009] [Citation(s) in RCA: 272] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/04/2017] [Accepted: 12/14/2017] [Indexed: 12/18/2022] Open
Abstract
Alzheimer'sdisease(AD) is characterized by deposition of amyloid-β (Aβ)plaques, neurofibrillary tangles, andneuronal loss, accompaniedbyneuroinflammation. Neuroinflammatoryprocesses are thought to contribute toAD pathophysiology. Metformin has been reported to have anti-inflammatory efficacy. However, whether metformin is responsible for the anti-neuroinflammationand neuroprotection on APPswe/PS1ΔE9 (APP/PS1) mice remains unclear. Here we showed that metformin attenuated spatial memory deficit, neuron loss in the hippocampus and enhanced neurogenesis in APP/PS1 mice. In addition, metformin administration decreased amyloid-β (Aβ)plaque load and chronic inflammation (activated microglia and astrocytes as well as pro-inflammatory mediators) in the hippocampus and cortex. Further study demonstrated that treatment with metformin enhanced cerebral AMPK activation. Meanwhile, metformin notably suppressed the activation of P65 NF-κB, mTOR and S6K, reduced Bace1 protein expression. Our data suggest that metformin can exert functional recovery of memory deficits and neuroprotective effect on APP/PS1 mice via triggering neurogenesis and anti-inflammation mediated by regulating AMPK/mTOR/S6K/Bace1 and AMPK/P65 NF-κB signaling pathways in the hippocampus, which may contribute to improvement in neurological deficits.
Collapse
Affiliation(s)
- Zhenri Ou
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xuejian Kong
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiangdong Sun
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaosong He
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Le Zhang
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhuo Gong
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Jingyi Huang
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Biao Xu
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Dahong Long
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Jianhua Li
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Qingqing Li
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Liping Xu
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Aiguo Xuan
- Key Laboratory of Neuroscience, School of Basic Medical Sciences, Department of Neurology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
19
|
Wang J, Li Z, Gao L, Qi Y, Zhu H, Qin X. The regulation effect of AMPK in immune related diseases. SCIENCE CHINA-LIFE SCIENCES 2017; 61:523-533. [PMID: 29127585 DOI: 10.1007/s11427-017-9169-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/28/2017] [Indexed: 12/12/2022]
|
20
|
Ye J, Piao H, Jiang J, Jin G, Zheng M, Yang J, Jin X, Sun T, Choi YH, Li L, Yan G. Polydatin inhibits mast cell-mediated allergic inflammation by targeting PI3K/Akt, MAPK, NF-κB and Nrf2/HO-1 pathways. Sci Rep 2017; 7:11895. [PMID: 28928455 PMCID: PMC5605538 DOI: 10.1038/s41598-017-12252-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/22/2017] [Indexed: 02/07/2023] Open
Abstract
Polydatin(PD) shows anti-allergic inflammatory effect, and this study investigated its underlying mechanisms in in vitro and in vivo models. IgE-mediated passive cutaneous anaphylaxis (PCA) and passive systemic anaphylaxis (PSA) models were used to confirm PD effect in vivo. Various signaling pathway proteins in mast cell were examined. RT-PCR, ELISA and western blotting were applied when appropriate. Activity of Lyn and Fyn kinases in vitro was measured using the Kinase Enzyme System. PD dose-dependently reduced the pigmentation of Evans blue in the PCA model and decreased the concentration of serum histamine in PSA model, and attenuated the degranulation of mast cells without generating cytotoxicity. PD decreased pro-inflammatory cytokine expression (TNF-α, IL-4, IL-1β, and IL-8). PD directly inhibited activity of Lyn and Syk kinases and down-regulated downstream signaling pathway including MAPK, PI3K/AKT and NF-kB. In addition, PD also targets Nrf2/HO-1 pathway to inhibit mast cell-derived allergic inflammatory reactions. In conclusion, the study demonstrates that PD is a possible therapeutic candidate for allergic inflammatory diseases. It directly inhibited activity of Lyn and Syk kinases and down-regulates the signaling pathway of MAPK, PI3K/AKT and NF-κB, and up-regulates the signaling pathway of Nrf2/HO-1 to inhibit the degranulation of mast cells.
Collapse
Affiliation(s)
- Jing Ye
- Department of Anatomy and Histology and Embryology, Yanbian University Medical College, Yanji, 133002, P.R. China
| | - Hongmei Piao
- Department of Respiratory Medicine, Yanbian University Hospital, Yanji, P.R. China
| | - Jingzhi Jiang
- Department of Anatomy and Histology and Embryology, Yanbian University Medical College, Yanji, 133002, P.R. China
| | - Guangyu Jin
- Department of Respiratory Medicine, Yanbian University Hospital, Yanji, P.R. China
| | - Mingyu Zheng
- College of Pharmacy, Yanbian University, Yanji, 133002, P.R. China
| | - Jinshi Yang
- College of Pharmacy, Yanbian University, Yanji, 133002, P.R. China
| | - Xiang Jin
- College of Pharmacy, Yanbian University, Yanji, 133002, P.R. China
| | - Tianyi Sun
- College of Pharmacy, Yanbian University, Yanji, 133002, P.R. China
| | - Yun Ho Choi
- Department of Anatomy, Medical School, Institute for Medical Sciences, Chonbuk National University, Jeonju, Jeonbuk, 561-756, Republic of Korea
| | - Liangchang Li
- Department of Anatomy and Histology and Embryology, Yanbian University Medical College, Yanji, 133002, P.R. China.
| | - Guanghai Yan
- Department of Anatomy and Histology and Embryology, Yanbian University Medical College, Yanji, 133002, P.R. China.
| |
Collapse
|
21
|
Wang J, Ma A, Zhao M, Zhu H. AMPK activation reduces the number of atheromata macrophages in ApoE deficient mice. Atherosclerosis 2017; 258:97-107. [PMID: 28235712 DOI: 10.1016/j.atherosclerosis.2017.01.036] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/14/2017] [Accepted: 01/31/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS CC chemokine receptor 2 (Ccr2) governs migration of inflammatory Ly6Chi monocytes from the bone marrow (BM) to the circulating blood, which is a key step for macrophage accumulation during progression of atherosclerosis. Hyperlipidemia is often accompanied by low AMP-activated kinase (AMPK) activity and increased expression of Ccr2. The aim of this study was to examine whether there is a link between AMPK and chemokine networks. METHODS ApoE-/- mice were fed a western diet and treated daily with AMPK activators (AICAR, A769662, or Metformin) or vehicle for 10 weeks. The effect of AMPK activators on pro-inflammatory myeloid cell numbers within the BM, blood, spleen, and aorta of ApoE-/- mice was then examined. RESULTS We found that AMPK activation significantly reduced the number of Ly6Chi monocytes in the blood and atherosclerotic plaques. This reduction was caused by down-regulation of Ccr2 protein expression, which inhibited Ccr2-mediated migration of Ly6Chi monocytes from the BM to the circulation. There was no effect on proliferation or apoptosis of BM-derived Ly6Chi monocytes. AMPK activation caused Ly6Chi monocytes to accumulate in the BM, with a concomitant reduction in numbers in the blood and spleen. CONCLUSIONS AMPK activation reduces the formation of atheromata-inducing macrophages in ApoE-/--deficient mice by inhibiting expression of Ccr2, thereby preventing the Ccr2-mediated migration of Ly6Chi monocytes from the BM. Therefore, AMPK may be a promising target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, China; Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
| | - Ang Ma
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, China
| | - Ming Zhao
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, USA.
| | - Haibo Zhu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, China.
| |
Collapse
|
22
|
The Effect of Post-Resistance Exercise Amino Acids on Plasma MCP-1 and CCR2 Expression. Nutrients 2016; 8:nu8070409. [PMID: 27384580 PMCID: PMC4963885 DOI: 10.3390/nu8070409] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/22/2016] [Accepted: 06/29/2016] [Indexed: 12/22/2022] Open
Abstract
The recruitment and infiltration of classical monocytes into damaged muscle is critical for optimal tissue remodeling. This study examined the effects of an amino acid supplement on classical monocyte recruitment following an acute bout of lower body resistance exercise. Ten resistance-trained men (24.7 ± 3.4 years; 90.1 ± 11.3 kg; 176.0 ± 4.9 cm) ingested supplement (SUPP) or placebo (PL) immediately post-exercise in a randomized, cross-over design. Blood samples were obtained at baseline (BL), immediately (IP), 30-min (30P), 1-h (1H), 2-h (2H), and 5-h (5H) post-exercise to assess plasma concentrations of monocyte chemoattractant protein 1 (MCP-1), myoglobin, cortisol and insulin concentrations; and expressions of C-C chemokine receptor-2 (CCR2), and macrophage-1 antigen (CD11b) on classical monocytes. Magnitude-based inferences were used to provide inferences on the true effects of SUPP compared to PL. Changes in myoglobin, cortisol, and insulin concentrations were similar between treatments. Compared to PL, plasma MCP-1 was “very likely greater” (98.1% likelihood effect) in SUPP at 2H. CCR2 expression was “likely greater” at IP (84.9% likelihood effect), “likely greater” at 1H (87.7% likelihood effect), “very likely greater” at 2H (97.0% likelihood effect), and “likely greater” at 5H (90.1% likelihood effect) in SUPP, compared to PL. Ingestion of SUPP did not influence CD11b expression. Ingestion of an amino acid supplement immediately post-exercise appears to help maintain plasma MCP-1 concentrations and augment CCR2 expression in resistance trained men.
Collapse
|
23
|
Mangalam AK, Rattan R, Suhail H, Singh J, Hoda MN, Deshpande M, Fulzele S, Denic A, Shridhar V, Kumar A, Viollet B, Rodriguez M, Giri S. AMP-Activated Protein Kinase Suppresses Autoimmune Central Nervous System Disease by Regulating M1-Type Macrophage–Th17 Axis. THE JOURNAL OF IMMUNOLOGY 2016; 197:747-60. [DOI: 10.4049/jimmunol.1501549] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 05/31/2016] [Indexed: 01/22/2023]
|
24
|
Zhao G, Wu H, Jiang K, Chen X, Wang X, Qiu C, Guo M, Deng G. The Anti-Inflammatory Effects of Interferon Tau by Suppressing NF-κB/MMP9 in Macrophages Stimulated with Staphylococcus aureus. J Interferon Cytokine Res 2016; 36:516-24. [PMID: 27142785 DOI: 10.1089/jir.2015.0170] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Previous studies have reported that interferon tau (IFNT) significantly mitigates tissue inflammation. However, this effect and its regulating pathways have not been reported for Staphylococcus aureus-induced inflammation. In this study, RAW 264.7 cells stimulated with S. aureus were used to identify the anti-inflammatory effects and mechanism of IFNT. First, IFNT was found to be noncytotoxic to macrophages treated with the high dose of 200 ng/mL IFNT. ELISA and qPCR revealed that IFNT decreased the expression of proinflammatory cytokines such as TNF-α, IL-1β, and IL-6. TLR2, which is involved in the immune response during S. aureus infection, directly affected NF-κB pathway activation and was also downregulated by IFNT. Subsequent Western blotting showed that the phosphorylation of IκBα and NF-κB p65 was inhibited by IFNT. Therefore, although the MMP9 levels were significantly downregulated in a dose-dependent manner by IFNT, little change in MMP2 was observed in S. aureus-stimulated RAW 264.7 cells. Furthermore, PDTC, an inhibitor of NF-κB, also significantly decreased MMP9 levels by inhibiting NF-κB p65 activation. All of these findings strongly suggested that IFNT suppresses the NF-κB/MMP9 signal transduction pathway and subsequently exerts its anti-inflammatory effects in S. aureus-stimulated RAW 264.7 cells.
Collapse
Affiliation(s)
- Gan Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan, People's Republic of China
| | - Haichong Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan, People's Republic of China
| | - Kangfeng Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan, People's Republic of China
| | - Xiuying Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan, People's Republic of China
| | - Xiaoyan Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan, People's Republic of China
| | - Changwei Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan, People's Republic of China
| | - Mengyao Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan, People's Republic of China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University , Wuhan, People's Republic of China
| |
Collapse
|
25
|
Guo NJ, Li J, Zhu YF, Guo LR, Chen QF, Huang B. Exenatide inhibits fatty acid induced hepatocyte steatosis and inflammation through activating AMPK. Shijie Huaren Xiaohua Zazhi 2016; 24:1649-1657. [DOI: 10.11569/wcjd.v24.i11.1649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect the effect of glucagon-like peptide-1 (GLP-1) agonist exenatide (EXE) on fat deposition in liver cells and explore the underlying mechanism.
METHODS: A HepG2 cell deposition model was induced with palmitic acid (PA). After cells were incubated with different doses of EXE (25-100 nmoL/L) and PA (500 μmoL/L) for 24 h, fatty deposition was assessed by oil red O staining and the level of intracellular triglyceride (TG). Real-time quantitative PCR (qRT-PCR) was used to detect the expression of lipid metabolism related genes, including fatty acid synthase (FAS), tumor necrosis factor α (TNF-α), and interleukin 6 (IL-6). The expression of p-AMPK and AMPK protein was tested by Western blot. An AMPK inhibitor was used to explore the role of AMPK in fat deposition and inflammation.
RESULTS: Compared with the control group, PA significantly elevated TG and oil red O content, as well as the expression of FAS in HepG2 cells (P < 0.05). EXE significantly inhibited PA induced elevation of TG and oil red O content, as well as FAS gene expression in a dose dependent manner (P < 0.05). The expression of TNF-α and IL-6 significantly increased in the PA treated group (P < 0.05). EXE significantly inhibited the expression of TNF-α and IL-6 in PA treated HepG2 cells (P < 0.05). Co-treatment with AMPK inhibitor significantly reduced the effect of EXE on AMPK, and reduced the inhibitory effect of EXE on fatty deposition and PA induced FAS activation (P < 0.05). AMPK inhibitor significantly diminished the inhibitory effect of EXE on TNF-α and IL-6 activation induced by PA (P < 0.05).
CONCLUSION: EXE reduces fatty acid induced fatty deposition and inflammatory response in liver cells through activation of AMPK.
Collapse
|