1
|
Williams D. Eagle eyed or bird brained? Eye (Lond) 2023; 37:2426-2430. [PMID: 37353509 PMCID: PMC10397276 DOI: 10.1038/s41433-023-02568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 06/25/2023] Open
Abstract
The importance of the visual system to birds for behaviours from feeding, mate choice, flying, navigation and determination of seasons, together with the presence of photoreceptors in the retina, the pineal and the brain, render the avian visual system a particularly fruitful model for understanding of eye-brain interactions. In this review we will particularly focus on the pigeon, since here we have a brain stereotactically mapped and a genome fully sequenced, together with a particular bird, the homing pigeon, with remarkable ability to navigate over hundreds of miles and return to exactly the same roosting site with exceptional precision. We might denigrate the avian species by the term bird brained, but here are animals with phenomenal abilities to use their exceptional vision, their eagle eyedness, to best advantage.
Collapse
|
2
|
Frederiksen A, Langebrake C, Hanić M, Manthey G, Mouritsen H, Liedvogel M, Solov’yov IA. Mutational Study of the Tryptophan Tetrad Important for Electron Transfer in European Robin Cryptochrome 4a. ACS OMEGA 2023; 8:26425-26436. [PMID: 37521624 PMCID: PMC10373462 DOI: 10.1021/acsomega.3c02963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023]
Abstract
The ability of migratory birds to sense magnetic fields has been known for decades, although the understanding of the underlying mechanism is still elusive. Currently, the strongest magnetoreceptor candidate in birds is a protein called cryptochrome 4a. The cryptochrome 4a protein has changed through evolution, apparently endowing some birds with a more pronounced magnetic sensitivity than others. Using phylogenetic tools, we show that a specific tryptophan tetrad and a tyrosine residue predicted to be essential for cryptochrome activation are highly conserved in the avian clade. Through state-of-the-art molecular dynamics simulations and associated analyses, we also studied the role of these specific residues and the associated mutants on the overall dynamics of the protein. The analyses of the single residue mutations were used to judge how far a local change in the protein structure can impact specific dynamics of European robin cryptochrome 4a. We conclude that the replacements of each of the tryptophans one by one with a phenylalanine do not compromise the overall stability of the protein.
Collapse
Affiliation(s)
- Anders Frederiksen
- Institute
of Physics, Carl von Ossietzky Universität
Oldenburg, Carl-von-Ossietzky Strasse 9-11, Oldenburg 26129, Germany
| | - Corinna Langebrake
- Institute
of Avian Research, An der Vogelwarte 21, Wilhelmshaven 26386, Germany
| | - Maja Hanić
- Institute
of Physics, Carl von Ossietzky Universität
Oldenburg, Carl-von-Ossietzky Strasse 9-11, Oldenburg 26129, Germany
| | - Georg Manthey
- Institute
of Physics, Carl von Ossietzky Universität
Oldenburg, Carl-von-Ossietzky Strasse 9-11, Oldenburg 26129, Germany
- Institute
of Avian Research, An der Vogelwarte 21, Wilhelmshaven 26386, Germany
| | - Henrik Mouritsen
- Department
of Biology and Environmental Sciences, Carl
von Ossietzky University of Oldenburg, Carl-von-Ossietzky Strasse 9-11, Oldenburg 26129, Germany
- Research
Centre for Neurosensory Sciences, Carl von
Ossietzky University of Oldenburg, Carl-von-Ossietzky Strasse 9-11, Oldenburg 26129, Germany
| | - Miriam Liedvogel
- Institute
of Avian Research, An der Vogelwarte 21, Wilhelmshaven 26386, Germany
- Department
of Biology and Environmental Sciences, Carl
von Ossietzky University of Oldenburg, Carl-von-Ossietzky Strasse 9-11, Oldenburg 26129, Germany
- MPRG
Behavioural Genomics, Max Planck Institute
for Evolutionary Biology, August-Thienemann-Str. 2, Plön 24306, Germany
| | - Ilia A. Solov’yov
- Institute
of Physics, Carl von Ossietzky Universität
Oldenburg, Carl-von-Ossietzky Strasse 9-11, Oldenburg 26129, Germany
- Research
Centre for Neurosensory Sciences, Carl von
Ossietzky University of Oldenburg, Carl-von-Ossietzky Strasse 9-11, Oldenburg 26129, Germany
- Department
of Physics, Center for Nanoscale Dynamics (CENAD), Carl von Ossietzky University of Oldenburg, Ammerländer Heerstr. 114-118, Oldenburg 26129, Germany
| |
Collapse
|
3
|
Hanić M, Antill LM, Gehrckens AS, Schmidt J, Görtemaker K, Bartölke R, El-Baba TJ, Xu J, Koch KW, Mouritsen H, Benesch JLP, Hore PJ, Solov'yov IA. Dimerization of European Robin Cryptochrome 4a. J Phys Chem B 2023. [PMID: 37428840 PMCID: PMC10364083 DOI: 10.1021/acs.jpcb.3c01305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Homo-dimer formation is important for the function of many proteins. Although dimeric forms of cryptochromes (Cry) have been found by crystallography and were recently observed in vitro for European robin Cry4a, little is known about the dimerization of avian Crys and the role it could play in the mechanism of magnetic sensing in migratory birds. Here, we present a combined experimental and computational investigation of the dimerization of robin Cry4a resulting from covalent and non-covalent interactions. Experimental studies using native mass spectrometry, mass spectrometric analysis of disulfide bonds, chemical cross-linking, and photometric measurements show that disulfide-linked dimers are routinely formed, that their formation is promoted by exposure to blue light, and that the most likely cysteines are C317 and C412. Computational modeling and molecular dynamics simulations were used to generate and assess a number of possible dimer structures. The relevance of these findings to the proposed role of Cry4a in avian magnetoreception is discussed.
Collapse
Affiliation(s)
- Maja Hanić
- Institute of Physics, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26129, Germany
| | - Lewis M Antill
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura Ward, Saitama 338-8570, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Angela S Gehrckens
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Jessica Schmidt
- Department of Biology and Environmental Sciences, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26129, Germany
| | - Katharina Görtemaker
- Department of Neuroscience, Division of Biochemistry, Carl von Ossietzky University of Oldenburg, Oldenburg D-26111, Germany
| | - Rabea Bartölke
- Department of Biology and Environmental Sciences, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26129, Germany
| | - Tarick J El-Baba
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
- Kavli Institute for NanoScience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, U.K
| | - Jingjing Xu
- Department of Biology and Environmental Sciences, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26129, Germany
| | - Karl-Wilhelm Koch
- Department of Neuroscience, Division of Biochemistry, Carl von Ossietzky University of Oldenburg, Oldenburg D-26111, Germany
- Research Center for Neurosensory Sciences, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26111, Germany
| | - Henrik Mouritsen
- Department of Biology and Environmental Sciences, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26129, Germany
- Research Center for Neurosensory Sciences, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26111, Germany
| | - Justin L P Benesch
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
- Kavli Institute for NanoScience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, Oxford OX1 3QU, U.K
| | - P J Hore
- Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Ilia A Solov'yov
- Institute of Physics, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26129, Germany
- Research Center for Neurosensory Sciences, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, Oldenburg 26111, Germany
- Center for Nanoscale Dynamics (CENAD), Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstr. 114-118, Oldenburg 26129, Germany
| |
Collapse
|
4
|
Rotov AY, Goriachenkov AA, Cherbunin RV, Firsov ML, Chernetsov N, Astakhova LA. Magnetoreceptory Function of European Robin Retina: Electrophysiological and Morphological Non-Homogeneity. Cells 2022; 11:cells11193056. [PMID: 36231018 PMCID: PMC9564291 DOI: 10.3390/cells11193056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
The avian magnetic compass allows orientation during migration and is shown to function properly under short-wavelength but not long-wavelength visible light. Therefore, the magnetoreceptive system is assumed to be light- and wavelength-dependent and localized in the retina of the eye. Putative candidates for the role of primary magnetosensory molecules are the cryptochromes that are known to be expressed in the avian retina and must be able to interact with phototransduction proteins. Previously, we reported that in migratory birds change in magnetic field direction induces significant effects on electroretinogram amplitude in response to blue flashes, and such an effect was observed only in the nasal quadrant of the retina. Here, we report new electroretinographic, microscopic and microspectrophotometric data on European robins, confirming the magnetosensitivity of the retinal nasal quadrant after applying the background illumination. We hypothesized that magnetoreceptive distinction of this region may be related to its morphology and analyzed the retinal distribution and optical properties of oil droplets, the filtering structures within cones. We found that the nasal quadrant contains double cones with the most intensely colorized oil droplets compared to the rest of the retina, which may be related to its magnetosensory function.
Collapse
Affiliation(s)
- Alexander Yu. Rotov
- Laboratory of Evolution of the Sense Organs, Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 194223 St. Petersburg, Russia
| | - Arsenii A. Goriachenkov
- Laboratory of Evolution of the Sense Organs, Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 194223 St. Petersburg, Russia
| | - Roman V. Cherbunin
- Laboratory of Evolution of the Sense Organs, Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 194223 St. Petersburg, Russia
- Spin Optics Laboratory, Physics Faculty, St. Petersburg State University, 198504 St. Petersburg, Russia
| | - Michael L. Firsov
- Laboratory of Evolution of the Sense Organs, Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 194223 St. Petersburg, Russia
| | - Nikita Chernetsov
- Laboratory of Evolution of the Sense Organs, Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 194223 St. Petersburg, Russia
- Department of Vertebrate Zoology, Biological Faculty, St. Petersburg State University, 199034 St. Petersburg, Russia
- Ornithology Lab, Zoological Institute RAS, 199034 St. Petersburg, Russia
| | - Luba A. Astakhova
- Laboratory of Evolution of the Sense Organs, Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 194223 St. Petersburg, Russia
- Correspondence:
| |
Collapse
|
5
|
Morphology, biochemistry and connectivity of Cluster N and the hippocampal formation in a migratory bird. Brain Struct Funct 2022; 227:2731-2749. [DOI: 10.1007/s00429-022-02566-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/05/2022] [Indexed: 11/02/2022]
Abstract
AbstractThe exceptional navigational capabilities of migrating birds are based on the perception and integration of a variety of natural orientation cues. The “Wulst” in the forebrain of night-migratory songbirds contains a brain area named “Cluster N”, which is involved in processing directional navigational information derived from the Earth´s magnetic field. Cluster N is medially joined by the hippocampal formation, known to retrieve and utilise navigational information. To investigate the connectivity and neurochemical characteristics of Cluster N and the hippocampal formation of migratory birds, we performed morphological and histochemical analyses based on the expression of calbindin, calretinin, parvalbumin, glutamate receptor type 1 and early growth response protein-1 in the night-migratory Garden warbler (Sylvia borin) and mapped their mutual connections using neuronal tract tracing. The resulting expression patterns revealed regionally restricted neurochemical features, which mapped well onto the hippocampal and hyperpallial substructures known from other avian species. Magnetic field-induced neuronal activation covered caudal parts of the hyperpallium and the medially adjacent hippocampal dorsomedial/dorsolateral subdivisions. Neuronal tract tracings revealed connections between Cluster N and the hippocampal formation with the vast majority originating from the densocellular hyperpallium, either directly or indirectly via the area corticoidea dorsolateralis. Our data indicate that the densocellular hyperpallium could represent a central relay for the transmission of magnetic compass information to the hippocampal formation where it might be integrated with other navigational cues in night-migratory songbirds.
Collapse
|
6
|
Direct Interaction of Avian Cryptochrome 4 with a Cone Specific G-Protein. Cells 2022; 11:cells11132043. [PMID: 35805127 PMCID: PMC9265643 DOI: 10.3390/cells11132043] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Night-migratory birds sense the Earth’s magnetic field by an unknown molecular mechanism. Theoretical and experimental evidence support the hypothesis that the light-induced formation of a radical-pair in European robin cryptochrome 4a (ErCry4a) is the primary signaling step in the retina of the bird. In the present work, we investigated a possible route of cryptochrome signaling involving the α-subunit of the cone-secific heterotrimeric G protein from European robin. Methods: Protein–protein interaction studies include surface plasmon resonance, pulldown affinity binding and Förster resonance energy transfer. Results: Surface plasmon resonance studies showed direct interaction, revealing high to moderate affinity for binding of non-myristoylated and myristoylated G protein to ErCry4a, respectively. Pulldown affinity experiments confirmed this complex formation in solution. We validated these in vitro data by monitoring the interaction between ErCry4a and G protein in a transiently transfected neuroretinal cell line using Förster resonance energy transfer. Conclusions: Our results suggest that ErCry4a and the G protein also interact in living cells and might constitute the first biochemical signaling step in radical-pair-based magnetoreception.
Collapse
|
7
|
Chetverikova R, Dautaj G, Schwigon L, Dedek K, Mouritsen H. Double cones in the avian retina form an oriented mosaic which might facilitate magnetoreception and/or polarized light sensing. J R Soc Interface 2022; 19:20210877. [PMID: 35414212 PMCID: PMC9006000 DOI: 10.1098/rsif.2021.0877] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To navigate between breeding and wintering grounds, night-migratory songbirds are aided by a light-dependent magnetic compass sense and maybe also by polarized light vision. Although the underlying mechanisms for magnetoreception and polarized light sensing remain unclear, double cone photoreceptors in the avian retina have been suggested to represent the primary sensory cells. To use these senses, birds must be able to separate the directional information from the Earth's magnetic field and/or light polarization from variations in light intensity. Theoretical considerations suggest that this could be best achieved if neighbouring double cones were oriented in an ordered pattern. Therefore, we investigate the orientation patterns of double cones in European robins (Erithacus rubecula) and domestic chickens (Gallus gallus domesticus). We used whole-mounted retinas labelled with double cone markers to quantify the orientations of individual double cones in relation to their nearest neighbours. In both species, our data show that the double cone array is highly ordered: the angles between neighbouring double cones were more likely to be 90°/-90° in the central retina and 180°/0° in the peripheral retina, respectively. The observed regularity in double cone orientation could aid the cells' putative function in light-dependent magnetoreception and/or polarized light sensing.
Collapse
Affiliation(s)
- Raisa Chetverikova
- Animal Navigation/Neurosensorics Group, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Glen Dautaj
- Animal Navigation/Neurosensorics Group, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Leonard Schwigon
- Animal Navigation/Neurosensorics Group, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Karin Dedek
- Animal Navigation/Neurosensorics Group, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| | - Henrik Mouritsen
- Animal Navigation/Neurosensorics Group, Institute for Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
8
|
Broadband 75-85 MHz radiofrequency fields disrupt magnetic compass orientation in night-migratory songbirds consistent with a flavin-based radical pair magnetoreceptor. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:97-106. [PMID: 35019998 PMCID: PMC8918455 DOI: 10.1007/s00359-021-01537-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/20/2022]
Abstract
The light-dependent magnetic compass sense of night-migratory songbirds can be disrupted by weak radiofrequency fields. This finding supports a quantum mechanical, radical-pair-based mechanism of magnetoreception as observed for isolated cryptochrome 4, a protein found in birds’ retinas. The exact identity of the magnetically sensitive radicals in cryptochrome is uncertain in vivo, but their formation seems to require a bound flavin adenine dinucleotide chromophore and a chain of four tryptophan residues within the protein. Resulting from the hyperfine interactions of nuclear spins with the unpaired electrons, the sensitivity of the radicals to radiofrequency magnetic fields depends strongly on the number of magnetic nuclei (hydrogen and nitrogen atoms) they contain. Quantum-chemical calculations suggested that electromagnetic noise in the frequency range 75–85 MHz could give information about the identity of the radicals involved. Here, we show that broadband 75–85 MHz radiofrequency fields prevent a night-migratory songbird from using its magnetic compass in behavioural experiments. These results indicate that at least one of the components of the radical pair involved in the sensory process of avian magnetoreception must contain a substantial number of strong hyperfine interactions as would be the case if a flavin–tryptophan radical pair were the magnetic sensor.
Collapse
|
9
|
Endogenous functioning and light response of the retinal clock in vertebrates. PROGRESS IN BRAIN RESEARCH 2022; 273:49-69. [DOI: 10.1016/bs.pbr.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Wong SY, Wei Y, Mouritsen H, Solov'yov IA, Hore PJ. Cryptochrome magnetoreception: four tryptophans could be better than three. J R Soc Interface 2021; 18:20210601. [PMID: 34753309 PMCID: PMC8580466 DOI: 10.1098/rsif.2021.0601] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/14/2021] [Indexed: 12/28/2022] Open
Abstract
The biophysical mechanism of the magnetic compass sensor in migratory songbirds is thought to involve photo-induced radical pairs formed in cryptochrome (Cry) flavoproteins located in photoreceptor cells in the eyes. In Cry4a-the most likely of the six known avian Crys to have a magnetic sensing function-four radical pair states are formed sequentially by the stepwise transfer of an electron along a chain of four tryptophan residues to the photo-excited flavin. In purified Cry4a from the migratory European robin, the third of these flavin-tryptophan radical pairs is more magnetically sensitive than the fourth, consistent with the smaller separation of the radicals in the former. Here, we explore the idea that these two radical pair states of Cry4a could exist in rapid dynamic equilibrium such that the key magnetic and kinetic properties are weighted averages. Spin dynamics simulations suggest that the third radical pair is largely responsible for magnetic sensing while the fourth may be better placed to initiate magnetic signalling particularly if the terminal tryptophan radical can be reduced by a nearby tyrosine. Such an arrangement could have allowed independent optimization of the essential sensing and signalling functions of the protein. It might also rationalize why avian Cry4a has four tryptophans while Crys from plants have only three.
Collapse
Affiliation(s)
- Siu Ying Wong
- Institut für Physik, Carl-von-Ossietzky Universität Oldenburg, Oldenburg 26111, Germany
| | - Yujing Wei
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - Henrik Mouritsen
- Institut für Biologie und Umweltwissenschaften, Carl-von-Ossietzky Universität Oldenburg, Oldenburg 26111, Germany
- Research Centre for Neurosensory Science, University of Oldenburg, Oldenburg 26111, Germany
| | - Ilia A. Solov'yov
- Institut für Physik, Carl-von-Ossietzky Universität Oldenburg, Oldenburg 26111, Germany
| | - P. J. Hore
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| |
Collapse
|
11
|
Einwich A, Seth PK, Bartölke R, Bolte P, Feederle R, Dedek K, Mouritsen H. Localisation of cryptochrome 2 in the avian retina. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 208:69-81. [PMID: 34677638 PMCID: PMC8918457 DOI: 10.1007/s00359-021-01506-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022]
Abstract
Cryptochromes are photolyase-related blue-light receptors acting as core components of the mammalian circadian clock in the cell nuclei. One or more members of the cryptochrome protein family are also assumed to play a role in avian magnetoreception, but the primary sensory molecule in the retina of migratory birds that mediates light-dependent magnetic compass orientation has still not been identified. The mRNA of cryptochrome 2 (Cry2) has been reported to be located in the cell nuclei of the retina, but Cry2 localisation has not yet been demonstrated at the protein level. Here, we provide evidence that Cry2 protein is located in the photoreceptor inner segments, the outer nuclear layer, the inner nuclear layer and the ganglion cell layer in the retina of night-migratory European robins, homing pigeons and domestic chickens. At the subcellular level, we find Cry2 both in the cytoplasm and the nucleus of cells residing in these layers. This broad nucleic expression rather points to a role for avian Cry2 in the circadian clock and is consistent with a function as a transcription factor, analogous to mammalian Cry2, and speaks against an involvement in magnetoreception.
Collapse
Affiliation(s)
- Angelika Einwich
- Institute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Pranav Kumar Seth
- Institute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Rabea Bartölke
- Institute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Petra Bolte
- Institute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Regina Feederle
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility, Neuherberg, Germany
| | - Karin Dedek
- Institute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.,Research Centre for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Henrik Mouritsen
- Institute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany. .,Research Centre for Neurosensory Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| |
Collapse
|
12
|
Balay SD, Hochstoeger T, Vilceanu A, Malkemper EP, Snider W, Dürnberger G, Mechtler K, Schuechner S, Ogris E, Nordmann GC, Ushakova L, Nimpf S, Keays DA. The expression, localisation and interactome of pigeon CRY2. Sci Rep 2021; 11:20293. [PMID: 34645873 PMCID: PMC8514597 DOI: 10.1038/s41598-021-99207-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/13/2021] [Indexed: 11/18/2022] Open
Abstract
Cryptochromes (CRY) are highly conserved signalling molecules that regulate circadian rhythms and are candidate radical pair based magnetoreceptors. Birds have at least four cryptochromes (CRY1a, CRY1b, CRY2, and CRY4), but few studies have interrogated their function. Here we investigate the expression, localisation and interactome of clCRY2 in the pigeon retina. We report that clCRY2 has two distinct transcript variants, clCRY2a, and a previously unreported splice isoform, clCRY2b which is larger in size. We show that clCRY2a mRNA is expressed in all retinal layers and clCRY2b is enriched in the inner and outer nuclear layer. To define the localisation and interaction network of clCRY2 we generated and validated a monoclonal antibody that detects both clCRY2 isoforms. Immunohistochemical studies revealed that clCRY2a/b is present in all retinal layers and is enriched in the outer limiting membrane and outer plexiform layer. Proteomic analysis showed clCRY2a/b interacts with typical circadian molecules (PER2, CLOCK, ARTNL), cell junction proteins (CTNNA1, CTNNA2) and components associated with the microtubule motor dynein (DYNC1LI2, DCTN1, DCTN2, DCTN3) within the retina. Collectively these data show that clCRY2 is a component of the avian circadian clock and unexpectedly associates with the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Spencer D Balay
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus Vienna Biocenter 1, 1030, Vienna, Austria.,Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030, Vienna, Austria
| | - Tobias Hochstoeger
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus Vienna Biocenter 1, 1030, Vienna, Austria
| | - Alexandra Vilceanu
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus Vienna Biocenter 1, 1030, Vienna, Austria
| | - E Pascal Malkemper
- Max Planck Research Group Neurobiology of Magnetoreception, Center of Advanced European Studies and Research (Caesar), Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - William Snider
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Gerhard Dürnberger
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus Vienna Biocenter 1, 1030, Vienna, Austria.,Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus Vienna Biocenter 1, 1030, Vienna, Austria.,Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Stefan Schuechner
- Monoclonal Antibody Facility, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9, 1030, Vienna, Austria
| | - Egon Ogris
- Monoclonal Antibody Facility, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9, 1030, Vienna, Austria
| | - Gregory C Nordmann
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus Vienna Biocenter 1, 1030, Vienna, Austria.,Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030, Vienna, Austria
| | - Lyubov Ushakova
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus Vienna Biocenter 1, 1030, Vienna, Austria
| | - Simon Nimpf
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus Vienna Biocenter 1, 1030, Vienna, Austria
| | - David A Keays
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus Vienna Biocenter 1, 1030, Vienna, Austria. .,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Australia. .,Division of Neurobiology, Department Biology II, Ludwig-Maximilians-University Munich, Planegg-Martinsried, 82152, Munich, Germany.
| |
Collapse
|
13
|
Dybus A, Kulig H, Yu YH, Lanckriet R, Proskura W, Cheng YH. CRY1 Gene Polymorphism and Racing Performance of Homing Pigeons. Animals (Basel) 2021; 11:2632. [PMID: 34573598 PMCID: PMC8466513 DOI: 10.3390/ani11092632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
Cryptochromes (CRY) are the family of proteins proposed as the putative magnetoreceptor molecules. In birds, among others in pigeons, CRY1 is widely expressed in a retina. Homing pigeons are known for their navigational abilities, and pigeon racing is a popular sport. So, the purpose of this study was to analyze the variability of the nucleotide sequence of the homing pigeon CRY1 gene, spanning the region coding the two amino acids W320 and W374 of Trp-triad, and estimate the relationship between genotypes and the racing performance. Investigations were carried out on 129 pigeons. Analysis of sequencing results indicated the AG to TT change within the seventh intron of CRY1 gene. Genotypes were determined by the forced PCR-RFLP method. The influence of detected polymorphism on the results of racing pigeons in 100-400 km flights was shown. The AG/TT individuals achieved significantly higher (p ≤ 0.05) mean values of ace points (AP) than the AG/AG ones. Regarding the detected nucleotide change localization, the polymorphism may be involved in CRY1 gene expression modulation. The AG to TT change in CRY1 gene may be considered as a potential genetic marker of racing performance in homing pigeons.
Collapse
Affiliation(s)
- Andrzej Dybus
- Department of Genetics, West Pomeranian University of Technology, 70-311 Szczecin, Poland;
| | - Hanna Kulig
- Department of Genetics, West Pomeranian University of Technology, 70-311 Szczecin, Poland;
| | - Yu-Hsiang Yu
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047, Taiwan; (Y.-H.Y.); (Y.-H.C.)
| | | | - Witold Proskura
- Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, 71-270 Szczecin, Poland;
| | - Yeong-Hsiang Cheng
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047, Taiwan; (Y.-H.Y.); (Y.-H.C.)
| |
Collapse
|
14
|
Pinzon-Rodriguez A, Muheim R. Cryptochrome expression in avian UV cones: revisiting the role of CRY1 as magnetoreceptor. Sci Rep 2021; 11:12683. [PMID: 34135416 PMCID: PMC8209128 DOI: 10.1038/s41598-021-92056-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/03/2021] [Indexed: 02/05/2023] Open
Abstract
Cryptochromes (CRY) have been proposed as putative magnetoreceptors in vertebrates. Localisation of CRY1 in the UV cones in the retinas of birds suggested that it could be the candidate magnetoreceptor. However, recent findings argue against this possibility. CRY1 is a type II cryptochrome, a subtype of cryptochromes that may not be inherently photosensitive, and it exhibits a clear circadian expression in the retinas of birds. Here, we reassessed the localisation and distribution of CRY1 in the retina of the zebra finch. Zebra finches have a light-dependent magnetic compass based on a radical-pair mechanism, similar to migratory birds. We found that CRY1 colocalised with the UV/V opsin (SWS1) in the outer segments of UV cones, but restricted to the tip of the segments. CRY1 was found in all UV cones across the entire retina, with the highest densities near the fovea. Pre-exposure of birds to different wavelengths of light did not result in any difference in CRY1 detection, suggesting that CRY1 did not undergo any detectable functional changes as result of light activation. Considering that CRY1 is likely not involved in magnetoreception, our findings open the possibility for an involvement in different, yet undetermined functions in the avian UV/V cones.
Collapse
Affiliation(s)
- Atticus Pinzon-Rodriguez
- grid.4514.40000 0001 0930 2361Department of Biology, Lund University, Biology Building B, 223 62 Lund, Sweden
| | - Rachel Muheim
- grid.4514.40000 0001 0930 2361Department of Biology, Lund University, Biology Building B, 223 62 Lund, Sweden
| |
Collapse
|
15
|
Wiltschko R, Nießner C, Wiltschko W. The Magnetic Compass of Birds: The Role of Cryptochrome. Front Physiol 2021; 12:667000. [PMID: 34093230 PMCID: PMC8171495 DOI: 10.3389/fphys.2021.667000] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/08/2021] [Indexed: 12/28/2022] Open
Abstract
The geomagnetic field provides directional information for birds. The avian magnetic compass is an inclination compass that uses not the polarity of the magnetic field but the axial course of the field lines and their inclination in space. It works in a flexible functional window, and it requires short-wavelength light. These characteristics result from the underlying sensory mechanism based on radical pair processes in the eyes, with cryptochrome suggested as the receptor molecule. The chromophore of cryptochrome, flavin adenine dinucleotide (FAD), undergoes a photocycle, where radical pairs are formed during photo-reduction as well as during re-oxidation; behavioral data indicate that the latter is crucial for detecting magnetic directions. Five types of cryptochromes are found in the retina of birds: cryptochrome 1a (Cry1a), cryptochrome 1b, cryptochrome 2, cryptochrome 4a, and cryptochrome 4b. Because of its location in the outer segments of the ultraviolet cones with their clear oil droplets, Cry1a appears to be the most likely receptor molecule for magnetic compass information.
Collapse
Affiliation(s)
- Roswitha Wiltschko
- FB Biowissenschaften, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Christine Nießner
- FB Biowissenschaften, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Wolfgang Wiltschko
- FB Biowissenschaften, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
16
|
Karki N, Vergish S, Zoltowski BD. Cryptochromes: Photochemical and structural insight into magnetoreception. Protein Sci 2021; 30:1521-1534. [PMID: 33993574 DOI: 10.1002/pro.4124] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022]
Abstract
Cryptochromes (CRYs) function as blue light photoreceptors in diverse physiological processes in nearly all kingdoms of life. Over the past several decades, they have emerged as the most likely candidates for light-dependent magnetoreception in animals, however, a long history of conflicts between in vitro photochemistry and in vivo behavioral data complicate validation of CRYs as a magnetosensor. In this review, we highlight the origins of conflicts regarding CRY photochemistry and signal transduction, and identify recent data that provides clarity on potential mechanisms of signal transduction in magnetoreception. The review primarily focuses on examining differences in photochemistry and signal transduction in plant and animal CRYs, and identifies potential modes of convergent evolution within these independent lineages that may identify conserved signaling pathways.
Collapse
Affiliation(s)
- Nischal Karki
- Department of Chemistry, Southern Methodist University, Dallas, Texas, USA
| | - Satyam Vergish
- Department of Chemistry, Southern Methodist University, Dallas, Texas, USA
| | - Brian D Zoltowski
- Department of Chemistry, Southern Methodist University, Dallas, Texas, USA
| |
Collapse
|
17
|
Bolte P, Einwich A, Seth PK, Chetverikova R, Heyers D, Wojahn I, Janssen-Bienhold U, Feederle R, Hore P, Dedek K, Mouritsen H. Cryptochrome 1a localisation in light- and dark-adapted retinae of several migratory and non-migratory bird species: no signs of light-dependent activation. ETHOL ECOL EVOL 2021. [DOI: 10.1080/03949370.2020.1870571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Petra Bolte
- Institute for Biology and Environmental Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Angelika Einwich
- Institute for Biology and Environmental Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Pranav K. Seth
- Institute for Biology and Environmental Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Raisa Chetverikova
- Institute for Biology and Environmental Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Dominik Heyers
- Institute for Biology and Environmental Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
- Research Centre for Neurosensory Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Irina Wojahn
- Institute for Biology and Environmental Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Ulrike Janssen-Bienhold
- Research Centre for Neurosensory Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
- Department of Neuroscience, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Regina Feederle
- Institute for Diabetes and Obesity, Monoclonal Antibody Core Facility, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Peter Hore
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Karin Dedek
- Institute for Biology and Environmental Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
- Research Centre for Neurosensory Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Henrik Mouritsen
- Institute for Biology and Environmental Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
- Research Centre for Neurosensory Sciences, Carl-von-Ossietzky-University Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| |
Collapse
|
18
|
Wong SY, Solov'yov IA, Hore PJ, Kattnig DR. Nuclear polarization effects in cryptochrome-based magnetoreception. J Chem Phys 2021; 154:035102. [PMID: 33499614 DOI: 10.1063/5.0038947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The mechanism of the magnetic compass sense of migratory songbirds is thought to involve magnetically sensitive chemical reactions of light-induced radical pairs in cryptochrome proteins located in the birds' eyes. However, it is not yet clear whether this mechanism would be sensitive enough to form the basis of a viable compass. In the present work, we report spin dynamics simulations of models of cryptochrome-based radical pairs to assess whether accumulation of nuclear spin polarization in multiple photocycles could lead to significant enhancements in the sensitivity with which the proteins respond to the direction of the geomagnetic field. Although buildup of nuclear polarization appears to offer sensitivity advantages in the more idealized model systems studied, we find that these enhancements do not carry over to conditions that more closely resemble the situation thought to exist in vivo. On the basis of these simulations, we conclude that buildup of nuclear polarization seems unlikely to be a source of significant improvements in the performance of cryptochrome-based radical pair magnetoreceptors.
Collapse
Affiliation(s)
- Siu Ying Wong
- Institut für Physik, Carl-von-Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany
| | - Ilia A Solov'yov
- Institut für Physik, Carl-von-Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany
| | - P J Hore
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Daniel R Kattnig
- Living Systems Institute and Department of Physics, University of Exeter, Exeter EX4 4QD, United Kingdom
| |
Collapse
|
19
|
Astakhova LA, Rotov AY, Cherbunin RV, Goriachenkov AA, Kavokin KV, Firsov ML, Chernetsov N. Electroretinographic study of the magnetic compass in European robins. Proc Biol Sci 2020; 287:20202507. [PMID: 33290671 DOI: 10.1098/rspb.2020.2507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Migratory birds are known to be sensitive to external magnetic field (MF). Much indirect evidence suggests that the avian magnetic compass is localized in the retina. Previously, we showed that changes in the MF direction could modulate retinal responses in pigeons. In the present study, we performed similar experiments using the traditional model animal to study the magnetic compass, European robins. The photoresponses of isolated retina were recorded using ex vivo electroretinography (ERG). Blue- and red-light stimuli were applied under an MF with the natural intensity and two MF directions, when the angle between the plane of the retina and the field lines was 0° and 90°, respectively. The results were separately analysed for four quadrants of the retina. A comparison of the amplitudes of the a- and b-waves of the ERG responses to blue stimuli under the two MF directions revealed a small but significant difference in a- but not b-waves, and in only one (nasal) quadrant of the retina. The amplitudes of both the a- and b-waves of the ERG responses to red stimuli did not show significant effects of the MF direction. Thus, changes in the external MF modulate the European robin retinal responses to blue flashes, but not to red flashes. This result is in a good agreement with behavioural data showing the successful orientation of birds in an MF under blue, but not under red illumination.
Collapse
Affiliation(s)
- Luba A Astakhova
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 44 Toreza Ave., St Petersburg 194223, Russia
| | - Alexander Yu Rotov
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 44 Toreza Ave., St Petersburg 194223, Russia
| | - Roman V Cherbunin
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 44 Toreza Ave., St Petersburg 194223, Russia
| | - Arsenii A Goriachenkov
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 44 Toreza Ave., St Petersburg 194223, Russia
| | - Kirill V Kavokin
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 44 Toreza Ave., St Petersburg 194223, Russia
| | - Michael L Firsov
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 44 Toreza Ave., St Petersburg 194223, Russia
| | - Nikita Chernetsov
- Sechenov Institute of Evolutionary Physiology and Biochemistry RAS, 44 Toreza Ave., St Petersburg 194223, Russia
| |
Collapse
|
20
|
Einwich A, Dedek K, Seth PK, Laubinger S, Mouritsen H. A novel isoform of cryptochrome 4 (Cry4b) is expressed in the retina of a night-migratory songbird. Sci Rep 2020; 10:15794. [PMID: 32978454 PMCID: PMC7519125 DOI: 10.1038/s41598-020-72579-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/28/2020] [Indexed: 01/22/2023] Open
Abstract
The primary sensory molecule underlying light-dependent magnetic compass orientation in migratory birds has still not been identified. The cryptochromes are the only known class of vertebrate proteins which could mediate this mechanism in the avian retina. Cryptochrome 4 of the night-migratory songbird the European robin (Erithacus rubecula; erCry4) has several of the properties needed to be the primary magnetoreceptor in the avian eye. Here, we report on the identification of a novel isoform of erCry4, which we named erCry4b. Cry4b includes an additional exon of 29 amino acids compared to the previously described form of Cry4, now called Cry4a. When comparing the retinal circadian mRNA expression pattern of the already known isoform erCry4a and the novel erCry4b isoform, we find that erCry4a is stably expressed throughout day and night, whereas erCry4b shows a diurnal mRNA oscillation. The differential characteristics of the two erCry4 isoforms regarding their 24-h rhythmicity in mRNA expression leads us to suggest that they might have different functions. Based on the 24-h expression pattern, erCry4a remains the more likely cryptochrome to be involved in radical-pair-based magnetoreception, but at the present time, an involvement of erCry4b cannot be excluded.
Collapse
Affiliation(s)
- Angelika Einwich
- Institute for Biology and Environmental Sciences, Neurosensorics/Animal Navigation, Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany.,Research Centre for Neurosensory Sciences, Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany
| | - Karin Dedek
- Institute for Biology and Environmental Sciences, Neurosensorics/Animal Navigation, Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany.,Research Centre for Neurosensory Sciences, Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany
| | - Pranav Kumar Seth
- Institute for Biology and Environmental Sciences, Neurosensorics/Animal Navigation, Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany.,Research Centre for Neurosensory Sciences, Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany
| | - Sascha Laubinger
- Institute for Biology and Environmental Sciences, Evolutionäre Genetik der Pflanzen, Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany
| | - Henrik Mouritsen
- Institute for Biology and Environmental Sciences, Neurosensorics/Animal Navigation, Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany. .,Research Centre for Neurosensory Sciences, Carl-von-Ossietzky-Universität Oldenburg, Oldenburg, Germany.
| |
Collapse
|
21
|
Wu H, Scholten A, Einwich A, Mouritsen H, Koch KW. Protein-protein interaction of the putative magnetoreceptor cryptochrome 4 expressed in the avian retina. Sci Rep 2020; 10:7364. [PMID: 32355203 PMCID: PMC7193638 DOI: 10.1038/s41598-020-64429-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/16/2020] [Indexed: 11/15/2022] Open
Abstract
Migratory birds can sense the Earth’s magnetic field and use it for orientation over thousands of kilometres. A light-dependent radical-pair mechanism associated with the visual system is currently discussed as the underlying mechanism of the magnetic compass sense. The blue light receptor cryptochrome 4 (Cry4) is considered as the most likely primary sensory protein that detects the geomagnetic field. Since the protein interaction partners of Cry4 are completely unknown at present, here, we aim to identify potential candidate interaction partners of Cry4 in the avian retina. We used the yeast-two-hybrid system to screen avian cDNA libraries for possible interaction partners of Cry4 in the European robin. The UAS-GAL yeast two hybrid system was applied to confirm a group of candidate Cry4 interaction partners. Six proteins were found to be particularly promising candidates for interacting with European robin Cry4. The identified genes code for guanine nucleotide-binding protein G(t) subunit alpha-2 (GNAT2), long-wavelength-sensitive opsin (LWS, also called iodopsin), guanine nucleotide-binding protein subunit gamma 10 (GNG10), potassium voltage-gated channel subfamily V member 2 (KCNV2), retinol binding protein 1 (RBP1) and retinal G protein-coupled receptor (RGR). All genes are known to be expressed in vertebrate retinae of different species. We conclude by discussing putative signalling pathways that could connect cryptochrome 4 to one or more of these 6 candidates.
Collapse
Affiliation(s)
- Haijia Wu
- Department of Neuroscience, Division of Biochemistry, University of Oldenburg, D-26111, Oldenburg, Germany
| | - Alexander Scholten
- Department of Neuroscience, Division of Biochemistry, University of Oldenburg, D-26111, Oldenburg, Germany
| | - Angelika Einwich
- Department of Biology and Environmental Sciences, Neurosensorics/Animal Navigation, University of Oldenburg, D-26111, Oldenburg, Germany
| | - Henrik Mouritsen
- Department of Biology and Environmental Sciences, Neurosensorics/Animal Navigation, University of Oldenburg, D-26111, Oldenburg, Germany.,Research Center for Neurosensory Sciences, University of Oldenburg, 26111, Oldenburg, Germany
| | - Karl-Wilhelm Koch
- Department of Neuroscience, Division of Biochemistry, University of Oldenburg, D-26111, Oldenburg, Germany. .,Research Center for Neurosensory Sciences, University of Oldenburg, 26111, Oldenburg, Germany.
| |
Collapse
|
22
|
Rotov AY, Cherbunin RV, Anashina A, Kavokin KV, Chernetsov N, Firsov ML, Astakhova LA. Searching for magnetic compass mechanism in pigeon retinal photoreceptors. PLoS One 2020; 15:e0229142. [PMID: 32134934 PMCID: PMC7058337 DOI: 10.1371/journal.pone.0229142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/30/2020] [Indexed: 11/30/2022] Open
Abstract
Migratory birds can detect the direction of the Earth’s magnetic field using the magnetic compass sense. However, the sensory basis of the magnetic compass still remains a puzzle. A large body of indirect evidence suggests that magnetic compass in birds is localized in the retina. To confirm this point, an evidence of visual signals modulation by magnetic field (MF) should be obtained. In a previous study we showed that MF inclination impacts the amplitude of ex vivo electroretinogram (ERG) recorded from isolated pigeon retina. Here we present the results of an analysis of putative MF effect on one component of ERG, the photoreceptor’s response, isolated from the total ERG by adding sodium aspartate and barium chloride to the perfusion solution. Photoresponses were recorded from isolated retinae of domestic pigeons Columba livia. The retinal samples were placed in MF that was modulated by three pairs of orthogonal Helmholtz coils. Light stimuli (blue and red) were applied under two inclinations of MF, 0° and 90°. In all the experiments, preparations from two parts of retina were used, red field (with dominant red-sensitive cones) and yellow field (with relatively uniform distribution of cone color types). In contrast to the whole retinal ERG, we did not observe any effect of MF inclination on either amplitude or kinetics of pharmacologically isolated photoreceptor responses to blue or red half-saturating flashes. A possible explanations of these results could be that magnetic compass sense is localized in retinal cells other than photoreceptors, or that photoreceptors do participate in magnetoreception, but require some processing of compass information in other retinal layers, so that only whole retina signal can reflect the response to changing MF.
Collapse
Affiliation(s)
- Alexander Yu. Rotov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Roman V. Cherbunin
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Anna Anashina
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Kirill V. Kavokin
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Nikita Chernetsov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Michael L. Firsov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Luba A. Astakhova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
- * E-mail:
| |
Collapse
|
23
|
Kobylkov D, Wynn J, Winklhofer M, Chetverikova R, Xu J, Hiscock H, Hore PJ, Mouritsen H. Electromagnetic 0.1-100 kHz noise does not disrupt orientation in a night-migrating songbird implying a spin coherence lifetime of less than 10 µs. J R Soc Interface 2019; 16:20190716. [PMID: 31847760 DOI: 10.1098/rsif.2019.0716] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
According to the currently prevailing theory, the magnetic compass sense in night-migrating birds relies on a light-dependent radical-pair-based mechanism. It has been shown that radio waves at megahertz frequencies disrupt magnetic orientation in migratory birds, providing evidence for a quantum-mechanical origin of the magnetic compass. Still, many crucial properties, e.g. the lifetime of the proposed magnetically sensitive radical pair, remain unknown. The current study aims to estimate the spin coherence time of the radical pair, based on the behavioural responses of migratory birds to broadband electromagnetic fields covering the frequency band 0.1-100 kHz. A finding that the birds were unable to use their magnetic compass under these conditions would imply surprisingly long-lived (greater than 10 µs) spin coherence. However, we observed no effect of 0.1-100 kHz radiofrequency (RF) fields on the orientation of night-migratory Eurasian blackcaps (Sylvia atricapilla). This suggests that the lifetime of the spin coherence involved in magnetoreception is shorter than the period of the highest frequency RF fields used in this experiment (i.e. approx. 10 µs). This result, in combination with an earlier study showing that 20-450 kHz electromagnetic fields disrupt magnetic compass orientation, suggests that the spin coherence lifetime of the magnetically sensitive radical pair is in the range 2-10 µs.
Collapse
Affiliation(s)
- Dmitry Kobylkov
- AG 'Neurosensorik', University Oldenburg, 26111 Oldenburg, Germany.,Research Centre for Neurosensory Sciences, University Oldenburg, 26111 Oldenburg, Germany
| | - Joe Wynn
- Oxford Navigation Group, Department of Zoology, University of Oxford, Oxford, UK
| | - Michael Winklhofer
- AG 'Neurosensorik', University Oldenburg, 26111 Oldenburg, Germany.,AG 'Sensory Biology of Animals', University Oldenburg, 26111 Oldenburg, Germany
| | - Raisa Chetverikova
- AG 'Neurosensorik', University Oldenburg, 26111 Oldenburg, Germany.,Research Centre for Neurosensory Sciences, University Oldenburg, 26111 Oldenburg, Germany
| | - Jingjing Xu
- AG 'Neurosensorik', University Oldenburg, 26111 Oldenburg, Germany.,Research Centre for Neurosensory Sciences, University Oldenburg, 26111 Oldenburg, Germany
| | - Hamish Hiscock
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - P J Hore
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Henrik Mouritsen
- AG 'Neurosensorik', University Oldenburg, 26111 Oldenburg, Germany.,Research Centre for Neurosensory Sciences, University Oldenburg, 26111 Oldenburg, Germany
| |
Collapse
|
24
|
Navigating at night: fundamental limits on the sensitivity of radical pair magnetoreception under dim light. Q Rev Biophys 2019; 52:e9. [DOI: 10.1017/s0033583519000076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abstract
Night-migratory songbirds appear to sense the direction of the Earth's magnetic field via radical pair intermediates formed photochemically in cryptochrome flavoproteins contained in photoreceptor cells in their retinas. It is an open question whether this light-dependent mechanism could be sufficiently sensitive given the low-light levels experienced by nocturnal migrants. The scarcity of available photons results in significant uncertainty in the signal generated by the magnetoreceptors distributed around the retina. Here we use results from Information Theory to obtain a lower bound estimate of the precision with which a bird could orient itself using only geomagnetic cues. Our approach bypasses the current lack of knowledge about magnetic signal transduction and processing in vivo by computing the best-case compass precision under conditions where photons are in short supply. We use this method to assess the performance of three plausible cryptochrome-derived flavin-containing radical pairs as potential magnetoreceptors.
Collapse
|
25
|
Zoltowski BD, Chelliah Y, Wickramaratne A, Jarocha L, Karki N, Xu W, Mouritsen H, Hore PJ, Hibbs RE, Green CB, Takahashi JS. Chemical and structural analysis of a photoactive vertebrate cryptochrome from pigeon. Proc Natl Acad Sci U S A 2019; 116:19449-19457. [PMID: 31484780 PMCID: PMC6765304 DOI: 10.1073/pnas.1907875116] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Computational and biochemical studies implicate the blue-light sensor cryptochrome (CRY) as an endogenous light-dependent magnetosensor enabling migratory birds to navigate using the Earth's magnetic field. Validation of such a mechanism has been hampered by the absence of structures of vertebrate CRYs that have functional photochemistry. Here we present crystal structures of Columba livia (pigeon) CRY4 that reveal evolutionarily conserved modifications to a sequence of Trp residues (Trp-triad) required for CRY photoreduction. In ClCRY4, the Trp-triad chain is extended to include a fourth Trp (W369) and a Tyr (Y319) residue at the protein surface that imparts an unusually high quantum yield of photoreduction. These results are consistent with observations of night migratory behavior in animals at low light levels and could have implications for photochemical pathways allowing magnetosensing.
Collapse
Affiliation(s)
- Brian D Zoltowski
- Department of Chemistry, Southern Methodist University, Dallas, TX 75275
- Center for Drug Discovery, Design, and Delivery, Southern Methodist University, Dallas, TX 75275
| | - Yogarany Chelliah
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Anushka Wickramaratne
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Lauren Jarocha
- Department of Chemistry, University of Oxford, OX1 3QZ Oxford, United Kingdom
| | - Nischal Karki
- Department of Chemistry, Southern Methodist University, Dallas, TX 75275
- Center for Drug Discovery, Design, and Delivery, Southern Methodist University, Dallas, TX 75275
| | - Wei Xu
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Henrik Mouritsen
- Institute for Biology and Environmental Sciences, Carl von Ossietzky University of Oldenburg, DE-26111 Oldenburg, Germany
- Research Center for Neurosensory Sciences, University of Oldenburg, DE-26111 Oldenburg, Germany
| | - Peter J Hore
- Department of Chemistry, University of Oxford, OX1 3QZ Oxford, United Kingdom
| | - Ryan E Hibbs
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Carla B Green
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Joseph S Takahashi
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390;
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
26
|
Abstract
Birds can use two kinds of information from the geomagnetic field for navigation: the direction of the field lines as a compass and probably magnetic intensity as a component of the navigational ‘map’. The direction of the magnetic field appears to be sensed via radical pair processes in the eyes, with the crucial radical pairs formed by cryptochrome. It is transmitted by the optic nerve to the brain, where parts of the visual system seem to process the respective information. Magnetic intensity appears to be perceived by magnetite-based receptors in the beak region; the information is transmitted by the ophthalmic branch of the trigeminal nerve to the trigeminal ganglion and the trigeminal brainstem nuclei. Yet in spite of considerable progress in recent years, many details are still unclear, among them details of the radical pair processes and their transformation into a nervous signal, the precise location of the magnetite-based receptors and the centres in the brain where magnetic information is combined with other navigational information for the navigational processes.
Collapse
Affiliation(s)
- Roswitha Wiltschko
- FB Biowissenschaften, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Wolfgang Wiltschko
- FB Biowissenschaften, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
27
|
Juutilainen J, Herrala M, Luukkonen J, Naarala J, Hore PJ. Magnetocarcinogenesis: is there a mechanism for carcinogenic effects of weak magnetic fields? Proc Biol Sci 2019; 285:rspb.2018.0590. [PMID: 29794049 DOI: 10.1098/rspb.2018.0590] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 04/27/2018] [Indexed: 12/13/2022] Open
Abstract
Extremely low-frequency (ELF) magnetic fields have been classified as possibly carcinogenic, mainly based on rather consistent epidemiological findings suggesting a link between childhood leukaemia and 50-60 Hz magnetic fields from power lines. However, causality is not the only possible explanation for the epidemiological associations, as animal and in vitro experiments have provided only limited support for carcinogenic effects of ELF magnetic fields. Importantly, there is no generally accepted biophysical mechanism that could explain such effects. In this review, we discuss the possibility that carcinogenic effects are based on the radical pair mechanism (RPM), which seems to be involved in magnetoreception in birds and certain other animals, allowing navigation in the geomagnetic field. We review the current understanding of the RPM in magnetoreception, and discuss cryptochromes as the putative magnetosensitive molecules and their possible links to cancer-relevant biological processes. We then propose a hypothesis for explaining the link between ELF fields and childhood leukaemia, discuss the strengths and weaknesses of the current evidence, and make proposals for further research.
Collapse
Affiliation(s)
- Jukka Juutilainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko Herrala
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jukka Luukkonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jonne Naarala
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - P J Hore
- Department of Chemistry, University of Oxford, Oxford, UK
| |
Collapse
|
28
|
Rotov AY, Cherbunin RV, Kavokin KV, Chernetsov NS, Firsov ML, Astakhova LA. Magnetoreception in the Retina of the Domestic Pigeon Columbia livia: a Retinographic Search. J EVOL BIOCHEM PHYS+ 2019. [DOI: 10.1134/s00220930180600121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Worster SB, Hore PJ. Proposal to use superparamagnetic nanoparticles to test the role of cryptochrome in magnetoreception. J R Soc Interface 2018; 15:20180587. [PMID: 30381345 PMCID: PMC6228473 DOI: 10.1098/rsif.2018.0587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/08/2018] [Indexed: 11/12/2022] Open
Abstract
Evidence is accumulating to support the hypothesis that some animals use light-induced radical pairs to detect the direction of the Earth's magnetic field. Cryptochrome proteins seem to be involved in the sensory pathway but it is not yet clear if they are the magnetic sensors: they could, instead, play a non-magnetic role as signal transducers downstream of the primary sensor. Here we propose an experiment with the potential to distinguish these functions. The principle is to use superparamagnetic nanoparticles to disable any magnetic sensing role by enhancing the electron spin relaxation of the radicals so as to destroy their spin correlation. We use spin dynamics simulations to show that magnetoferritin, a synthetic, protein-based nanoparticle, has the required properties. If cryptochrome is the primary sensor, then it should be inactivated by a magnetoferritin particle placed 12-16 nm away. This would prevent a bird from using its magnetic compass in behavioural tests and abolish magnetically sensitive neuronal firing in the retina. The key advantage of such an experiment is that any signal transduction role should be completely unaffected by the tiny magnetic interactions (≪kBT) required to enhance the spin relaxation of the radical pair.
Collapse
Affiliation(s)
- Susannah Bourne Worster
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, UK
| | - P J Hore
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, UK
| |
Collapse
|
30
|
Engels S, Treiber CD, Salzer MC, Michalik A, Ushakova L, Keays DA, Mouritsen H, Heyers D. Lidocaine is a nocebo treatment for trigeminally mediated magnetic orientation in birds. J R Soc Interface 2018; 15:20180124. [PMID: 30089685 PMCID: PMC6127160 DOI: 10.1098/rsif.2018.0124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/13/2018] [Indexed: 12/30/2022] Open
Abstract
Even though previously described iron-containing structures in the upper beak of pigeons were almost certainly macrophages, not magnetosensitive neurons, behavioural and neurobiological evidence still supports the involvement of the ophthalmic branch of the trigeminal nerve (V1) in magnetoreception. In previous behavioural studies, inactivation of putative V1-associated magnetoreceptors involved either application of the surface anaesthetic lidocaine to the upper beak or sectioning of V1. Here, we compared the effects of lidocaine treatment, V1 ablations and sham ablations on magnetic field-driven neuronal activation in V1-recipient brain regions in European robins. V1 sectioning led to significantly fewer Egr-1-expressing neurons in the trigeminal brainstem than in the sham-ablated birds, whereas lidocaine treatment had no effect on neuronal activation. Furthermore, Prussian blue staining showed that nearly all iron-containing cells in the subepidermal layer of the upper beak are nucleated and are thus not part of the trigeminal nerve, and iron-containing cells appeared in highly variable numbers at inconsistent locations between individual robins and showed no systematic colocalization with a neuronal marker. Our data suggest that lidocaine treatment has been a nocebo to the birds and a placebo for the experimenters. Currently, the nature and location of any V1-associated magnetosensor remains elusive.
Collapse
Affiliation(s)
- Svenja Engels
- AG Neurosensorics, University of Oldenburg, Oldenburg, Germany
- Research Centre for Neurosensory Sciences, University of Oldenburg, Oldenburg, Germany
| | | | | | - Andreas Michalik
- AG Neurosensorics, University of Oldenburg, Oldenburg, Germany
- Research Centre for Neurosensory Sciences, University of Oldenburg, Oldenburg, Germany
| | | | | | - Henrik Mouritsen
- AG Neurosensorics, University of Oldenburg, Oldenburg, Germany
- Research Centre for Neurosensory Sciences, University of Oldenburg, Oldenburg, Germany
| | - Dominik Heyers
- AG Neurosensorics, University of Oldenburg, Oldenburg, Germany
- Research Centre for Neurosensory Sciences, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
31
|
Long-distance navigation and magnetoreception in migratory animals. Nature 2018; 558:50-59. [PMID: 29875486 DOI: 10.1038/s41586-018-0176-1] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 04/13/2018] [Indexed: 11/08/2022]
Abstract
For centuries, humans have been fascinated by how migratory animals find their way over thousands of kilometres. Here, I review the mechanisms used in animal orientation and navigation with a particular focus on long-distance migrants and magnetoreception. I contend that any long-distance navigational task consists of three phases and that no single cue or mechanism will enable animals to navigate with pinpoint accuracy over thousands of kilometres. Multiscale and multisensory cue integration in the brain is needed. I conclude by raising twenty important mechanistic questions related to long-distance animal navigation that should be solved over the next twenty years.
Collapse
|
32
|
Worster S, Mouritsen H, Hore PJ. A light-dependent magnetoreception mechanism insensitive to light intensity and polarization. J R Soc Interface 2018; 14:rsif.2017.0405. [PMID: 28878033 DOI: 10.1098/rsif.2017.0405] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/11/2017] [Indexed: 11/12/2022] Open
Abstract
Billions of migratory birds navigate thousands of kilometres every year aided by a magnetic compass sense, the biophysical mechanism of which is unclear. One leading hypothesis is that absorption of light by specialized photoreceptors in the retina produces short-lived chemical intermediates known as radical pairs whose chemistry is sensitive to tiny magnetic interactions. A potentially serious but largely ignored obstacle to this theory is how directional information derived from the Earth's magnetic field can be separated from the much stronger variations in the intensity and polarization of the incident light. Here we propose a simple solution in which these extraneous effects are cancelled by taking the ratio of the signals from two neighbouring populations of magnetoreceptors. Geometric and biological arguments are used to derive a set of conditions that make this possible. We argue that one likely location of the magnetoreceptor molecules would be in association with ordered opsin dimers in the membrane discs of the outer segments of double-cone photoreceptor cells.
Collapse
Affiliation(s)
- Susannah Worster
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Henrik Mouritsen
- Institut für Biologie und Umweltwissenschaften, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg, Germany.,Research Centre for Neurosensory Sciences, University of Oldenburg, 26111 Oldenburg, Germany
| | - P J Hore
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| |
Collapse
|
33
|
Pinzon-Rodriguez A, Bensch S, Muheim R. Expression patterns of cryptochrome genes in avian retina suggest involvement of Cry4 in light-dependent magnetoreception. J R Soc Interface 2018; 15:20180058. [PMID: 29593090 PMCID: PMC5908540 DOI: 10.1098/rsif.2018.0058] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/05/2018] [Indexed: 12/23/2022] Open
Abstract
The light-dependent magnetic compass of birds provides orientation information about the spatial alignment of the geomagnetic field. It is proposed to be located in the avian retina, and be mediated by a light-induced, biochemical radical-pair mechanism involving cryptochromes as putative receptor molecules. At the same time, cryptochromes are known for their role in the negative feedback loop in the circadian clock. We measured gene expression of Cry1, Cry2 and Cry4 in the retina, muscle and brain of zebra finches over the circadian day to assess whether they showed any circadian rhythmicity. We hypothesized that retinal cryptochromes involved in magnetoreception should be expressed at a constant level over the circadian day, because birds use a light-dependent magnetic compass for orientation not only during migration, but also for spatial orientation tasks in their daily life. Cryptochromes serving in circadian tasks, on the other hand, are expected to be expressed in a rhythmic (circadian) pattern. Cry1 and Cry2 displayed a daily variation in the retina as expected for circadian clock genes, while Cry4 expressed at constant levels over time. We conclude that Cry4 is the most likely candidate magnetoreceptor of the light-dependent magnetic compass in birds.
Collapse
Affiliation(s)
| | - Staffan Bensch
- Department of Biology, Lund University, Ecology Building, Lund 223 62, Sweden
| | - Rachel Muheim
- Department of Biology, Lund University, Biology Building B, Lund 223 62, Sweden
| |
Collapse
|
34
|
Günther A, Einwich A, Sjulstok E, Feederle R, Bolte P, Koch KW, Solov’yov IA, Mouritsen H. Double-Cone Localization and Seasonal Expression Pattern Suggest a Role in Magnetoreception for European Robin Cryptochrome 4. Curr Biol 2018; 28:211-223.e4. [DOI: 10.1016/j.cub.2017.12.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/24/2017] [Accepted: 12/02/2017] [Indexed: 01/07/2023]
|
35
|
Cao J, Bian J, Wang Z, Dong Y, Chen Y. Effect of monochromatic light on circadian rhythmic expression of clock genes and arylalkylamine N-acetyltransferase in chick retina. Chronobiol Int 2017; 34:1149-1157. [PMID: 28910542 DOI: 10.1080/07420528.2017.1354013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Birds have more developed visual function. They not only have the ability to detect light and darkness but also have the color vision. Previous study showed that monochromatic light influenced avian physiological processes, which were controlled by clock genes. Therefore, bird's eye is a good model to studying the impact of color of light on circadian rhythms. Avian retina is one of the most important central oscillations. The study was designed to investigate the effect of color of light on the expression of clock genes and arylalkylamine N-acetyltransferase (Aanat) mRNA expression in chick retina. A total of 240 post-hatching day (P) 0 broiler chickens were exposed to blue (BL), green (GL), red (RL) and white light (WL) from a LED system under a light-dark cycle 12L:12D for 14 d. The results show that the significant daily variations existed in the gene expression of cBmal1, cBmal2, cCry1, cCry2, cPer2 and cPer3, but not for cClock under four light treatments. The genes cBmal1, cCry1, cPer2 and cPer3 presented circadian rhythmic expression under the various monochromatic lights. When compared with WL, GL elevated the expression of positive regulators of cellular clock (cBmal1, cBmal2 and cClock) and cAanat mRNA level, whereas RL increased the mRNA levels of negative regulators of cellular clock (cCry1, cCry2, cPer2 and cPer3) and decreased the cAanat mRNA expression in the retina. These results demonstrated that monochromatic light affect the periodic expression levels of the biological clock mRNA by positive and negative feedback loop interactions, GL activated the transcription of cAanat; while RL suppressed the transcription of cAanat. Thereby, color of light regulates ocular cAanat expression by affecting on expression of cellular clock regulators.
Collapse
Affiliation(s)
- Jing Cao
- a Laboratory of Anatomy of Domestic Animal, College of Animal Medicine , China Agricultural University , Beijing , China
| | - Jiang Bian
- a Laboratory of Anatomy of Domestic Animal, College of Animal Medicine , China Agricultural University , Beijing , China
| | - Zixu Wang
- a Laboratory of Anatomy of Domestic Animal, College of Animal Medicine , China Agricultural University , Beijing , China
| | - Yulan Dong
- a Laboratory of Anatomy of Domestic Animal, College of Animal Medicine , China Agricultural University , Beijing , China
| | - Yaoxing Chen
- a Laboratory of Anatomy of Domestic Animal, College of Animal Medicine , China Agricultural University , Beijing , China
| |
Collapse
|
36
|
Pakhomov A, Bojarinova J, Cherbunin R, Chetverikova R, Grigoryev PS, Kavokin K, Kobylkov D, Lubkovskaja R, Chernetsov N. Very weak oscillating magnetic field disrupts the magnetic compass of songbird migrants. J R Soc Interface 2017; 14:20170364. [PMID: 28794163 PMCID: PMC5582129 DOI: 10.1098/rsif.2017.0364] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/13/2017] [Indexed: 11/12/2022] Open
Abstract
Previously, it has been shown that long-distance migrants, garden warblers (Sylvia borin), were disoriented in the presence of narrow-band oscillating magnetic field (1.403 MHz OMF, 190 nT) during autumn migration. This agrees with the data of previous experiments with European robins (Erithacus rubecula). In this study, we report the results of experiments with garden warblers tested under a 1.403 MHz OMF with various amplitudes (∼0.4, 1, ∼2.4, 7 and 20 nT). We found that the ability of garden warblers to orient in round arenas using the magnetic compass could be disrupted by a very weak oscillating field, such as an approximate 2.4, 7 and 20 nT OMF, but not by an OMF with an approximate 0.4 nT amplitude. The results of the present study indicate that the sensitivity threshold of the magnetic compass to the OMF lies around 2-3 nT, while in experiments with European robins the birds were disoriented in a 15 nT OMF but could choose the appropriate migratory direction when a 5 nT OMF was added to the stationary magnetic field. The radical-pair model, one of the mainstream theories of avian magnetoreception, cannot explain the sensitivity to such a low-intensity OMF, and therefore, it needs further refinement.
Collapse
Affiliation(s)
- Alexander Pakhomov
- Biological Station Rybachy, Zoological Institute RAS, 238535 Rybachy, Kaliningrad Region, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, 44 Thorez Ave, 194223 St Petersburg, Russia
| | - Julia Bojarinova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, 44 Thorez Ave, 194223 St Petersburg, Russia
- St Petersburg State University, 7-9 Universitetskaya Emb., St Petersburg 199034, Russia
| | - Roman Cherbunin
- Sechenov Institute of Evolutionary Physiology and Biochemistry, 44 Thorez Ave, 194223 St Petersburg, Russia
- St Petersburg State University, 7-9 Universitetskaya Emb., St Petersburg 199034, Russia
| | - Raisa Chetverikova
- St Petersburg State University, 7-9 Universitetskaya Emb., St Petersburg 199034, Russia
- AG Neurosensorik (Animal Navigation), Institut für Biologie und Umweltwissenschaften (IBU), University of Oldenburg, 26111 Oldenburg, Germany
| | - Philipp S Grigoryev
- St Petersburg State University, 7-9 Universitetskaya Emb., St Petersburg 199034, Russia
| | - Kirill Kavokin
- Sechenov Institute of Evolutionary Physiology and Biochemistry, 44 Thorez Ave, 194223 St Petersburg, Russia
- St Petersburg State University, 7-9 Universitetskaya Emb., St Petersburg 199034, Russia
- A.F. Ioffe Physical Technical Institute, 26 Polytechnicheskaya, St Petersburg 194021, Russia
| | - Dmitry Kobylkov
- AG Neurosensorik (Animal Navigation), Institut für Biologie und Umweltwissenschaften (IBU), University of Oldenburg, 26111 Oldenburg, Germany
| | - Regina Lubkovskaja
- St Petersburg State University, 7-9 Universitetskaya Emb., St Petersburg 199034, Russia
| | - Nikita Chernetsov
- Biological Station Rybachy, Zoological Institute RAS, 238535 Rybachy, Kaliningrad Region, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, 44 Thorez Ave, 194223 St Petersburg, Russia
- St Petersburg State University, 7-9 Universitetskaya Emb., St Petersburg 199034, Russia
| |
Collapse
|
37
|
Nießner C, Winklhofer M. Radical-pair-based magnetoreception in birds: radio-frequency experiments and the role of cryptochrome. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:499-507. [PMID: 28612234 PMCID: PMC5522499 DOI: 10.1007/s00359-017-1189-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/28/2017] [Accepted: 05/29/2017] [Indexed: 11/30/2022]
Abstract
The radical-pair hypothesis of magnetoreception has gained a lot of momentum, since the flavoprotein cryptochrome was postulated as a structural candidate to host magnetically sensitive chemical reactions. Here, we first discuss behavioral tests using radio-frequency magnetic fields (0.1-10 MHz) to specifically disturb a radical-pair-based avian magnetic compass sense. While disorienting effects of broadband RF magnetic fields have been replicated independently in two competing labs, the effects of monochromatic RF magnetic fields administered at the electronic Larmor frequency (~1.3 MHz) are disparate. We give technical recommendations for future RF experiments. We then focus on two candidate magnetoreceptor proteins in birds, Cry1a and Cry1b, two splice variants of the same gene (Cry1). Immunohistochemical studies have identified Cry1a in the outer segments of the ultraviolet/violet-sensitive cone photoreceptors and Cry1b in the cytosol of retinal ganglion cells. The identification of the host neurons of these cryptochromes and their subcellular expression patterns presents an important advance, but much work lies ahead to gain some functional understanding. In particular, interaction partners of cryptochrome Cry1a and Cry1b remain to be identified. A candidate partner for Cry4 was previously suggested, but awaits independent replication.
Collapse
Affiliation(s)
- Christine Nießner
- Ernst Strüngmann Institute for Neuroscience, Deutschordenstr 46, 60528, Frankfurt am Main, Germany
| | - Michael Winklhofer
- Institute for Biology and Environmental Sciences IBU, School of Mathematics and Science, University of Oldenburg, 26111, Oldenburg, Germany.
| |
Collapse
|
38
|
Heyers D, Elbers D, Bulte M, Bairlein F, Mouritsen H. The magnetic map sense and its use in fine-tuning the migration programme of birds. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:491-497. [PMID: 28365788 DOI: 10.1007/s00359-017-1164-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 10/19/2022]
Abstract
The Earth's magnetic field is one of several natural cues, which migratory birds can use to derive directional ("compass") information for orientation on their biannual migratory journeys. Moreover, magnetic field effects on prominent aspects of the migratory programme of birds, such as migratory restlessness behaviour, fuel deposition and directional orientation, implicate that geomagnetic information can also be used to derive positional ("map") information. While the magnetic "compass" in migratory birds is likely to be based on radical pair-forming molecules embedded in their visual system, the sensory correlates underlying a magnetic "map" sense currently remain elusive. Behavioural, physiological and neurobiological findings indicate that the sensor is most likely innervated by the ophthalmic branch of the trigeminal nerve and based on magnetic iron particles. Information from this unknown sensor is neither necessary nor sufficient for a functional magnetic compass, but instead could contribute important components of a multifactorial "map" for global positioning. Positional information could allow migratory birds to make vitally important dynamic adaptations of their migratory programme at any relevant point during their journeys.
Collapse
Affiliation(s)
- D Heyers
- AG Animal Navigation, Faculty of Biology/Environmental Sciences, University of Oldenburg, 26111, Oldenburg, Germany. .,Research Centre for Neurosensory Sciences, University of Oldenburg, 26111, Oldenburg, Germany.
| | - D Elbers
- AG Animal Navigation, Faculty of Biology/Environmental Sciences, University of Oldenburg, 26111, Oldenburg, Germany.,Research Centre for Neurosensory Sciences, University of Oldenburg, 26111, Oldenburg, Germany.,AG Biochemistry, Faculty of Medicine/Health Sciences, University of Oldenburg, 26111, Oldenburg, Germany
| | - M Bulte
- , Schmidtkunzstraße 13, 86199, Augsburg, Germany.,Institute for Avian Research "Vogelwarte Helgoland", 26386, Wilhelmshaven, Germany
| | - F Bairlein
- Institute for Avian Research "Vogelwarte Helgoland", 26386, Wilhelmshaven, Germany
| | - H Mouritsen
- AG Animal Navigation, Faculty of Biology/Environmental Sciences, University of Oldenburg, 26111, Oldenburg, Germany.,Research Centre for Neurosensory Sciences, University of Oldenburg, 26111, Oldenburg, Germany
| |
Collapse
|
39
|
Magnetic activation in the brain of the migratory northern wheatear (Oenanthe oenanthe). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:591-600. [DOI: 10.1007/s00359-017-1167-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/16/2017] [Accepted: 03/19/2017] [Indexed: 10/19/2022]
|
40
|
Procopio M, Ritz T. Inhomogeneous ensembles of radical pairs in chemical compasses. Sci Rep 2016; 6:35443. [PMID: 27804956 PMCID: PMC5090225 DOI: 10.1038/srep35443] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 09/28/2016] [Indexed: 11/09/2022] Open
Abstract
The biophysical basis for the ability of animals to detect the geomagnetic field and to use it for finding directions remains a mystery of sensory biology. One much debated hypothesis suggests that an ensemble of specialized light-induced radical pair reactions can provide the primary signal for a magnetic compass sensor. The question arises what features of such a radical pair ensemble could be optimized by evolution so as to improve the detection of the direction of weak magnetic fields. Here, we focus on the overlooked aspect of the noise arising from inhomogeneity of copies of biomolecules in a realistic biological environment. Such inhomogeneity leads to variations of the radical pair parameters, thereby deteriorating the signal arising from an ensemble and providing a source of noise. We investigate the effect of variations in hyperfine interactions between different copies of simple radical pairs on the directional response of a compass system. We find that the choice of radical pair parameters greatly influences how strongly the directional response of an ensemble is affected by inhomogeneity.
Collapse
Affiliation(s)
- Maria Procopio
- Department of Physics and Astronomy, University of California, Irvine, 92697-4345, USA
| | - Thorsten Ritz
- Department of Physics and Astronomy, University of California, Irvine, 92697-4345, USA
| |
Collapse
|
41
|
|
42
|
Affiliation(s)
- P. J. Hore
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom;
| | - Henrik Mouritsen
- Institut für Biologie und Umweltwissenschaften, Carl von Ossietzky Universität Oldenburg, DE-26111 Oldenburg, Germany;
- Research Centre for Neurosensory Sciences, University of Oldenburg, DE-26111 Oldenburg, Germany
| |
Collapse
|
43
|
Bender M, Mouritsen H, Christoffers J. A robust synthesis of 7,8-didemethyl-8-hydroxy-5-deazariboflavin. Beilstein J Org Chem 2016; 12:912-7. [PMID: 27340481 PMCID: PMC4901869 DOI: 10.3762/bjoc.12.89] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/28/2016] [Indexed: 12/13/2022] Open
Abstract
The biosynthetic precursor of redox cofactor F420, 7,8-didemethyl-8-hydroxy-5-deazariboflavin, was prepared in four steps from 6-chlorouracil, 2-chloro-4-hydroxybenzaldehyde and bis-isopropylidene protected D-ribose. The latter aldehyde was transformed to the corresponding protected ribitylamine via the oxime, which was submitted to reduction with LiAlH4. Key advantage compared to previous syntheses is the utilization of a polyol-protective group which allowed the chromatographic purification of a key-intermediate product providing the target compound with high purity.
Collapse
Affiliation(s)
- Matthias Bender
- Institut für Chemie, Universität Oldenburg, Carl von Ossietzky-Str. 9-11, D-26129 Oldenburg, Germany
| | - Henrik Mouritsen
- Institut für Biologie und Umweltwissenschaften, Universität Oldenburg, D-26111 Oldenburg, Germany; Centre for Neurosensory Sciences, University of Oldenburg, D-26111 Oldenburg, Germany
| | - Jens Christoffers
- Institut für Chemie, Universität Oldenburg, Carl von Ossietzky-Str. 9-11, D-26129 Oldenburg, Germany
| |
Collapse
|
44
|
Schwarze S, Schneider NL, Reichl T, Dreyer D, Lefeldt N, Engels S, Baker N, Hore PJ, Mouritsen H. Weak Broadband Electromagnetic Fields are More Disruptive to Magnetic Compass Orientation in a Night-Migratory Songbird (Erithacus rubecula) than Strong Narrow-Band Fields. Front Behav Neurosci 2016; 10:55. [PMID: 27047356 PMCID: PMC4801848 DOI: 10.3389/fnbeh.2016.00055] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/07/2016] [Indexed: 11/13/2022] Open
Abstract
Magnetic compass orientation in night-migratory songbirds is embedded in the visual system and seems to be based on a light-dependent radical pair mechanism. Recent findings suggest that both broadband electromagnetic fields ranging from ~2 kHz to ~9 MHz and narrow-band fields at the so-called Larmor frequency for a free electron in the Earth's magnetic field can disrupt this mechanism. However, due to local magnetic fields generated by nuclear spins, effects specific to the Larmor frequency are difficult to understand considering that the primary sensory molecule should be organic and probably a protein. We therefore constructed a purpose-built laboratory and tested the orientation capabilities of European robins in an electromagnetically silent environment, under the specific influence of four different oscillating narrow-band electromagnetic fields, at the Larmor frequency, double the Larmor frequency, 1.315 MHz or 50 Hz, and in the presence of broadband electromagnetic noise covering the range from ~2 kHz to ~9 MHz. Our results indicated that the magnetic compass orientation of European robins could not be disrupted by any of the relatively strong narrow-band electromagnetic fields employed here, but that the weak broadband field very efficiently disrupted their orientation.
Collapse
Affiliation(s)
- Susanne Schwarze
- Institut für Biologie und Umweltwissenschaften, Carl von Ossietzky Universität OldenburgOldenburg, Germany
- Research Centre for Neurosensory Sciences, University of OldenburgOldenburg, Germany
| | - Nils-Lasse Schneider
- Institut für Biologie und Umweltwissenschaften, Carl von Ossietzky Universität OldenburgOldenburg, Germany
- Research Centre for Neurosensory Sciences, University of OldenburgOldenburg, Germany
| | - Thomas Reichl
- Institut für Biologie und Umweltwissenschaften, Carl von Ossietzky Universität OldenburgOldenburg, Germany
- Research Centre for Neurosensory Sciences, University of OldenburgOldenburg, Germany
| | - David Dreyer
- Institut für Biologie und Umweltwissenschaften, Carl von Ossietzky Universität OldenburgOldenburg, Germany
- Research Centre for Neurosensory Sciences, University of OldenburgOldenburg, Germany
| | - Nele Lefeldt
- Institut für Biologie und Umweltwissenschaften, Carl von Ossietzky Universität OldenburgOldenburg, Germany
- Research Centre for Neurosensory Sciences, University of OldenburgOldenburg, Germany
| | - Svenja Engels
- Institut für Biologie und Umweltwissenschaften, Carl von Ossietzky Universität OldenburgOldenburg, Germany
- Research Centre for Neurosensory Sciences, University of OldenburgOldenburg, Germany
| | - Neville Baker
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry LaboratoryOxford, UK
| | - P. J. Hore
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry LaboratoryOxford, UK
| | - Henrik Mouritsen
- Institut für Biologie und Umweltwissenschaften, Carl von Ossietzky Universität OldenburgOldenburg, Germany
- Research Centre for Neurosensory Sciences, University of OldenburgOldenburg, Germany
| |
Collapse
|
45
|
Nießner C, Gross JC, Denzau S, Peichl L, Fleissner G, Wiltschko W, Wiltschko R. Seasonally Changing Cryptochrome 1b Expression in the Retinal Ganglion Cells of a Migrating Passerine Bird. PLoS One 2016; 11:e0150377. [PMID: 26953690 PMCID: PMC4783048 DOI: 10.1371/journal.pone.0150377] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 02/12/2016] [Indexed: 12/03/2022] Open
Abstract
Cryptochromes, blue-light absorbing proteins involved in the circadian clock, have been proposed to be the receptor molecules of the avian magnetic compass. In birds, several cryptochromes occur: Cryptochrome 2, Cryptochrome 4 and two splice products of Cryptochrome 1, Cry1a and Cry1b. With an antibody not distinguishing between the two splice products, Cryptochrome 1 had been detected in the retinal ganglion cells of garden warblers during migration. A recent study located Cry1a in the outer segments of UV/V-cones in the retina of domestic chickens and European robins, another migratory species. Here we report the presence of cryptochrome 1b (eCry1b) in retinal ganglion cells and displaced ganglion cells of European Robins, Erithacus rubecula. Immuno-histochemistry at the light microscopic and electron microscopic level showed eCry1b in the cell plasma, free in the cytosol as well as bound to membranes. This is supported by immuno-blotting. However, this applies only to robins in the migratory state. After the end of the migratory phase, the amount of eCry1b was markedly reduced and hardly detectable. In robins, the amount of eCry1b in the retinal ganglion cells varies with season: it appears to be strongly expressed only during the migratory period when the birds show nocturnal migratory restlessness. Since the avian magnetic compass does not seem to be restricted to the migratory phase, this seasonal variation makes a role of eCry1b in magnetoreception rather unlikely. Rather, it could be involved in physiological processes controlling migratory restlessness and thus enabling birds to perform their nocturnal flights.
Collapse
Affiliation(s)
- Christine Nießner
- Fachbereich Biowissenschaften der Goethe-Universität Frankfurt, Max-von-Laue-Str. 13, D-60438, Frankfurt am Main, Germany
| | - Julia Christina Gross
- Fachbereich Biowissenschaften der Goethe-Universität Frankfurt, Max-von-Laue-Str. 13, D-60438, Frankfurt am Main, Germany.,Haematology and Oncology and Developmental Biochemistry, University Medicine Göttingen, Justus-von-Liebig Weg 11, 37077, Göttingen, Germany
| | - Susanne Denzau
- Fachbereich Biowissenschaften der Goethe-Universität Frankfurt, Max-von-Laue-Str. 13, D-60438, Frankfurt am Main, Germany
| | - Leo Peichl
- Max Planck Institute for Brain Research, Max-von-Laue-Str. 4, D-60438, Frankfurt am Main, Germany
| | - Gerta Fleissner
- Fachbereich Biowissenschaften der Goethe-Universität Frankfurt, Max-von-Laue-Str. 13, D-60438, Frankfurt am Main, Germany
| | - Wolfgang Wiltschko
- Fachbereich Biowissenschaften der Goethe-Universität Frankfurt, Max-von-Laue-Str. 13, D-60438, Frankfurt am Main, Germany
| | - Roswitha Wiltschko
- Fachbereich Biowissenschaften der Goethe-Universität Frankfurt, Max-von-Laue-Str. 13, D-60438, Frankfurt am Main, Germany
| |
Collapse
|