1
|
Naqvi SM, O’Sullivan LM, Allison H, Casey VJ, Schiavi-Tritz J, McNamara LM. Altered extracellular matrix and mechanotransduction gene expression in rat bone tissue following long-term estrogen deficiency. JBMR Plus 2024; 8:ziae098. [PMID: 39193115 PMCID: PMC11347883 DOI: 10.1093/jbmrpl/ziae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 08/29/2024] Open
Abstract
Osteoporosis is primarily associated with bone loss, but changes in bone tissue matrix composition and osteocyte mechanotransduction have also been identified. However, the molecular mechanisms underlying these changes and their relation to bone loss are not fully understood. The objectives of this study were to (1) conduct comprehensive temporal gene expression analyses on cortical bone tissue from ovariectomized rats, with a specific focus on genes known to govern matrix degradation, matrix production, and mechanotransduction, and (2) correlate these findings with bone mass, trabecular and cortical microarchitecture, and mineral and matrix composition. Microarray data revealed 35 differentially expressed genes in the cortical bone tissue of the ovariectomized cohort. We report that catabolic gene expression abates after the initial accelerated bone loss period, which occurs within the first 4 wk of estrogen deficiency. However, in long-term estrogen deficiency, we report increased expression of genes associated with extracellular matrix deposition (Spp1, COL1A1, COL1A2, OCN) and mechanotransduction (Cx43) compared with age-matched controls and short-term estrogen deficiency. These changes coincided with increased heterogeneity of mineral-to-matrix ratio and collagen maturity, to which extracellular matrix markers COL1A1 and COL1A2 were positively correlated. Interestingly, mineral heterogeneity and collagen maturity, exhibited a negative correlation with PHEX and IFT88, associated with mechanosensory cilia formation and Hedgehog (Hh) signaling. This study provides the first insight into the underlying mechanisms governing secondary mineralization and heterogeneity of matrix composition of bone tissue in long-term estrogen deficiency. We propose that altered mechanobiological responses in long-term estrogen deficiency may play a role in these changes.
Collapse
Affiliation(s)
- Syeda Masooma Naqvi
- Mechanobiology and Medical Devices Research Group (MMDRG), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, H91 HX31, Ireland
| | - Laura M O’Sullivan
- Mechanobiology and Medical Devices Research Group (MMDRG), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, H91 HX31, Ireland
| | - Hollie Allison
- Mechanobiology and Medical Devices Research Group (MMDRG), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, H91 HX31, Ireland
| | - Vincent J Casey
- Mechanobiology and Medical Devices Research Group (MMDRG), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, H91 HX31, Ireland
| | - Jessica Schiavi-Tritz
- Mechanobiology and Medical Devices Research Group (MMDRG), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, H91 HX31, Ireland
- University of Lorraine, CNRS, LRGP, F-54000 Nancy, France
| | - Laoise M McNamara
- Mechanobiology and Medical Devices Research Group (MMDRG), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway, H91 HX31, Ireland
| |
Collapse
|
2
|
Chen L, Zhao Y, Qiu J, Lin X. Analysis and validation of biomarkers of immune cell-related genes in postmenopausal osteoporosis: An observational study. Medicine (Baltimore) 2024; 103:e38042. [PMID: 38728482 PMCID: PMC11081595 DOI: 10.1097/md.0000000000038042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/05/2024] [Indexed: 05/12/2024] Open
Abstract
Postmenopausal osteoporosis (PMOP) is a common metabolic inflammatory disease. In conditions of estrogen deficiency, chronic activation of the immune system leads to a hypo-inflammatory phenotype and alterations in its cytokine and immune cell profile, although immune cells play an important role in the pathology of osteoporosis, studies on this have been rare. Therefore, it is important to investigate the role of immune cell-related genes in PMOP. PMOP-related datasets were downloaded from the Gene Expression Omnibus database. Immune cells scores between high bone mineral density (BMD) and low BMD samples were assessed based on the single sample gene set enrichment analysis method. Subsequently, weighted gene co-expression network analysis was performed to identify modules highly associated with immune cells and obtain module genes. Differential analysis between high BMD and low BMD was also performed to obtain differentially expressed genes. Module genes are intersected with differentially expressed genes to obtain candidate genes, and functional enrichment analysis was performed. Machine learning methods were used to filter out the signature genes. The receiver operating characteristic (ROC) curves of the signature genes and the nomogram were plotted to determine whether the signature genes can be used as a molecular marker. Gene set enrichment analysis was also performed to explore the potential mechanism of the signature genes. Finally, RNA expression of signature genes was validated in blood samples from PMOP patients and normal control by real-time quantitative polymerase chain reaction. Our study of PMOP patients identified differences in immune cells (activated dendritic cell, CD56 bright natural killer cell, Central memory CD4 T cell, Effector memory CD4 T cell, Mast cell, Natural killer T cell, T follicular helper cell, Type 1 T-helper cell, and Type 17 T-helper cell) between high and low BMD patients. We obtained a total of 73 candidate genes based on modular genes and differential genes, and obtained 5 signature genes by least absolute shrinkage and selection operator and random forest model screening. ROC, principal component analysis, and t-distributed stochastic neighbor embedding down scaling analysis revealed that the 5 signature genes had good discriminatory ability between high and low BMD samples. A logistic regression model was constructed based on 5 signature genes, and both ROC and column line plots indicated that the model accuracy and applicability were good. Five signature genes were found to be associated with proteasome, mitochondria, and lysosome by gene set enrichment analysis. The real-time quantitative polymerase chain reaction results showed that the expression of the signature genes was significantly different between the 2 groups. HIST1H2AG, PYGM, NCKAP1, POMP, and LYPLA1 might play key roles in PMOP and be served as the biomarkers of PMOP.
Collapse
Affiliation(s)
- Lihua Chen
- Rehabilitation Department, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, PR China
- Osteoporosis Department, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, PR China
- Postgraduate college, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yu Zhao
- Osteoporosis Department, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, PR China
- Postgraduate college, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Jingjing Qiu
- Rehabilitation Department, Shenzhen Bao'an Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, PR China
- Postgraduate college, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Xiaosheng Lin
- Osteoporosis Department, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, PR China
| |
Collapse
|
3
|
Jiang RX, Hu N, Deng YW, Hu LW, Gu H, Luo N, Wen J, Jiang XQ. Potential therapeutic role of spermine via Rac1 in osteoporosis: Insights from zebrafish and mice. Zool Res 2024; 45:367-380. [PMID: 38485506 PMCID: PMC11017079 DOI: 10.24272/j.issn.2095-8137.2023.371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/15/2024] [Indexed: 03/19/2024] Open
Abstract
Osteoporosis is a prevalent metabolic bone disease. While drug therapy is essential to prevent bone loss in osteoporotic patients, current treatments are limited by side effects and high costs, necessitating the development of more effective and safer targeted therapies. Utilizing a zebrafish ( Danio rerio) larval model of osteoporosis, we explored the influence of the metabolite spermine on bone homeostasis. Results showed that spermine exhibited dual activity in osteoporotic zebrafish larvae by increasing bone formation and decreasing bone resorption. Spermine not only demonstrated excellent biosafety but also mitigated prednisolone-induced embryonic neurotoxicity and cardiotoxicity. Notably, spermine showcased protective attributes in the nervous systems of both zebrafish embryos and larvae. At the molecular level, Rac1 was identified as playing a pivotal role in mediating the anti-osteoporotic effects of spermine, with P53 potentially acting downstream of Rac1. These findings were confirmed using mouse ( Mus musculus) models, in which spermine not only ameliorated osteoporosis but also promoted bone formation and mineralization under healthy conditions, suggesting strong potential as a bone-strengthening agent. This study underscores the beneficial role of spermine in osteoporotic bone homeostasis and skeletal system development, highlighting pivotal molecular mediators. Given their efficacy and safety, human endogenous metabolites like spermine are promising candidates for new anti-osteoporotic drug development and daily bone-fortifying agents.
Collapse
Affiliation(s)
- Rui-Xue Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases
- Shanghai Key Laboratory of Stomatology
- Shanghai Research Institute of Stomatology
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China
| | - Nan Hu
- College of Stomatology, Shanghai Jiao Tong University
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases
- Shanghai Key Laboratory of Stomatology
- Shanghai Research Institute of Stomatology
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China
- Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Yu-Wei Deng
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases
- Shanghai Key Laboratory of Stomatology
- Shanghai Research Institute of Stomatology
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China
| | - Long-Wei Hu
- College of Stomatology, Shanghai Jiao Tong University
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases
- Shanghai Key Laboratory of Stomatology
- Shanghai Research Institute of Stomatology
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Hao Gu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases
- Shanghai Key Laboratory of Stomatology
- Shanghai Research Institute of Stomatology
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China
| | - Nan Luo
- College of Stomatology, Shanghai Jiao Tong University
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases
- Shanghai Key Laboratory of Stomatology
- Shanghai Research Institute of Stomatology
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China
- Department of Preventive Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jin Wen
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases
- Shanghai Key Laboratory of Stomatology
- Shanghai Research Institute of Stomatology
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China. E-mail:
| | - Xin-Quan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University
- National Center for Stomatology
- National Clinical Research Center for Oral Diseases
- Shanghai Key Laboratory of Stomatology
- Shanghai Research Institute of Stomatology
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China. E-mail:
| |
Collapse
|
4
|
Su Y, Yu G, Li D, Lu Y, Ren C, Xu Y, Yang Y, Zhang K, Ma T, Li Z. Identification of mitophagy-related biomarkers in human osteoporosis based on a machine learning model. Front Physiol 2024; 14:1289976. [PMID: 38260098 PMCID: PMC10800828 DOI: 10.3389/fphys.2023.1289976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Background: Osteoporosis (OP) is a chronic bone metabolic disease and a serious global public health problem. Several studies have shown that mitophagy plays an important role in bone metabolism disorders; however, its role in osteoporosis remains unclear. Methods: The Gene Expression Omnibus (GEO) database was used to download GSE56815, a dataset containing low and high BMD, and differentially expressed genes (DEGs) were analyzed. Mitochondrial autophagy-related genes (MRG) were downloaded from the existing literature, and highly correlated MRG were screened by bioinformatics methods. The results from both were taken as differentially expressed (DE)-MRG, and Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed. Protein-protein interaction network (PPI) analysis, support vector machine recursive feature elimination (SVM-RFE), and Boruta method were used to identify DE-MRG. A receiver operating characteristic curve (ROC) was drawn, a nomogram model was constructed to determine its diagnostic value, and a variety of bioinformatics methods were used to verify the relationship between these related genes and OP, including GO and KEGG analysis, IP pathway analysis, and single-sample Gene Set Enrichment Analysis (ssGSEA). In addition, a hub gene-related network was constructed and potential drugs for the treatment of OP were predicted. Finally, the specific genes were verified by real-time quantitative polymerase chain reaction (RT-qPCR). Results: In total, 548 DEGs were identified in the GSE56815 dataset. The weighted gene co-expression network analysis(WGCNA) identified 2291 key module genes, and 91 DE-MRG were obtained by combining the two. The PPI network revealed that the target gene for AKT1 interacted with most proteins. Three MRG (NELFB, SFSWAP, and MAP3K3) were identified as hub genes, with areas under the curve (AUC) 0.75, 0.71, and 0.70, respectively. The nomogram model has high diagnostic value. GO and KEGG analysis showed that ribosome pathway and cellular ribosome pathway may be the pathways regulating the progression of OP. IPA showed that MAP3K3 was associated with six pathways, including GNRH Signaling. The ssGSEA indicated that NELFB was highly correlated with iDCs (cor = -0.390, p < 0.001). The regulatory network showed a complex relationship between miRNA, transcription factor(TF) and hub genes. In addition, 4 drugs such as vinclozolin were predicted to be potential therapeutic drugs for OP. In RT-qPCR verification, the hub gene NELFB was consistent with the results of bioinformatics analysis. Conclusion: Mitophagy plays an important role in the development of osteoporosis. The identification of three mitophagy-related genes may contribute to the early diagnosis, mechanism research and treatment of OP.
Collapse
Affiliation(s)
- Yu Su
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Gangying Yu
- Department of International Ward (Orthopedic), Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dongchen Li
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yao Lu
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Cheng Ren
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yibo Xu
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Yanling Yang
- Basic Medical College of Yan’an University, Yan’an, China
| | - Kun Zhang
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Teng Ma
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Zhong Li
- Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
5
|
Luo L, Guan Z, Jin X, Guan Z, Jiang Y. Identification of kukoamine a as an anti-osteoporosis drug target using network pharmacology and experiment verification. Mol Med 2023; 29:36. [PMID: 36941586 PMCID: PMC10029210 DOI: 10.1186/s10020-023-00625-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 02/16/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Osteoporosis (OP) is a major and growing public health problem characterized by decreased bone mineral density and destroyed bone microarchitecture. Previous studies found that Lycium Chinense Mill (LC) has a potent role in inhibiting bone loss. Kukoamine A (KuA), a bioactive compound extract from LC was responsible for the anti-osteoporosis effect. This study aimed to investigate the anti-osteoporosis effect of KuA isolated from LC in treating OP and its potential molecular mechanism. METHOD In this study, network pharmacology and molecular docking were investigated firstly to find the active ingredients of LC such as KuA, and the target genes of OP by the TCMSP platform. The LC-OP-potential Target gene network was constructed by the STRING database and network maps were built by Cytoscape software. And then, the anti-osteoporotic effect of KuA in OVX-induced osteoporosis mice and MC3T3-E1 cell lines were investigated and the potential molecular mechanism including inflammation level, cell apoptosis, and oxidative stress was analyzed by dual-energy X-ray absorptiometry (DXA), micro-CT, ELISA, RT-PCR, and Western Blotting. RESULT A total of 22 active compounds were screened, and we found KuA was identified as the highest active ingredient. Glycogen Phosphorylase (PYGM) was the target gene associated with a maximum number of active ingredients of LC and regulated KuA. In vivo, KuA treatment significantly increased the bone mineral density and improve bone microarchitecture for example increased BV/TV, Tb.N and Tb.Th but reduced Tb.Sp in tibia and lumber 4. Furthermore, KuA increased mRNA expression of osteoblastic differentiation-related genes in OVX mice and protects against OVX-induced cell apoptosis, oxidative stress level and inflammation level. In vitro, KuA significantly improves osteogenic differentiation and mineralization in cells experiment. In addition, KuA also attenuated inflammation levels, cell apoptosis, and oxidative stress level. CONCLUSION The results suggest that KuA could protect against the development of OP in osteoblast cells and ovariectomized OP model mice and these found to provide a better understanding of the pharmacological activities of KuA again bone loss.
Collapse
Affiliation(s)
- Liying Luo
- Department of Ophthalmology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhiyuan Guan
- Department of Orthopedics, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Xiao Jin
- Department of Rheumatology and Immunology, The First People's Hospital of Xuzhou, Xuzhou, Jiangsu, 221002, People's Republic of China.
| | - Zhiqiang Guan
- Department of Dermatology, Xuzhou Municipal Hospital Affiliated With Xuzhou Medical University, Xuzhou, Jiangsu, 221002, People's Republic of China.
| | - Yanyun Jiang
- Department of Ophthalmology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Novikova DD, Cherenkov PA, Sizentsova YG, Mironova VV. metaRE R Package for Meta-Analysis of Transcriptome Data to Identify the cis-Regulatory Code behind the Transcriptional Reprogramming. Genes (Basel) 2020; 11:genes11060634. [PMID: 32526881 PMCID: PMC7348973 DOI: 10.3390/genes11060634] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 12/17/2022] Open
Abstract
At the molecular level, response to an external factor or an internal condition causes reprogramming of temporal and spatial transcription. When an organism undergoes physiological and/or morphological changes, several signaling pathways are activated simultaneously. Examples of such complex reactions are the response to temperature changes, dehydration, various biologically active substances, and others. A significant part of the regulatory ensemble in such complex reactions remains unidentified. We developed metaRE, an R package for the systematic search for cis-regulatory elements enriched in the promoters of the genes significantly changed their transcription in a complex reaction. metaRE mines multiple expression profiling datasets generated to test the same organism’s response and identifies simple and composite cis-regulatory elements systematically associated with differential expression of genes. Here, we showed metaRE performance for the identification of low-temperature-responsive cis-regulatory code in Arabidopsis thaliana and Danio rerio. MetaRE identified potential binding sites for known as well as unknown cold response regulators. A notable part of cis-elements was found in both searches discovering great conservation in low-temperature responses between plants and animals.
Collapse
Affiliation(s)
- Daria D. Novikova
- Institute of Cytology and Genetics, Lavrentyeva avenue 10, 630090 Novosibirsk, Russia; (D.D.N.); (Y.G.S.)
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Pavel A. Cherenkov
- Novosibirsk State University, 2 Pirogova Street, 630090 Novosibirsk, Russia;
| | - Yana G. Sizentsova
- Institute of Cytology and Genetics, Lavrentyeva avenue 10, 630090 Novosibirsk, Russia; (D.D.N.); (Y.G.S.)
| | - Victoria V. Mironova
- Institute of Cytology and Genetics, Lavrentyeva avenue 10, 630090 Novosibirsk, Russia; (D.D.N.); (Y.G.S.)
- Novosibirsk State University, 2 Pirogova Street, 630090 Novosibirsk, Russia;
- Correspondence:
| |
Collapse
|
7
|
Gu H, Huang Z, Chen G, Zhou K, Zhang Y, Chen J, Xu J, Yin X. Network and pathway-based analyses of genes associated with osteoporosis. Medicine (Baltimore) 2020; 99:e19120. [PMID: 32080087 PMCID: PMC7034680 DOI: 10.1097/md.0000000000019120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis (OP) is a disease characterized by bone mass loss, bone microstructure damage, increased bone fragility, and easy fracture. The molecular mechanism underlying OP remains unclear.In this study, we identified 217 genes associated with OP, and formed a gene set [OP-related genes gene set (OPgset)].The highly enriched GOs and pathways showed OPgset genes were significantly involved in multiple biological processes (skeletal system development, ossification, and osteoblast differentiation), and several OP-related pathways (Wnt signaling pathway, osteoclast differentiation, steroid hormone biosynthesis, and adipocytokine signaling pathway). Besides, pathway crosstalk analysis indicated three major modules, with first module consisted of pathways mainly involved in bone development-related signaling pathways, second module in Wnt-related signaling pathway and third module in metabolic pathways. Further, we calculated degree centrality of a node and selected ten key genes/proteins, including TGFB1, IL6, WNT3A, TNF, PTH, TP53, WNT1, IGF1, IL10, and SERPINE1. We analyze the K-core and construct three k-core sub-networks of OPgset genes.In summary, we for the first time explored the molecular mechanism underlying OP via network- and pathway-based methods, results from our study will improve our understanding of the pathogenesis of OP. In addition, these methods performed in this study can be used to explore pathogenesis and genes related to a specific disease.
Collapse
|
8
|
Al Anouti F, Taha Z, Shamim S, Khalaf K, Al Kaabi L, Alsafar H. An insight into the paradigms of osteoporosis: From genetics to biomechanics. Bone Rep 2019; 11:100216. [PMID: 31372373 PMCID: PMC6661363 DOI: 10.1016/j.bonr.2019.100216] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/03/2019] [Accepted: 07/12/2019] [Indexed: 12/22/2022] Open
Abstract
Considered as one of the major epidemics of the 21st century, osteoporosis affects approximately 200 million people globally, with significant worldwide impact on rates of morbidity and mortality and massive socioeconomic burdens. Mainly characterized by decreased bone mineral density (BMD) and increased risk of bone fragility/deterioration, this devastating silent epidemic typically has no symptoms until a fracture occurs. The multifactorial disease, osteoporosis is instigated by complex interactions between genetic, metabolic and environmental factors, with severe impact on the biomechanics of the musculoskeletal system. This article provides a review of the epidemiology, genetic and biomechanical aspects of primary osteoporosis. The review begins with a summary of the epidemiology and global prevalence of osteoporosis. Sections 1 and 2 discuss the genetic associations and molecular signaling pathways involved in normal and pathological osteogenesis while Section 3 explores the biomechanics of osteoporosis and its quantitative damaging effects on critical bone mechanical properties, and associated bone remodeling. Overall, this review summarizes the recent findings about osteoporosis and emphasizes the importance of an integrative holistic approach in investigating osteoporosis towards providing better informed, more effective preventive and treatment modalities. Importantly, this work also explores the limited available literature on the various aspects of osteoporosis in the United Arab Emirates (UAE), Gulf Cooperation Council (GCC), and Middle East despite its alarming prevalence in the region, and highlights the need for further research and studies taking into consideration the importance of the vitamin D receptor (VDR) gene influencing the development of osteoporosis.
Collapse
Affiliation(s)
- Fatme Al Anouti
- Zayed University, College of Natural and Health Sciences, Abu Dhabi, United Arab Emirates
| | - Zainab Taha
- Zayed University, College of Natural and Health Sciences, Abu Dhabi, United Arab Emirates
| | - Sadia Shamim
- Khalifa University Center for Biotechnology, Abu Dhabi, United Arab emirates
| | - Kinda Khalaf
- Khalifa University of Science & Technology, Biomedical Department, Abu Dhabi, United Arab Emirates
| | - Leena Al Kaabi
- Khalifa University of Science & Technology, Biomedical Department, Abu Dhabi, United Arab Emirates
| | - Habiba Alsafar
- Khalifa University Center for Biotechnology, Abu Dhabi, United Arab emirates.,Khalifa University of Science & Technology, Biomedical Department, Abu Dhabi, United Arab Emirates
| |
Collapse
|
9
|
Zhu W, Xu C, Zhang JG, He H, Wu KH, Zhang L, Zeng Y, Zhou Y, Su KJ, Deng HW. Gene-based GWAS analysis for consecutive studies of GEFOS. Osteoporos Int 2018; 29:2645-2658. [PMID: 30306226 PMCID: PMC6279247 DOI: 10.1007/s00198-018-4654-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 08/03/2018] [Indexed: 10/28/2022]
Abstract
UNLABELLED By integrating the multilevel biological evidence and bioinformatics analyses, the present study represents a systemic endeavor to identify BMD-associated genes and their roles in skeletal metabolism. INTRODUCTION Single-nucleotide polymorphism (SNP)-based genome-wide association studies (GWASs) have already identified about 100 loci associated with bone mineral density (BMD), but these loci only explain a small proportion of heritability to osteoporosis risk. In the present study, we performed a gene-based analysis of the largest GWASs in the bone field to identify additional BMD-associated genes. METHODS BMD-associated genes were identified by combining the summary statistic P values of SNPs across individual genes in the two consecutive meta-analyses of GWASs from the Genetic Factors for Osteoporosis (GEFOS) studies. The potential functionality of these genes to bone was partially assessed by differential gene expression analysis. Additionally, the consistency of the identification of potential bone mineral density (BMD)-associated variants were evaluated by estimating the correlation of the P values of the same single-nucleotide polymorphisms (SNPs)/genes between the two consecutive Genetic Factors for Osteoporosis Studies (GEFOS) with largely overlapping samples. RESULTS Compared to the SNP-based analysis, the gene-based strategy identified additional BMD-associated genes with genome-wide significance and increased their mutual replication between the two GEFOS datasets. Among these BMD-associated genes, three novel genes (UBTF, AAAS, and C11orf58) were partially validated at the gene expression level. The correlation analysis presented a moderately high between-study consistency of potential BMD-associated variants. CONCLUSIONS Gene-based analysis as a supplementary strategy to SNP-based genome-wide association studies, when applied here, is shown that it helped identify some novel BMD-associated genes. In addition to its empirically increased statistical power, gene-based analysis also provides a higher testing stability for identification of BMD genes.
Collapse
Affiliation(s)
- W Zhu
- College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China
- Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 1610, New Orleans, LA, 70112, USA
| | - C Xu
- Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 1610, New Orleans, LA, 70112, USA
| | - J-G Zhang
- Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 1610, New Orleans, LA, 70112, USA
| | - H He
- Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 1610, New Orleans, LA, 70112, USA
| | - K-H Wu
- Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 1610, New Orleans, LA, 70112, USA
| | - L Zhang
- Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 1610, New Orleans, LA, 70112, USA
| | - Y Zeng
- Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 1610, New Orleans, LA, 70112, USA
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Y Zhou
- Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 1610, New Orleans, LA, 70112, USA
| | - K-J Su
- Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 1610, New Orleans, LA, 70112, USA
| | - H-W Deng
- College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.
- Center for Bioinformatics and Genomics, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal Street, Suite 1610, New Orleans, LA, 70112, USA.
| |
Collapse
|
10
|
Zhang J, Li S, Wei L, Peng Y, Zheng Z, Xue J, Cao Y, Wang B, Du J. Protective effects of 2,3,5,4-tetrahydroxystilbene-2-o-β-D-glucoside against osteoporosis: Current knowledge and proposed mechanisms. Int J Rheum Dis 2018; 21:1504-1513. [PMID: 30146742 DOI: 10.1111/1756-185x.13357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/10/2018] [Accepted: 06/24/2018] [Indexed: 11/28/2022]
Abstract
AIM The aim of this study was to explore the mechanism underlying the protective effects of 2,3,5,4-tetrahydroxystilbene-2-o-β-D-glucoside (TSG) against osteoporosis. METHOD MC3T3-E1 mouse osteoblast precursor cells were used to analyze the protective effects of TSG on osteoblast apoptosis and differential inhibition induced by oxidative stress to determine the gene expression of forkhead transcription factor FKHRL1 (FoxO3a), T cell factors (TCFs), and downstream genes. A mouse model was used to assess the protective effects of TSG on ovariectomy-induced osteoporosis as well as on Cell Counting Kit-8 (CCK) gene expression, including that of FoxO3a. The mechanism underlying the protective effects of TSG against osteoporosis was further explored using high-throughput sequencing data. RESULTS A CCK-8 assay in MC3T3-E1 cells and hematoxylin and eosin staining in mouse tissue indicated that cell viability and bone tissue development were inhibited by oxidative stress and ovariectomy and that TSG neutralized or attenuated this effect. The expression levels of FoxO3a, TCF, and downstream genes and the indices of oxidative stress were the same in MC3T3-E1 cells and the bone tissues of the mouse model. Bioinformatics analysis indicated that the cardiac muscle contraction and chemokine signaling pathway were disturbed in MC3T3-E1 cells treated with hydrogen peroxide. Gene ontology-biological process analysis revealed the influence of TSG treatment. CONCLUSION Osteoporosis and cardiac diseases appear to share a common mechanism. In addition to Wnt/FoxO3a signaling, the immune system and the chemokine signaling pathway may contribute to the protective mechanism of TSG.
Collapse
Affiliation(s)
- Jinkang Zhang
- Institute of Orthopaedics, Air Force General Hospital, Beijing, China
| | - Songlin Li
- Institute of Orthopaedics, Air Force General Hospital, Beijing, China
| | - Linlan Wei
- The Chinese People's Liberation Army 61206 Troops, Beijing, China
| | - Ye Peng
- Institute of Orthopaedics, Air Force General Hospital, Beijing, China
| | - Ziyang Zheng
- Institute of General Department, Air Force General Hospital, Beijing, China
| | - Jing Xue
- Institute of Orthopaedics, Air Force General Hospital, Beijing, China
| | - Yukun Cao
- Institute of Cardiac Surgery, Air Force General Hospital, Beijing, China
| | - Bin Wang
- Institute of Orthopaedics, Air Force General Hospital, Beijing, China
| | - Junjie Du
- Institute of Orthopaedics, Air Force General Hospital, Beijing, China
| |
Collapse
|
11
|
A novel approach for correction of crosstalk effects in pathway analysis and its application in osteoporosis research. Sci Rep 2018; 8:668. [PMID: 29330445 PMCID: PMC5766601 DOI: 10.1038/s41598-018-19196-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/27/2017] [Indexed: 12/31/2022] Open
Abstract
Osteoporosis is a prevalent bone metabolic disease and peripheral blood monocytes represent a major systemic cell type for bone metabolism. To identify the key dysfunctional pathways in osteoporosis, we performed pathway analyses on microarray data of monocytes from subjects with extremely high/low hip bone mineral density. We first performed a traditional pathway analysis for which different pathways were treated as independent. However, genes overlap among pathways will lead to “crosstalk” phenomenon, which may lead to false positive/negative results. Therefore, we applied correction techniques including a novel approach that considers the correlation among genes to adjust the crosstalk effects in the analysis. In traditional analysis, 10 pathways were found to be significantly associated with BMD variation. After correction for crosstalk effects, three of them remained significant. Moreover, the MAPK signaling pathway, which has been shown to be important for osteoclastogenesis, became significant only after the correction for crosstalk effects. We also identified a new module mainly consisting of genes present in mitochondria to be significant. In summary, we describe a novel method to correct the crosstalk effect in pathway analysis and found five key independent pathways involved in BMD regulation, which may provide a better understanding of biological functional networks in osteoporosis.
Collapse
|
12
|
Loveridge CJ, van 't Hof RJ, Charlesworth G, King A, Tan EH, Rose L, Daroszewska A, Prior A, Ahmad I, Welsh M, Mui EJ, Ford C, Salji M, Sansom O, Blyth K, Leung HY. Analysis of Nkx3.1:Cre-driven Erk5 deletion reveals a profound spinal deformity which is linked to increased osteoclast activity. Sci Rep 2017; 7:13241. [PMID: 29038439 PMCID: PMC5643304 DOI: 10.1038/s41598-017-13346-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 09/21/2017] [Indexed: 12/15/2022] Open
Abstract
Extracellular signal-regulated protein kinase 5 (ERK5) has been implicated during development and carcinogenesis. Nkx3.1-mediated Cre expression is a useful strategy to genetically manipulate the mouse prostate. While grossly normal at birth, we observed an unexpected phenotype of spinal protrusion in Nkx3.1:Cre;Erk5 fl/fl (Erk5 fl/fl) mice by ~6-8 weeks of age. X-ray, histological and micro CT (µCT) analyses showed that 100% of male and female Erk5 fl/fl mice had a severely deformed curved thoracic spine, with an associated loss of trabecular bone volume. Although sex-specific differences were observed, histomorphometry measurements revealed that both bone resorption and bone formation parameters were increased in male Erk5 fl/fl mice compared to wild type (WT) littermates. Osteopenia occurs where the rate of bone resorption exceeds that of bone formation, so we investigated the role of the osteoclast compartment. We found that treatment of RANKL-stimulated primary bone marrow-derived macrophage (BMDM) cultures with small molecule ERK5 pathway inhibitors increased osteoclast numbers. Furthermore, osteoclast numbers and expression of osteoclast marker genes were increased in parallel with reduced Erk5 expression in cultures generated from Erk5 fl/fl mice compared to WT mice. Collectively, these results reveal a novel role for Erk5 during bone maturation and homeostasis in vivo.
Collapse
Affiliation(s)
- Carolyn J Loveridge
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, G61 1BD, UK
- Beatson Institute for Cancer Research, Bearsden, Glasgow, G61 1BD, UK
| | - Rob J van 't Hof
- Institute of Ageing and Chronic Disease, University of Liverpool, WH Duncan Building, West Derby Street, Liverpool, L7 8TX, UK.
| | - Gemma Charlesworth
- Institute of Ageing and Chronic Disease, University of Liverpool, WH Duncan Building, West Derby Street, Liverpool, L7 8TX, UK
| | - Ayala King
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, G61 1BD, UK
- Beatson Institute for Cancer Research, Bearsden, Glasgow, G61 1BD, UK
| | - Ee Hong Tan
- Beatson Institute for Cancer Research, Bearsden, Glasgow, G61 1BD, UK
| | - Lorraine Rose
- Centre for Molecular Medicine, MRC IGMM, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Anna Daroszewska
- Institute of Ageing and Chronic Disease, University of Liverpool, WH Duncan Building, West Derby Street, Liverpool, L7 8TX, UK
| | - Amanda Prior
- Institute of Ageing and Chronic Disease, University of Liverpool, WH Duncan Building, West Derby Street, Liverpool, L7 8TX, UK
| | - Imran Ahmad
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, G61 1BD, UK
- Beatson Institute for Cancer Research, Bearsden, Glasgow, G61 1BD, UK
| | - Michelle Welsh
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Ernest J Mui
- Beatson Institute for Cancer Research, Bearsden, Glasgow, G61 1BD, UK
| | - Catriona Ford
- Beatson Institute for Cancer Research, Bearsden, Glasgow, G61 1BD, UK
| | - Mark Salji
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, G61 1BD, UK
- Beatson Institute for Cancer Research, Bearsden, Glasgow, G61 1BD, UK
| | - Owen Sansom
- Beatson Institute for Cancer Research, Bearsden, Glasgow, G61 1BD, UK
| | - Karen Blyth
- Beatson Institute for Cancer Research, Bearsden, Glasgow, G61 1BD, UK
| | - Hing Y Leung
- Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden, Glasgow, G61 1BD, UK.
- Beatson Institute for Cancer Research, Bearsden, Glasgow, G61 1BD, UK.
| |
Collapse
|
13
|
P4 medicine and osteoporosis: a systematic review. Wien Klin Wochenschr 2016; 128:480-491. [PMID: 27873024 DOI: 10.1007/s00508-016-1125-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/20/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Osteoporosis is the most frequent bone metabolic disease. In order to improve early detection, prediction, prevention, diagnosis, and treatment of the disease, a new model of P4 medicine (personalized, predictive, preventive, and participatory medicine) could be applied. The aim of this work was to systematically review the publications of four different types of "omics" studies related to osteoporosis, in order to discover novel predictive, preventive, diagnostic, and therapeutic targets for better management of the geriatric population. METHODS To systematically search the PubMed database, we created specific groups of criteria for four different types of "omics" information on osteoporosis: genomic, transcriptomic, proteomic, and metabolomic. We then analyzed the intersections between them in order to find correlations and common pathways or molecules with important roles in osteoporosis, and with a potential application in disease prediction, prevention, diagnosis, or treatment. RESULTS Altogether, 180 publications of "omics" studies in the field of osteoporosis were found and reviewed at first selection. After introducing the inclusion and exclusion criteria (the secondary selection), 46 papers were included in the systematic review. CONCLUSIONS The intersection of reviewed papers identified five genes (ESR1, IBSP, CTNNB1, SOX4, and IDUA) and processes like the Wnt pathway, JAK/STAT signaling, and ERK/MAPK, which should be further validated for their predictive, diagnostic, or other clinical value in osteoporosis. Such molecular insights will enable us to fit osteoporosis into the P4 strategy and could increase the effectiveness of disease prediction and prevention, with a decrease in morbidity in the geriatric population.
Collapse
|
14
|
Ning WF, Wang F, Deng HJ, Chen HH. Screening of differentially expressed genes in chronic hepatitis B patients and prediction of related biological pathways. Shijie Huaren Xiaohua Zazhi 2016; 24:2485-2491. [DOI: 10.11569/wcjd.v24.i16.2485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the molecular mechanism of pathogenesis of chronic hepatitis B.
METHODS: Based on microarray experiment, GeneSpring software was used to screen differentially expressed genes in chronic hepatitis B patients, and GeneTrail software was used to perform enrichment analysis of related biological pathways.
RESULTS: A total of 417 differentially expressed genes were identified, of which 205 were upregulated and 212 downregulated. Significant pathways to which downregulated genes belong include ErbB, non-small cell lung cancer, mTOR, RNA degradation, T cell receptor, chronic myeloid leukemia, and renal cell carcinoma pathways. Significant pathways to which upregulated genes belong include chemokine, lysosomes, Vibrio cholerae infection, and IgG Fc receptor-mediated phagocytosis pathways.
CONCLUSION: PI3K/AKT downregulation is likely a major molecular mechanism of persistent hepatitis B.
Collapse
|