1
|
Discovery of the Role of Tick Salivary Glands in Enhancement of Virus Transmission-Beginning of an Exciting Story. Pathogens 2023; 12:pathogens12020334. [PMID: 36839606 PMCID: PMC9962428 DOI: 10.3390/pathogens12020334] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
There is increasing evidence that arthropod-borne pathogens exploit saliva of their vectors during the transmission process to vertebrate hosts. Extensive research of the composition of tick saliva and its role in blood-feeding and transmission of pathogens started in the late 1980s and led to a number of discoveries on the composition and function of salivary molecules, some of which are associated with pathogen transmission. The study by Jones et al. published in 1989 can be ranked among the pioneer works in this field as it demonstrated for the first time the role of tick salivary glands in enhancement of transmission of a tick-borne virus. Thogoto virus was used in the model and subsequently similar results were obtained for tick-borne encephalitis virus. After a relatively silent period of almost 20 years, interest in tick-arbovirus-host interactions emerged again in the 2010s. However, no particular salivary molecule(s) enhancing virus transmission has (have) been identified to date. Intensive research in this field will certainly lead to new discoveries with future implications in the control of transmission of dangerous tick-borne viruses.
Collapse
|
2
|
Filatov S, Dyčka F, Sterba J, Rego RO. A simple non-invasive method to collect soft tick saliva reveals differences in Ornithodoros moubata saliva composition between ticks infected and uninfected with Borrelia duttonii spirochetes. Front Cell Infect Microbiol 2023; 13:1112952. [PMID: 36743301 PMCID: PMC9895398 DOI: 10.3389/fcimb.2023.1112952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
Introduction: We developed a new simple method to assess the composition of proteinaceous components in the saliva of Ornithodoros moubata, the main vehicle for pathogen transmission and a likely source of bioactive molecules acting at the tick-vertebrate host interface. To collect naturally expectorated saliva from the ticks we employed an artificial membrane feeding technique using a simple, chemically defined diet containing phagostimulants and submitted native saliva samples collected in this way for liquid chromatography-mass spectrometry (LC-MS) analysis. These experiments were conducted with groups of uninfected ticks as well as with O. moubata infected with B. duttonii. The ticks exhibited a fair feeding response to the tested diet with engorgement rates reaching as high as 60-100% of ticks per feeding chamber. The LC-MS analysis identified a total of 17 and 15 proteins in saliva samples from the uninfected and infected O. moubata nymphs, respectively. Importantly, the analysis was sensitive enough to detect up to 9 different proteins in the samples of saliva containing diet upon which as few as 6 nymphal ticks fed during the experiments. Some of the proteins recognized in the analysis are well known for their immunomodulatory activity in a vertebrate host, whereas others are primarily thought of as structural or "housekeeping" proteins and their finding in the naturally expectorated tick saliva confirms that they can be secreted and might serve some functions at the tick-host interface. Most notably, some of the proteins that have long been suspected for their importance in the vector-pathogen interactions of Borrelia spirochetes were detected only in the samples from infected ticks, suggesting that their expression was altered by the persistent colonization of the tick's salivary glands by spirochetes. The simple method described herein is an important addition to the toolbox available to study the vector-host-pathogen interactions in the rapidly feeding soft ticks.
Collapse
Affiliation(s)
- Serhii Filatov
- National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine", Kharkiv, Ukraine,*Correspondence: Serhii Filatov, ; Ryan O.M. Rego,
| | - Filip Dyčka
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Jan Sterba
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia
| | - Ryan O.M. Rego
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czechia,Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia,*Correspondence: Serhii Filatov, ; Ryan O.M. Rego,
| |
Collapse
|
3
|
Lv T, Xie X, Song N, Zhang S, Ding Y, Liu K, Diao L, Chen X, Jiang S, Li T, Zhang W, Cao Y. Expounding the role of tick in Africa swine fever virus transmission and seeking effective prevention measures: A review. Front Immunol 2022; 13:1093599. [PMID: 36591310 PMCID: PMC9800779 DOI: 10.3389/fimmu.2022.1093599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
African swine fever (ASF), a highly contagious, deadly infectious disease, has caused huge economic losses to animal husbandry with a 100% mortality rate of the most acute and acute infection, which is listed as a legally reported animal disease by the World Organization for Animal Health (OIE). African swine fever virus (ASFV) is the causative agent of ASF, which is the only member of the Asfarviridae family. Ornithodoros soft ticks play an important role in ASFV transmission by active biological or mechanical transmission or by passive transport or ingestion, particularly in Africa, Europe, and the United States. First, this review summarized recent reports on (1) tick species capable of transmitting ASFV, (2) the importance of ticks in the transmission and epidemiological cycle of ASFV, and (3) the ASFV strains of tick transmission, to provide a detailed description of tick-borne ASFV. Second, the dynamics of tick infection with ASFV and the tick-induced immune suppression were further elaborated to explain how ticks spread ASFV. Third, the development of the anti-tick vaccine was summarized, and the prospect of the anti-tick vaccine was recapitulated. Then, the marked attenuated vaccine, ASFV-G-ΔI177L, was compared with those of the anti-tick vaccine to represent potential therapeutic or strategies to combat ASF.
Collapse
Affiliation(s)
- Tianbao Lv
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xufeng Xie
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ning Song
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shilei Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yue Ding
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Kun Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Luteng Diao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xi Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shuang Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Tiger Li
- Portsmouth Abbey School, Portsmouth, RI, United States
| | - Wenlong Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China,Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China,*Correspondence: Yongguo Cao, ; Wenlong Zhang,
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, China,Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China,*Correspondence: Yongguo Cao, ; Wenlong Zhang,
| |
Collapse
|
4
|
Systematic review of animal-based indicators to measure thermal, social, and immune-related stress in pigs. PLoS One 2022; 17:e0266524. [PMID: 35511825 PMCID: PMC9070874 DOI: 10.1371/journal.pone.0266524] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 03/22/2022] [Indexed: 11/19/2022] Open
Abstract
The intense nature of pig production has increased the animals’ exposure to stressful conditions, which may be detrimental to their welfare and productivity. Some of the most common sources of stress in pigs are extreme thermal conditions (thermal stress), density and mixing during housing (social stress), or exposure to pathogens and other microorganisms that may challenge their immune system (immune-related stress). The stress response can be monitored based on the animals’ coping mechanisms, as a result of specific environmental, social, and health conditions. These animal-based indicators may support decision making to maintain animal welfare and productivity. The present study aimed to systematically review animal-based indicators of social, thermal, and immune-related stresses in farmed pigs, and the methods used to monitor them. Peer-reviewed scientific literature related to pig production was collected using three online search engines: ScienceDirect, Scopus, and PubMed. The manuscripts selected were grouped based on the indicators measured during the study. According to our results, body temperature measured with a rectal thermometer was the most commonly utilized method for the evaluation of thermal stress in pigs (87.62%), as described in 144 studies. Of the 197 studies that evaluated social stress, aggressive behavior was the most frequently-used indicator (81.81%). Of the 535 publications examined regarding immune-related stress, cytokine concentration in blood samples was the most widely used indicator (80.1%). Information about the methods used to measure animal-based indicators is discussed in terms of validity, reliability, and feasibility. Additionally, the introduction and wide spreading of alternative, less invasive methods with which to measure animal-based indicators, such as cortisol in saliva, skin temperature and respiratory rate via infrared thermography, and various animal welfare threats via vocalization analysis are highlighted. The information reviewed was used to discuss the feasible and most reliable methods with which to monitor the impact of relevant stressors commonly presented by intense production systems on the welfare of farmed pigs.
Collapse
|
5
|
Rafiq N, Naseem M, Kakar A, Shirazi JH, Masood MI. A preliminary evaluation of tick cement-cone protein extract for a vaccine against Hyalomma infestation. IRANIAN JOURNAL OF VETERINARY RESEARCH 2022; 23:255-264. [PMID: 36425603 PMCID: PMC9681977 DOI: 10.22099/ijvr.2022.43366.6328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Vaccines have been widely exploited to prevent tick-borne infections in cattle. Most vaccines have faced failure in the field because of inconsistency in an immune response. It is presumed that the cement-cone proteins of ticks that participate in the acquisition of blood meal for ticks possess strong immune-stimulating properties and, hence, could be a useful candidate in vaccine development. AIMS We evaluated cement-cone proteins of tick Hyalomma anatolicum as a vaccine candidate against infestations of H. anatolicum and H. aegyptium in cattle. METHODS The cement-cone proteins were extracted from H. anatolicum to develop stage-reactive and immunogenic cross-reactive vaccine against the infestation of two species of ticks H. anatolicum and H. aegyptium. The immune response of the vaccine was tested against cement-cone proteins starved, partially fed, and richly fed ticks. RESULTS The findings of the present study demonstrated the cross-reactivity among the two species of ticks that belonged to the same genus (Hyalomma). The antigenic similarity between the two ticks species suggests that a common antigen may possibly be suitable for a vaccine against the two different species of ticks. The results have also indicated that the 23 kDa cement-cone protein of H. anatolicum and H. aegyptium may be responsible for the induction, or elicitation of immunogenic, common stage reactive, and cross-reactive host immune responses with consistent intensity throughout the life stages of ticks. CONCLUSION The vaccine based upon cement-cone proteins of ticks may be a useful deterrent against tick-borne infections in cattle in countries like Pakistan.
Collapse
Affiliation(s)
- N. Rafiq
- Department of Zoology, SBK Women University, Quetta-87300, Pakistan
| | - M. Naseem
- Department of Zoology, University of Balochistan, Quetta-87300, Pakistan
| | - A. Kakar
- Department of Zoology, University of Balochistan, Quetta-87300, Pakistan
| | - J. H. Shirazi
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur-63100, Pakistan
| | - M. I. Masood
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences Lahore-54000, Pakistan, and Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Saarbrücken, D-66123, Germany, and Working Group Enteric Nervous System, University of Applied Sciences Kaiserslautern, Campus Zweibrücken, 66482, Germany
| |
Collapse
|
6
|
Chen L, Wen K, Chen FE, Trick AY, Liu H, Shao S, Yu W, Hsieh K, Wang Z, Shen J, Wang TH. Portable Magnetofluidic Device for Point-of-Need Detection of African Swine Fever. Anal Chem 2021; 93:10940-10946. [PMID: 34319068 DOI: 10.1021/acs.analchem.1c01814] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With a nearly 100% mortality rate, African swine fever (ASF) has devastated the pork industry in many countries. Without a vaccine in sight, mitigation rests on rapid diagnosis and immediately depopulating infected or exposed animals. Unfortunately, current tests require centralized laboratories with well-trained personnel, take days to report the results, and thus do not meet the need for such rapid diagnosis. In response, we developed a portable, sample-to-answer device that allows for ASF detection at the point of need in <30 min. The device employs droplet magnetofluidics to automate DNA purification from blood, tissue, or swab samples and utilizes fast thermal cycling to perform real-time quantitative polymerase chain reaction (qPCR), all within an inexpensive disposable cartridge. We evaluated its diagnostic performance at six farms and slaughter facilities. The device exhibits high diagnostic accuracy with a positive percent agreement of 92.2% and a negative percent agreement of 93.6% compared with a lab-based reference qPCR test.
Collapse
Affiliation(s)
- Liben Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kai Wen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Fan-En Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Alexander Y Trick
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Hebin Liu
- Beijing Mingrida Science & Technology Development Co., Ltd., Beijing 100095, China
| | - Shibei Shao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Wenbo Yu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Zhanhui Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jianzhong Shen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Tza-Huei Wang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for NanoBiotechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
7
|
Awosanya EJ, Olugasa BO, Gimba FI, Sabri MY, Ogundipe GA. Detection of African swine fever virus in pigs in Southwest Nigeria. Vet World 2021; 14:1840-1845. [PMID: 34475707 PMCID: PMC8404123 DOI: 10.14202/vetworld.2021.1840-1845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/08/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIM Nigeria experienced repeated outbreaks of African swine fever (ASF) in pig herds between 1997 and 2005 in the southwest region of the country. ASF is believed to currently be enzootic in this region. The status of enzootic transmission of ASF virus strain to pigs is; however, unknown. Twenty-three genotypes of the ASF virus based on the p72 gene are found across Africa. This study aimed to identify the current circulating field strain(s) of the ASF virus in Southwest Nigeria and characterized evolutionary trends. MATERIALS AND METHODS DNA samples were extracted from 144 pooled blood samples obtained from 2012 to 2013 following the manufacturer's instructions. DNA was used for conventional polymerase chain reaction using primers targeting the p72 gene and amplified products sequenced with Sanger's sequencing. Sequences were analyzed for homology and phylogenetic relationships. RESULTS Eleven of 144 samples (7.6%) showed bands at 950 bp. A new field strain of ASF virus of genotype I that shared ancestry with ASF virus strains or isolates from Spain and Brazil was identified among pig herds. The new strain differs phylogenetically in amino acid composition compared with previously identified ASF virus field strains. CONCLUSION The currently circulating field strain of ASF virus suggests a mutation responsible for decreased morbidity and mortality recorded in sporadic cases.
Collapse
Affiliation(s)
- Emmanuel Jolaoluwa Awosanya
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Babasola Oluseyi Olugasa
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Fufa Ido Gimba
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mohd Yusoff Sabri
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Gabriel Adetunji Ogundipe
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
8
|
Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Depner K, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortazar Schmidt C, Herskin M, Michel V, Miranda Chueca MÁ, Pasquali P, Roberts HC, Sihvonen LH, Spoolder H, Stahl K, Velarde A, Winckler C, Abrahantes JC, Dhollander S, Ivanciu C, Papanikolaou A, Van der Stede Y, Blome S, Guberti V, Loi F, More S, Olsevskis E, Thulke HH, Viltrop A. ASF Exit Strategy: Providing cumulative evidence of the absence of African swine fever virus circulation in wild boar populations using standard surveillance measures. EFSA J 2021; 19:e06419. [PMID: 33717352 PMCID: PMC7926520 DOI: 10.2903/j.efsa.2021.6419] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
EFSA assessed the role of seropositive wild boar in African swine fever (ASF) persistence. Surveillance data from Estonia and Latvia investigated with a generalised equation method demonstrated a significantly slower decline in seroprevalence in adult animals compared with subadults. The seroprevalence in adults, taking more than 24 months to approach zero after the last detection of ASFV circulation, would be a poor indicator to demonstrate the absence of virus circulation. A narrative literature review updated the knowledge on the mortality rate, the duration of protective immunity and maternal antibodies and transmission parameters. In addition, parameters potentially leading to prolonged virus circulation (persistence) in wild boar populations were reviewed. A stochastic explicit model was used to evaluate the dynamics of virus prevalence, seroprevalence and the number of carcasses attributed to ASF. Secondly, the impact of four scenarios on the duration of ASF virus (ASFV) persistence was evaluated with the model, namely a: (1) prolonged, lifelong infectious period, (2) reduction in the case-fatality rate and prolonged transient infectiousness; (3) change in duration of protective immunity and (4) change in the duration of protection from maternal antibodies. Only the lifelong infectious period scenario had an important prolonging effect on the persistence of ASF. Finally, the model tested the performance of different proposed surveillance strategies to provide evidence of the absence of virus circulation (Exit Strategy). A two-phase approach (Screening Phase, Confirmation Phase) was suggested for the Exit Strategy. The accuracy of the Exit Strategy increases with increasing numbers of carcasses collected and tested. The inclusion of active surveillance based on hunting has limited impact on the performance of the Exit Strategy compared with lengthening of the monitoring period. This performance improvement should be reasonably balanced against an unnecessary prolonged 'time free' with only a marginal gain in performance. Recommendations are provided for minimum monitoring periods leading to minimal failure rates of the Exit Strategy. The proposed Exit Strategy would fail with the presence of lifelong infectious wild boar. That said, it should be emphasised that the existence of such animals is speculative, based on current knowledge.
Collapse
|
9
|
Dendritic Cells as a Disputed Fortress on the Tick-Host Battlefield. Trends Parasitol 2020; 37:340-354. [PMID: 33303363 DOI: 10.1016/j.pt.2020.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/23/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022]
Abstract
From seminal publications in the early 1970s, the world learned that dendritic cells (DCs) are powerful and versatile antigen-presenting cells. It took a few years until the first studies expanded our understanding of the pivotal role of these immune 'soldiers' against ticks. Advances in biochemistry, molecular biology, and bioinformatics have shed light on the identification of key salivary molecules that modulate the biology of DCs in favor of tick parasitism. Here, we present a critical overview of the discoveries accumulated on the tick-host battlefield from a DC perspective. Moreover, the clinical significance of DC-targeted tick salivary components is discussed, not only as facilitators of the transmission of tick-borne pathogens or vaccine candidates, but also as potential immunobiologics to treat immune-mediated diseases.
Collapse
|
10
|
Vergne T, Andraud M, Bonnet S, De Regge N, Desquesnes M, Fite J, Etore F, Garigliany MM, Jori F, Lempereur L, Le Potier MF, Quillery E, Saegerman C, Vial L, Bouhsira E. Mechanical transmission of African swine fever virus by Stomoxys calcitrans: Insights from a mechanistic model. Transbound Emerg Dis 2020; 68:1541-1549. [PMID: 32910533 DOI: 10.1111/tbed.13824] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/18/2020] [Accepted: 09/03/2020] [Indexed: 11/30/2022]
Abstract
African swine fever (ASF) represents a global threat with huge economic consequences for the swine industry. Even though direct contact is likely to be the main transmission route from infected to susceptible hosts, recent epidemiological investigations have raised questions regarding the role of haematophagous arthropods, in particular the stable fly (Stomoxys calcitrans). In this study, we developed a mechanistic vector-borne transmission model for ASF virus (ASFV) within an outdoor domestic pig farm in order to assess the relative contribution of stable flies to the spread of the virus. The model was fitted to the ecology of the vector, its blood-feeding behaviour and pig-to-pig transmission dynamic. Model outputs suggested that in a context of low abundance (<5 flies per pig), stable flies would play a minor role in the spread of ASFV, as they are expected to be responsible for around 10% of transmission events. However, with abundances of 20 and 50 stable flies per pig, the vector-borne transmission would likely be responsible for almost 30% and 50% of transmission events, respectively. In these situations, time to reach a pig mortality of 10% would be reduced by around 26% and 40%, respectively. The sensitivity analysis emphasized that the expected relative contribution of stable flies was strongly dependent on the volume of blood they regurgitated and the infectious dose for pigs. This study identified crucial knowledge gaps that need to be filled in order to assess more precisely the potential contribution of stable flies to the spread of ASFV, including a quantitative description of the populations of haematophagous arthropods that could be found in pig farms, a better understanding of blood-feeding behaviours of stable flies and the quantification of the probability that stable flies partially fed with infectious blood transmit the virus to a susceptible pig during a subsequent blood-feeding attempt.
Collapse
Affiliation(s)
- Timothée Vergne
- UMR ENVT-INRAE IHAP, National Veterinary School of Toulouse, France
| | - Mathieu Andraud
- Unité d'Epidémiologie et de Bien-être Animal, Laboratoire de Ploufragan/Plouzané/Niort, Anses, France
| | - Sarah Bonnet
- UMR BIPAR, Animal Health Laboratory, INRAE, ANSES, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, Maisons-Alfort Cedex, France
| | - Nick De Regge
- Sciensano, Scientific Direction Infectious Diseases in Animals, Brussels, Belgium
| | - Marc Desquesnes
- InterTryp, University of Montpellier, CIRAD, IRD, Montpellier, France
| | - Johanna Fite
- French Agency for Food, Environmental and Occupational Health & Safety, Maisons-Alfort Cedex, France
| | - Florence Etore
- French Agency for Food, Environmental and Occupational Health & Safety, Maisons-Alfort Cedex, France
| | - Mutien-Marie Garigliany
- Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liège, Liège
| | - Ferran Jori
- UMR Animal, Santé, Territoires, Risque et Ecosystèmes (ASTRE), CIRAD-INRAE Montpellier, Montpellier, France
| | | | | | - Elsa Quillery
- UMR Animal, Santé, Territoires, Risque et Ecosystèmes (ASTRE), CIRAD-INRAE Montpellier, Montpellier, France
| | - Claude Saegerman
- Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liège, Liège
| | - Laurence Vial
- UMR Animal, Santé, Territoires, Risque et Ecosystèmes (ASTRE), CIRAD-INRAE Montpellier, Montpellier, France
| | - Emilie Bouhsira
- UMR ENVT-INRAE InTheRes, National Veterinary School of Toulouse, Toulouse, France
| |
Collapse
|
11
|
No Experimental Evidence of Co-Feeding Transmission of African Swine Fever Virus between Ornithodoros Soft Ticks. Pathogens 2020; 9:pathogens9030168. [PMID: 32121078 PMCID: PMC7157692 DOI: 10.3390/pathogens9030168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 11/18/2022] Open
Abstract
Ornithodoros soft ticks are the only known vector and reservoir of the African swine fever virus, a major lethal infectious disease of Suidae. The co-feeding event for virus transmission and maintenance among soft tick populations has been poorly documented. We infected Ornithodoros moubata, a known tick vector in Africa, with an African swine fever virus strain originated in Africa, to test its ability to infect O. moubata through co-feeding on domestic pigs. In our experimental conditions, tick-to-tick virus transmission through co-feeding failed, although pigs became infected through the infectious tick bite.
Collapse
|
12
|
Pereira de Oliveira R, Hutet E, Paboeuf F, Duhayon M, Boinas F, Perez de Leon A, Filatov S, Vial L, Le Potier MF. Comparative vector competence of the Afrotropical soft tick Ornithodoros moubata and Palearctic species, O. erraticus and O. verrucosus, for African swine fever virus strains circulating in Eurasia. PLoS One 2019; 14:e0225657. [PMID: 31774871 PMCID: PMC6881060 DOI: 10.1371/journal.pone.0225657] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/08/2019] [Indexed: 11/26/2022] Open
Abstract
African swine fever (ASF) is a lethal hemorrhagic disease in domestic pigs and wild suids caused by African swine fever virus (ASFV), which threatens the swine industry globally. In its native African enzootic foci, ASFV is naturally circulating between soft ticks of the genus Ornithodoros, especially in the O. moubata group, and wild reservoir suids, such as warthogs (Phacochoerus spp.) that are bitten by infected soft ticks inhabiting their burrows. While the ability of some Afrotropical soft ticks to transmit and maintain ASFV is well established, the vector status of Palearctic soft tick species for ASFV strains currently circulating in Eurasia remains largely unknown. For example, the Iberian soft tick O. erraticus is a known vector and reservoir of ASFV, but its ability to transmit different ASFV strains has not been assessed since ASF re-emerged in Europe in 2007. Little is known about vector competence for ASFV in other species, such as O. verrucosus, which occurs in southern parts of Eastern Europe, including Ukraine and parts of Russia, and in the Caucasus. Therefore, we conducted transmission trials with two Palearctic soft tick species, O. erraticus and O. verrucosus, and the Afrotropical species O. moubata. We tested the ability of ticks to transmit virulent ASFV strains, including one of direct African origin (Liv13/33), and three from Eurasia that had been involved in previous (OurT88/1), and the current epizooties (Georgia2007/1 and Ukr12/Zapo). Our experimental results showed that O. moubata was able to transmit the African and Eurasian ASFV strains, whereas O. erraticus and O. verrucosus failed to transmit the Eurasian ASFV strains. However, naïve pigs showed clinical signs of ASF when inoculated with homogenates of crushed O. erraticus and O. verrucosus ticks that fed on viraemic pigs, which proved the infectiousness of ASFV contained in the ticks. These results documented that O. erraticus and O. verrucosus are unlikely to be capable vectors of ASFV strains currently circulating in Eurasia. Additionally, the persistence of infection in soft ticks for several months reaffirms that the infectious status of a given tick species is only part of the data required to assess its vector competence for ASFV.
Collapse
Affiliation(s)
- Rémi Pereira de Oliveira
- Swine Virology and Immunology Unit, Laboratoire de Ploufragan-Plouzané-Niort, Agence Nationale de Sécurité Sanitaire (ANSES), Ploufragan, France
- UMR ASTRE Animal Santé, Territoires, Risques et Ecosystèmes, Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Montpellier, France
- University of Montpellier, Montpellier, France
| | - Evelyne Hutet
- Swine Virology and Immunology Unit, Laboratoire de Ploufragan-Plouzané-Niort, Agence Nationale de Sécurité Sanitaire (ANSES), Ploufragan, France
| | - Frédéric Paboeuf
- Swine Virology and Immunology Unit, Laboratoire de Ploufragan-Plouzané-Niort, Agence Nationale de Sécurité Sanitaire (ANSES), Ploufragan, France
| | - Maxime Duhayon
- UMR ASTRE Animal Santé, Territoires, Risques et Ecosystèmes, Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Montpellier, France
| | - Fernando Boinas
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| | - Adalberto Perez de Leon
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, USDA-ARS, Kerrville, Texas, United States of America
| | - Serhii Filatov
- National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, NSC IECVM), Kharkiv, Ukraine
| | - Laurence Vial
- UMR ASTRE Animal Santé, Territoires, Risques et Ecosystèmes, Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Montpellier, France
- University of Montpellier, Montpellier, France
| | - Marie-Frédérique Le Potier
- Swine Virology and Immunology Unit, Laboratoire de Ploufragan-Plouzané-Niort, Agence Nationale de Sécurité Sanitaire (ANSES), Ploufragan, France
- * E-mail:
| |
Collapse
|
13
|
Kazimírová M, Thangamani S, Bartíková P, Hermance M, Holíková V, Štibrániová I, Nuttall PA. Tick-Borne Viruses and Biological Processes at the Tick-Host-Virus Interface. Front Cell Infect Microbiol 2017; 7:339. [PMID: 28798904 PMCID: PMC5526847 DOI: 10.3389/fcimb.2017.00339] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/11/2017] [Indexed: 01/08/2023] Open
Abstract
Ticks are efficient vectors of arboviruses, although less than 10% of tick species are known to be virus vectors. Most tick-borne viruses (TBV) are RNA viruses some of which cause serious diseases in humans and animals world-wide. Several TBV impacting human or domesticated animal health have been found to emerge or re-emerge recently. In order to survive in nature, TBV must infect and replicate in both vertebrate and tick cells, representing very different physiological environments. Information on molecular mechanisms that allow TBV to switch between infecting and replicating in tick and vertebrate cells is scarce. In general, ticks succeed in completing their blood meal thanks to a plethora of biologically active molecules in their saliva that counteract and modulate different arms of the host defense responses (haemostasis, inflammation, innate and acquired immunity, and wound healing). The transmission of TBV occurs primarily during tick feeding and is a complex process, known to be promoted by tick saliva constituents. However, the underlying molecular mechanisms of TBV transmission are poorly understood. Immunomodulatory properties of tick saliva helping overcome the first line of defense to injury and early interactions at the tick-host skin interface appear to be essential in successful TBV transmission and infection of susceptible vertebrate hosts. The local host skin site of tick attachment, modulated by tick saliva, is an important focus of virus replication. Immunomodulation of the tick attachment site also promotes co-feeding transmission of viruses from infected to non-infected ticks in the absence of host viraemia (non-viraemic transmission). Future research should be aimed at identification of the key tick salivary molecules promoting virus transmission, and a molecular description of tick-host-virus interactions and of tick-mediated skin immunomodulation. Such insights will enable the rationale design of anti-tick vaccines that protect against disease caused by tick-borne viruses.
Collapse
Affiliation(s)
- Mária Kazimírová
- Department of Medical Zoology, Institute of Zoology, Slovak Academy of SciencesBratislava, Slovakia
| | - Saravanan Thangamani
- Department of Pathology, University of Texas Medical BranchGalveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical BranchGalveston, TX, United States
- Center for Tropical Diseases, University of Texas Medical BranchGalveston, TX, United States
| | - Pavlína Bartíková
- Biomedical Research Center, Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
| | - Meghan Hermance
- Department of Pathology, University of Texas Medical BranchGalveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical BranchGalveston, TX, United States
- Center for Tropical Diseases, University of Texas Medical BranchGalveston, TX, United States
| | - Viera Holíková
- Biomedical Research Center, Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
| | - Iveta Štibrániová
- Biomedical Research Center, Institute of Virology, Slovak Academy of SciencesBratislava, Slovakia
| | - Patricia A. Nuttall
- Department of Zoology, University of OxfordOxford, United Kingdom
- Centre for Ecology and HydrologyWallingford, United Kingdom
| |
Collapse
|
14
|
Mansfield KL, Jizhou L, Phipps LP, Johnson N. Emerging Tick-Borne Viruses in the Twenty-First Century. Front Cell Infect Microbiol 2017; 7:298. [PMID: 28744449 PMCID: PMC5504652 DOI: 10.3389/fcimb.2017.00298] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/19/2017] [Indexed: 12/18/2022] Open
Abstract
Ticks, as a group, are second only to mosquitoes as vectors of pathogens to humans and are the primary vector for pathogens of livestock, companion animals, and wildlife. The role of ticks in the transmission of viruses has been known for over 100 years and yet new pathogenic viruses are still being detected and known viruses are continually spreading to new geographic locations. Partly as a result of their novelty, tick-virus interactions are at an early stage in understanding. For some viruses, even the principal tick-vector is not known. It is likely that tick-borne viruses will continue to emerge and challenge public and veterinary health long into the twenty-first century. However, studies focusing on tick saliva, a critical component of tick feeding, virus transmission, and a target for control of ticks and tick-borne diseases, point toward solutions to emerging viruses. The aim of this review is to describe some currently emerging tick-borne diseases, their causative viruses, and to discuss research on virus-tick interactions. Through focus on this area, future protein targets for intervention and vaccine development may be identified.
Collapse
Affiliation(s)
- Karen L Mansfield
- Animal and Plant Health AgencyAddlestone, United Kingdom.,Institute of Infection and Global Health, University of LiverpoolLiverpool, United Kingdom
| | - Lv Jizhou
- Animal and Plant Health AgencyAddlestone, United Kingdom.,Chinese Academy of Inspection and QuarantineBeijing, China
| | - L Paul Phipps
- Animal and Plant Health AgencyAddlestone, United Kingdom
| | - Nicholas Johnson
- Animal and Plant Health AgencyAddlestone, United Kingdom.,Faculty of Health and Medicine, University of SurreyGuildford, United Kingdom
| |
Collapse
|
15
|
Šimo L, Kazimirova M, Richardson J, Bonnet SI. The Essential Role of Tick Salivary Glands and Saliva in Tick Feeding and Pathogen Transmission. Front Cell Infect Microbiol 2017; 7:281. [PMID: 28690983 PMCID: PMC5479950 DOI: 10.3389/fcimb.2017.00281] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/08/2017] [Indexed: 12/30/2022] Open
Abstract
As long-term pool feeders, ticks have developed myriad strategies to remain discreetly but solidly attached to their hosts for the duration of their blood meal. The critical biological material that dampens host defenses and facilitates the flow of blood-thus assuring adequate feeding-is tick saliva. Saliva exhibits cytolytic, vasodilator, anticoagulant, anti-inflammatory, and immunosuppressive activity. This essential fluid is secreted by the salivary glands, which also mediate several other biological functions, including secretion of cement and hygroscopic components, as well as the watery component of blood as regards hard ticks. When salivary glands are invaded by tick-borne pathogens, pathogens may be transmitted via saliva, which is injected alternately with blood uptake during the tick bite. Both salivary glands and saliva thus play a key role in transmission of pathogenic microorganisms to vertebrate hosts. During their long co-evolution with ticks and vertebrate hosts, microorganisms have indeed developed various strategies to exploit tick salivary molecules to ensure both acquisition by ticks and transmission, local infection and systemic dissemination within the vertebrate host.
Collapse
Affiliation(s)
- Ladislav Šimo
- UMR BIPAR, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-EstMaisons-Alfort, France
| | - Maria Kazimirova
- Institute of Zoology, Slovak Academy of SciencesBratislava, Slovakia
| | - Jennifer Richardson
- UMR Virologie, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-EstMaisons-Alfort, France
| | - Sarah I. Bonnet
- UMR BIPAR, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-EstMaisons-Alfort, France
| |
Collapse
|