1
|
Huhtala L, Karabiyik G, Rautajoki KJ. Development and epigenetic regulation of Atypical teratoid/rhabdoid tumors in the context of cell-of-origin and halted cell differentiation. Neurooncol Adv 2024; 6:vdae162. [PMID: 39465218 PMCID: PMC11502914 DOI: 10.1093/noajnl/vdae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Atypical teratoid/rhabdoid tumors (AT/RTs) are aggressive brain tumors primarily observed in infants. The only characteristic, recurrent genetic aberration of AT/RTs is biallelic inactivation of SMARCB1 (or SMARCA4). These genes are members of the mSWI/SNF chromatin-remodeling complex, which regulates various developmental processes, including neural differentiation. This review explores AT/RT subgroups regarding their distinct SMARCB1 loss-of-function mechanisms, molecular features, and patient characteristics. Additionally, it addresses the ongoing debate about the oncogenic relevance of cell-of-origin, examining the influence of developmental stage and lineage commitment of the seeding cell on tumor malignancy and other characteristics. Epigenetic dysregulation, particularly through the regulation of histone modifications and DNA hypermethylation, has been shown to play an integral role in AT/RTs' malignancy and differentiation blockage, maintaining cells in a poorly differentiated state via the insufficient activation of differentiation-related genes. Here, the differentiation blockage and its contribution to malignancy are also explored in a cellular context. Understanding these mechanisms and AT/RT heterogeneity is crucial for therapeutic improvements against AT/RTs.
Collapse
Affiliation(s)
- Laura Huhtala
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Goktug Karabiyik
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Kirsi J Rautajoki
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
2
|
Liu H, Cheng J, Zhuang X, Qi B, Li F, Zhang B. Genomic instability and eye diseases. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2023; 3:103-111. [PMID: 37846358 PMCID: PMC10577848 DOI: 10.1016/j.aopr.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 10/18/2023]
Abstract
Background Genetic information is stored in the bases of double-stranded DNA. However, the integrity of DNA molecules is constantly threatened by various mutagenic agents, including pollutants, ultraviolet light (UV), and medications. To counteract these environmental damages, cells have established multiple mechanisms, such as producing molecules to identify and eliminate damaged DNA, as well as reconstruct the original DNA structures. Failure or insufficiency of these mechanisms can cause genetic instability. However, the role of genome stability in eye diseases is still under-researched, despite extensive study in cancer biology. Main text As the eye is directly exposed to the external environment, the genetic materials of ocular cells are constantly under threat. Some of the proteins essential for DNA damage repair, such as pRb, p53, and RAD21, are also key during the ocular disease development. In this review, we discuss five ocular diseases that are associated with genomic instability. Retinoblastoma and pterygium are linked to abnormal cell cycles. Fuchs' corneal endothelial dystrophy and age-related macular degeneration are related to the accumulation of DNA damage caused by oxidative damage and UV. The mutation of the subunit of the cohesin complex during eye development is linked to sclerocornea. Conclusions Failure of DNA damage detection or repair leads to increased genomic instability. Deciphering the role of genomic instability in ocular diseases can lead to the development of new treatments and strategies, such as protecting vulnerable cells from risk factors or intensifying damage to unwanted cells.
Collapse
Affiliation(s)
- Hongyan Liu
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Qingdao, China
| | - Jun Cheng
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, China
| | - Xiaoyun Zhuang
- School of Ophthalmology, Shandong First Medical University, Qingdao, China
- Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, China
- Department of Ophthalmology, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Benxiang Qi
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, China
| | - Fenfen Li
- The Eye Hospital of Wenzhou Medical University, Hangzhou, China
| | - Bining Zhang
- Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
- School of Ophthalmology, Shandong First Medical University, Qingdao, China
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, China
| |
Collapse
|
3
|
Zage PE, Huo Y, Subramonian D, Le Clorennec C, Ghosh P, Sahoo D. Identification of a novel gene signature for neuroblastoma differentiation using a Boolean implication network. Genes Chromosomes Cancer 2023; 62:313-331. [PMID: 36680522 PMCID: PMC10257350 DOI: 10.1002/gcc.23124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Although induction of differentiation represents an effective strategy for neuroblastoma treatment, the mechanisms underlying neuroblastoma differentiation are poorly understood. We generated a computational model of neuroblastoma differentiation consisting of interconnected gene clusters identified based on symmetric and asymmetric gene expression relationships. We identified a differentiation signature consisting of series of gene clusters comprised of 1251 independent genes that predicted neuroblastoma differentiation in independent datasets and in neuroblastoma cell lines treated with agents known to induce differentiation. This differentiation signature was associated with patient outcomes in multiple independent patient cohorts and validated the role of MYCN expression as a marker of neuroblastoma differentiation. Our results further identified novel genes associated with MYCN via asymmetric Boolean implication relationships that would not have been identified using symmetric computational approaches and that were associated with both neuroblastoma differentiation and patient outcomes. Our differentiation signature included a cluster of genes involved in intracellular signaling and growth factor receptor trafficking pathways that is strongly associated with neuroblastoma differentiation, and we validated the associations of UBE4B, a gene within this cluster, with neuroblastoma cell and tumor differentiation. Our findings demonstrate that Boolean network analyses of symmetric and asymmetric gene expression relationships can identify novel genes and pathways relevant for neuroblastoma tumor differentiation that could represent potential therapeutic targets.
Collapse
Affiliation(s)
- Peter E. Zage
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego (UCSD), La Jolla, CA
| | - Yuchen Huo
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego (UCSD), La Jolla, CA
| | - Divya Subramonian
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego (UCSD), La Jolla, CA
| | - Christophe Le Clorennec
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego (UCSD), La Jolla, CA
| | - Pradipta Ghosh
- Department of Medicine, UCSD, La Jolla, CA
- Department of Cellular and Molecular Medicine, UCSD, La Jolla, CA
- Veterans Affairs Medical Center, La Jolla, CA
| | - Debashis Sahoo
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego (UCSD), La Jolla, CA
- Department of Computer Science and Engineering, Jacobs School of Engineering, UCSD, La Jolla, CA
| |
Collapse
|
4
|
Dynamic network biomarker factors orchestrate cell-fate determination at tipping points during hESC differentiation. Innovation (N Y) 2022; 4:100364. [PMID: 36632190 PMCID: PMC9827382 DOI: 10.1016/j.xinn.2022.100364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The generation of ectoderm, mesoderm, and endoderm layers is the most critical biological process during the gastrulation of embryo development. Such a differentiation process in human embryonic stem cells (hESCs) is an inherently nonlinear multi-stage dynamical process which contain multiple tipping points playing crucial roles in the cell-fate decision. However, the tipping points of the process are largely unknown, letting alone the understanding of the molecular regulation on these critical events. Here by designing a module-based dynamic network biomarker (M-DNB) model, we quantitatively pinpointed two tipping points of the differentiation of hESCs toward definitive endoderm, which leads to the identification of M-DNB factors (FOS, HSF1, MYCN, TP53, and MYC) of this process. We demonstrate that before the tipping points, M-DNB factors are able to maintain the cell states and orchestrate cell-fate determination during hESC (ES)-to-ME and ME-to-DE differentiation processes, which not only leads to better understanding of endodermal specification of hESCs but also reveals the power of the M-DNB model to identify critical transition points with their key factors in diverse biological processes, including cell differentiation and transdifferentiation dynamics.
Collapse
|
5
|
Analysis of Asymmetric Cell Division Using Human Neuroblastoma Cell Lines as a Model System. Symmetry (Basel) 2021. [DOI: 10.3390/sym13101907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Neuroblastoma is one of the most common childhood solid tumors and develops from neural stem cells that normally comprise the embryonic structure termed the neural crest. Human neuroblastoma cell lines have special properties as they exhibit cell growth and are induced to become mature neurons by drugs such as retinoid. Therefore, we examined asymmetric cell division (ACD) using human neuroblastoma cells as an ACD model, and confirmed that ACD in human cancer cells is evolutionally conserved. Furthermore, we demonstrated that MYCN is involved in cell division fate. We introduce the brief history of ACD study using neuroblastoma cell lines and discuss why human neuroblastoma cells are an ideal model system for clarifying the mechanism of ACD.
Collapse
|
6
|
Farina AR, Cappabianca LA, Zelli V, Sebastiano M, Mackay AR. Mechanisms involved in selecting and maintaining neuroblastoma cancer stem cell populations, and perspectives for therapeutic targeting. World J Stem Cells 2021; 13:685-736. [PMID: 34367474 PMCID: PMC8316860 DOI: 10.4252/wjsc.v13.i7.685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/09/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Pediatric neuroblastomas (NBs) are heterogeneous, aggressive, therapy-resistant embryonal tumours that originate from cells of neural crest (NC) origin and in particular neuroblasts committed to the sympathoadrenal progenitor cell lineage. Therapeutic resistance, post-therapeutic relapse and subsequent metastatic NB progression are driven primarily by cancer stem cell (CSC)-like subpopulations, which through their self-renewing capacity, intermittent and slow cell cycles, drug-resistant and reversibly adaptive plastic phenotypes, represent the most important obstacle to improving therapeutic outcomes in unfavourable NBs. In this review, dedicated to NB CSCs and the prospects for their therapeutic eradication, we initiate with brief descriptions of the unique transient vertebrate embryonic NC structure and salient molecular protagonists involved NC induction, specification, epithelial to mesenchymal transition and migratory behaviour, in order to familiarise the reader with the embryonic cellular and molecular origins and background to NB. We follow this by introducing NB and the potential NC-derived stem/progenitor cell origins of NBs, before providing a comprehensive review of the salient molecules, signalling pathways, mechanisms, tumour microenvironmental and therapeutic conditions involved in promoting, selecting and maintaining NB CSC subpopulations, and that underpin their therapy-resistant, self-renewing metastatic behaviour. Finally, we review potential therapeutic strategies and future prospects for targeting and eradication of these bastions of NB therapeutic resistance, post-therapeutic relapse and metastatic progression.
Collapse
Affiliation(s)
- Antonietta Rosella Farina
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Lucia Annamaria Cappabianca
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Veronica Zelli
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Michela Sebastiano
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy
| | - Andrew Reay Mackay
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, L'Aquila 67100, AQ, Italy.
| |
Collapse
|
7
|
Schmitt-Hoffner F, van Rijn S, Toprak UH, Mauermann M, Rosemann F, Heit-Mondrzyk A, Hübner JM, Camgöz A, Hartlieb S, Pfister SM, Henrich KO, Westermann F, Kool M. FOXR2 Stabilizes MYCN Protein and Identifies Non- MYCN-Amplified Neuroblastoma Patients With Unfavorable Outcome. J Clin Oncol 2021; 39:3217-3228. [PMID: 34110923 PMCID: PMC8500564 DOI: 10.1200/jco.20.02540] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clinical outcomes of patients with neuroblastoma range from spontaneous tumor regression to fatality. Hence, understanding the mechanisms that cause tumor progression is crucial for the treatment of patients. In this study, we show that FOXR2 activation identifies a subset of neuroblastoma tumors with unfavorable outcome and we investigate the mechanism how FOXR2 relates to poor outcome in patients.
Collapse
Affiliation(s)
- Felix Schmitt-Hoffner
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Sjoerd van Rijn
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Umut H Toprak
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Monika Mauermann
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Felix Rosemann
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Anke Heit-Mondrzyk
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Jens-Martin Hübner
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Aylin Camgöz
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Sabine Hartlieb
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan M Pfister
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Kai-Oliver Henrich
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Westermann
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marcel Kool
- Hopp-Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| |
Collapse
|
8
|
Sarma A, Gajan A, Kim S, Gurdziel K, Mao G, Nangia-Makker P, Shekhar MPV. RAD6B Loss Disrupts Expression of Melanoma Phenotype in Part by Inhibiting WNT/β-Catenin Signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:368-384. [PMID: 33181138 DOI: 10.1016/j.ajpath.2020.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/01/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022]
Abstract
Canonical Wnt signaling is critical for melanocyte lineage commitment and melanoma development. RAD6B, a ubiquitin-conjugating enzyme critical for translesion DNA synthesis, potentiates β-catenin stability/activity by inducing proteasome-insensitive polyubiquitination. RAD6B expression is induced by β-catenin, triggering a positive feedback loop between the two proteins. RAD6B function in melanoma development/progression was investigated by targeting RAD6B using CrispR/Cas9 or an RAD6-selective small-molecule inhibitor #9 (SMI#9). SMI#9 treatment inhibited melanoma cell proliferation but not normal melanocytes. RAD6B knockout or inhibition in metastatic melanoma cells downregulated β-catenin, β-catenin-regulated microphthalmia-associated transcription factor (MITF), sex-determining region Y-box 10, vimentin proteins, and MITF-regulated melan A. RAD6B knockout or inhibition decreased migration/invasion, tumor growth, and lung metastasis. RNA-sequencing and stem cell pathway real-time RT-PCR analysis revealed profound reductions in WNT1 expressions in RAD6B knockout M14 cells compared with control. Expression levels of β-catenin-regulated genes VIM, MITF-M, melan A, and TYRP1 (a tyrosinase family member critical for melanin biosynthesis) were reduced in RAD6B knockout cells. Pathway analysis identified gene networks regulating stem cell pluripotency, Wnt signaling, melanocyte development, pigmentation signaling, and protein ubiquitination, besides DNA damage response signaling, as being impacted by RAD6B gene disruption. These data reveal an important and early role for RAD6B in melanoma development besides its bonafide translesion DNA synthesis function, and suggest that targeting RAD6B may provide a novel strategy to treat melanomas with dysregulated canonical Wnt signaling.
Collapse
Affiliation(s)
- Ashapurna Sarma
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan; Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Ambikai Gajan
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan; Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Seongho Kim
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan; Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | | | - Guangzhao Mao
- Department of Chemical Engineering and Materials Science, Wayne State University College of Engineering, Detroit, Michigan
| | - Pratima Nangia-Makker
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan; Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Malathy P V Shekhar
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan; Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan; Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan.
| |
Collapse
|
9
|
Izumi H, Kaneko Y, Nakagawara A. The Role of MYCN in Symmetric vs. Asymmetric Cell Division of Human Neuroblastoma Cells. Front Oncol 2020; 10:570815. [PMID: 33194665 PMCID: PMC7609879 DOI: 10.3389/fonc.2020.570815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
Asymmetric cell division (ACD) is an important physiological event in the development of various organisms and maintenance of tissue homeostasis. ACD produces two different cells in a single cell division: a stem/progenitor cell and differentiated cell. Although the balance between self-renewal and differentiation is precisely controlled, disruptions to ACD and/or enhancements in the self-renewal division (symmetric cell division: SCD) of stem cells resulted in the formation of tumors in Drosophila neuroblasts. ACD is now regarded as one of the characteristics of human cancer stem cells, and is a driving force for cancer cell heterogeneity. We recently reported that MYCN controls the balance between SCD and ACD in human neuroblastoma cells. In this mini-review, we discuss the mechanisms underlying MYCN-mediated cell division fate.
Collapse
Affiliation(s)
- Hideki Izumi
- Laboratory of Molecular Medicine, Life Sciences Institute, Saga-Ken Medical Centre Koseikan, Saga, Japan
| | - Yasuhiko Kaneko
- Research Institute for Clinical Oncology, Saitama Cancer Center, Saitama, Japan
| | | |
Collapse
|
10
|
Sun X, Ren Z, Cun Y, Zhao C, Huang X, Zhou J, Hu R, Su X, Ji L, Li P, Mak K, Gao F, Yang Y, Xu H, Ding J, Cao N, Li S, Zhang W, Lan P, Sun H, Wang J, Yuan P. Hippo-YAP signaling controls lineage differentiation of mouse embryonic stem cells through modulating the formation of super-enhancers. Nucleic Acids Res 2020; 48:7182-7196. [PMID: 32510157 PMCID: PMC7367178 DOI: 10.1093/nar/gkaa482] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
Hippo-YAP signaling pathway functions in early lineage differentiation of pluripotent stem cells, but the detailed mechanisms remain elusive. We found that knockout (KO) of Mst1 and Mst2, two key components of the Hippo signaling in mouse embryonic stem cells (ESCs), resulted in a disruption of differentiation into mesendoderm lineage. To further uncover the underlying regulatory mechanisms, we performed a series of ChIP-seq experiments with antibodies against YAP, ESC master transcription factors and some characterized histone modification markers as well as RNA-seq assays using wild type and Mst KO samples at ES and day 4 embryoid body stage respectively. We demonstrate that YAP is preferentially co-localized with super-enhancer (SE) markers such as Nanog, Sox2, Oct4 and H3K27ac in ESCs. The hyper-activation of nuclear YAP in Mst KO ESCs facilitates the binding of Nanog, Sox2 and Oct4 as well as H3K27ac modification at the loci where YAP binds. Moreover, Mst depletion results in novel SE formation and enhanced liquid-liquid phase-separated Med1 condensates on lineage associated genes, leading to the upregulation of these genes and the distortion of ESC differentiation. Our study reveals a novel mechanism on how Hippo-YAP signaling pathway dictates ESC lineage differentiation.
Collapse
Affiliation(s)
| | | | - Yixian Cun
- Department of Medical Bioinformatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Cai Zhao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Xianglin Huang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiajian Zhou
- Dermatology Hospital, Southern Medical University, Guangzhou, China
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong
| | - Rong Hu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong
| | - Xiaoxi Su
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong
- China Hong Kong Children's Hospital, Hong Kong SAR
| | - Lu Ji
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong
| | - Peng Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - King Lun Kingston Mak
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou, China
| | - Feng Gao
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong 510655, China
| | - Yi Yang
- Department of Medical Bioinformatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - He Xu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Junjun Ding
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
- Department of Histology and embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Nan Cao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Shuo Li
- Department of Medical Bioinformatics, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510275, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510275, China
| | - Wensheng Zhang
- Cam-Su Genomic Resource Center, Soochow University, Suzhou 215123, China
| | - Ping Lan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hao Sun
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong
| | - Jinkai Wang
- Correspondence may also be addressed to Jinkai Wang. Tel: +86 2087335142; Fax: +86 2087331209;
| | - Ping Yuan
- To whom correspondence should be addressed. Tel: +86 18819239657; Fax: +86 2038254166;
| |
Collapse
|
11
|
Liu W, Wang K, Lv X, Wang Q, Li X, Yang Z, Liu X, Yan L, Fu X, Xiao R. Up-regulation of RNA Binding Proteins Contributes to Folate Deficiency-Induced Neural Crest Cells Dysfunction. Int J Biol Sci 2020; 16:85-98. [PMID: 31892848 PMCID: PMC6930370 DOI: 10.7150/ijbs.33976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 09/09/2019] [Indexed: 12/21/2022] Open
Abstract
Folate deficiency has long been associated with the abnormal development of the neural crest cells (NCCs) and neural tube defects (NTDs). RNA binding proteins (RBPs) also play important roles in the normal neural crest development and neural tube formation. Nevertheless, the causative mechanism by which folate status influences human NCCs development and the RBPs functions remains unknown. In this study, we differentiated H9 human embryonic stem cells into neural crest cells (H9-NCCs) and then constructed three folic acid (FA) deficiency (FAD) H9-NCCs models in vitro. Decreased viability, impaired migration and promoted apoptosis of H9-NCCs were observed in three FAD H9-NCCs models. In addition, we showed that three RBPs, namely, hnRNPC, LARP6 and RCAN2, were up-regulated both in the FAD H9-NCC models in vitro and in the FAD mouse model in vivo. Knocking down of these three RBPs increased the H9-NCC viability and RCAN2 knockdown further promoted H9-NCC migration under FAD conditions. In normal culture condition, overexpression of RCAN2 and HnRNPC did not affect viabilities and migration of H9-NCCs while overexpression of LARP6 reduced the H9-NCC viability. Our findings demonstrate important regulatory effects of RBPs underlying FAD-induced impaired function of NCCs.
Collapse
Affiliation(s)
- Wenbo Liu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144, People's Republic of China
| | - Kang Wang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144, People's Republic of China
| | - Xiaoyan Lv
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144, People's Republic of China
| | - Qian Wang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144, People's Republic of China
| | - Xiu Li
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144, People's Republic of China
| | - Zhigang Yang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144, People's Republic of China
| | - Xia Liu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144, People's Republic of China
| | - Li Yan
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144, People's Republic of China
| | - Xin Fu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144, People's Republic of China
| | - Ran Xiao
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Ba-Da-Chu Road, Beijing, 100144, People's Republic of China
| |
Collapse
|
12
|
Stage-dependent differential gene expression profiles of cranial neural crest-like cells derived from mouse-induced pluripotent stem cells. Med Mol Morphol 2019; 53:28-41. [PMID: 31297611 PMCID: PMC7033077 DOI: 10.1007/s00795-019-00229-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/26/2019] [Indexed: 12/13/2022]
Abstract
Cranial neural crest cells are multipotent cells that migrate into the pharyngeal arches of the vertebrate embryo and differentiate into various craniofacial organ derivatives. Therefore, migrating cranial neural crest cells are considered one of the most attractive candidate cell sources in regenerative medicine. We generated cranial neural crest like cell (cNCCs) using mouse-induced pluripotent stem cells cultured in neural crest-inducing medium for 14 days. Subsequently, we conducted RNA sequencing experiments to analyze gene expression profiles of cNCCs at different time points after induction. cNCCs expressed several neural crest specifier genes; however, some previously reported specifier genes such as paired box 3 and Forkhead box D3, which are essential for embryonic neural crest development, were not expressed. Moreover, ETS proto-oncogene 1, transcription factor and sex-determining region Y-box 10 were only expressed after 14 days of induction. Finally, cNCCs expressed multiple protocadherins and a disintegrin and metalloproteinase with thrombospondin motifs enzymes, which may be crucial for their migration.
Collapse
|
13
|
Zhu S, Liu W, Ding HF, Cui H, Yang L. BMP4 and Neuregulin regulate the direction of mouse neural crest cell differentiation. Exp Ther Med 2019; 17:3883-3890. [PMID: 31007733 PMCID: PMC6468403 DOI: 10.3892/etm.2019.7439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/09/2018] [Indexed: 12/29/2022] Open
Abstract
The neural crest is a transient embryonic tissue that initially generates neural crest stem cells, which then migrate throughout the body to give rise to a variety of mature tissues. It was proposed that the fate of neural crest cells is gradually determined via environmental cues from the surrounding tissues. In the present study, neural crest cells were isolated and identified from mouse embryos. Bone morphogenetic protein 4 (BMP4) and Neuregulin (NRG) were employed to induce the differentiation of neural crest cells. Treatment with BMP4 revealed neuron-associated differentiation; cells treated with NRG exhibited differentiation into the Schwann cell lineage, a type of glia. Soft agar clonogenic and neurosphere formation assays were conducted to investigate the effects of N-Myc (MYCN) overexpression in neural crest cells; the number of colonies and neurospheres notably increased after 14 days. These findings demonstrated that the direction of cell differentiation may be affected by altering the factors present in the surrounding environment. In addition, MYCN may serve a key role in regulating neural crest cell differentiation.
Collapse
Affiliation(s)
- Shunqin Zhu
- School of Life Sciences, Southwest University, Chongqing 400715, P.R. China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, P.R. China
| | - Wanhong Liu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, P.R. China
| | - Han-Fei Ding
- Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, P.R. China
| | - Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, P.R. China
| |
Collapse
|
14
|
Neural Transcription Factors in Disease Progression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1210:437-462. [PMID: 31900920 DOI: 10.1007/978-3-030-32656-2_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Progression to the malignant state is fundamentally dependent on transcriptional regulation in cancer cells. Optimum abundance of cell cycle proteins, angiogenesis factors, immune evasion markers, etc. is needed for proliferation, metastasis or resistance to treatment. Therefore, dysregulation of transcription factors can compromise the normal prostate transcriptional network and contribute to malignant disease progression.The androgen receptor (AR) is considered to be a key transcription factor in prostate cancer (PCa) development and progression. Consequently, androgen pathway inhibitors (APIs) are currently the mainstay in PCa treatment, especially in castration-resistant prostate cancer (CRPC). However, emerging evidence suggests that with increased administration of potent APIs, prostate cancer can progress to a highly aggressive disease that morphologically resembles small cell carcinoma, which is referred to as neuroendocrine prostate cancer (NEPC), treatment-induced or treatment-emergent small cell prostate cancer. This chapter will review how neuronal transcription factors play a part in inducing a plastic stage in prostate cancer cells that eventually progresses to a more aggressive state such as NEPC.
Collapse
|
15
|
Kholodenko IV, Kalinovsky DV, Doronin II, Deyev SM, Kholodenko RV. Neuroblastoma Origin and Therapeutic Targets for Immunotherapy. J Immunol Res 2018; 2018:7394268. [PMID: 30116755 PMCID: PMC6079467 DOI: 10.1155/2018/7394268] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/27/2018] [Indexed: 01/30/2023] Open
Abstract
Neuroblastoma is a pediatric solid cancer of heterogeneous clinical behavior. The unique features of this type of cancer frequently hamper the process of determining clinical presentation and predicting therapy effectiveness. The tumor can spontaneously regress without treatment or actively develop and give rise to metastases despite aggressive multimodal therapy. In recent years, immunotherapy has become one of the most promising approaches to the treatment of neuroblastoma. Still, only one drug for targeted immunotherapy of neuroblastoma, chimeric monoclonal GD2-specific antibodies, is used in the clinic today, and its application has significant limitations. In this regard, the development of effective and safe GD2-targeted immunotherapies and analysis of other potential molecular targets for the treatment of neuroblastoma represents an important and topical task. The review summarizes biological characteristics of the origin and development of neuroblastoma and outlines molecular markers of neuroblastoma and modern immunotherapy approaches directed towards these markers.
Collapse
Affiliation(s)
- Irina V. Kholodenko
- Orekhovich Institute of Biomedical Chemistry, 10 Pogodinskaya St., Moscow 119121, Russia
| | - Daniel V. Kalinovsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
| | - Igor I. Doronin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
- Real Target LLC, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
| | - Sergey M. Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
- Institute of Engineering Physics for Biomedicine (PhysBio), National Research Nuclear University “MEPhI”, Moscow 115409, Russia
| | - Roman V. Kholodenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
- Real Target LLC, 16/10 Miklukho-Maklaya St., Moscow 117997, Russia
| |
Collapse
|
16
|
Newman EA, Chukkapalli S, Bashllari D, Thomas TT, Van Noord RA, Lawlor ER, Hoenerhoff MJ, Opipari AW, Opipari VP. Alternative NHEJ pathway proteins as components of MYCN oncogenic activity in human neural crest stem cell differentiation: implications for neuroblastoma initiation. Cell Death Dis 2017; 8:3208. [PMID: 29238067 PMCID: PMC5870584 DOI: 10.1038/s41419-017-0004-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/14/2022]
Abstract
Neuroblastoma is a cancer of neural crest stem cell (NCSC) lineage. Signaling pathways that regulate NCSC differentiation have been implicated in neuroblastoma tumorigenesis. This is exemplified by MYCN oncogene targets that balance proliferation, differentiation, and cell death similarly in normal NCSC and in high-risk neuroblastoma. Our previous work discovered a survival mechanism by which MYCN-amplified neuroblastoma circumvents cell death by upregulating components of the error-prone non-canonical alternative nonhomologous end-joining (alt-NHEJ) DNA repair pathway. Similar to proliferating stem cells, high-risk neuroblastoma cells have enhanced DNA repair capacity, overcoming DNA damage with higher repair efficiency than somatic cells. Adequate DNA maintenance is required for lineage protection as stem cells proliferate and during tumor progression to overcome oncogene-induced replication stress. On this basis, we hypothesized that alt-NHEJ overexpression in neuroblastoma is a cancer cell survival mechanism that originates from DNA repair systems of NCSC, the presumed progenitor cell of origin. A human NCSC model was generated in which inducible MYCN triggered an immortalized phenotype capable of forming metastatic neuroectodermal tumors in mice, resembling human neuroblastoma. Critical alt-NHEJ components (DNA Ligase III, DNA Ligase I, and Poly [ADP-ribose polymerase 1]) were highly expressed in normal early NCSC, and decreased as cells became terminally differentiated. Constitutive MYCN expression maintained high alt-NHEJ protein expression, preserving the expression pattern of the immature neural phenotype. siRNA knockdown of alt-NHEJ components reversed MYCN effects on NCSC proliferation, invasion, and migration. DNA Ligase III, Ligase I, and PARP1 silencing significantly decreased neuroblastoma markers expression (TH, Phox2b, and TRKB). These results utilized the first human NCSC model of neuroblastoma to uncover an important link between MYCN and alt-NHEJ expression in developmental tumor initiation, setting precedence to investigate alt-NHEJ repair mechanics in neuroblastoma DNA maintenance.
Collapse
Affiliation(s)
- Erika A Newman
- Department of Surgery, C.S. Mott Children and Women's Hospital, Mott Solid Tumor Oncology Program, The University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Sahiti Chukkapalli
- Department of Surgery, C.S. Mott Children and Women's Hospital, Mott Solid Tumor Oncology Program, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Daniela Bashllari
- Department of Surgery, C.S. Mott Children and Women's Hospital, Mott Solid Tumor Oncology Program, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Tina T Thomas
- Department of Surgery, C.S. Mott Children and Women's Hospital, Mott Solid Tumor Oncology Program, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Raelene A Van Noord
- Department of Surgery, C.S. Mott Children and Women's Hospital, Mott Solid Tumor Oncology Program, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Elizabeth R Lawlor
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Pediatrics, C.S. Mott Children and Women's Hospital, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mark J Hoenerhoff
- In Vivo Animal Core (IVAC), The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Anthony W Opipari
- Department of Obstetrics and Gynecology, C.S. Mott Children and Women's Hospital, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Valerie P Opipari
- Department of Pediatrics, C.S. Mott Children and Women's Hospital, The University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
17
|
Abstract
Idiopathic infertility, an etiology not identified as part of standard clinical assessment, represents approximately 20% of all infertility cases. Current male infertility diagnosis focuses on the concentration, motility, and morphology of spermatozoa. This is of limited value when predicting birth success and of limited utility when selecting the optimum treatment. At fertilization, spermatozoa provide their genomic contribution, as well as a set of RNAs and proteins that have distinct roles in development. The potential of spermatozoal RNAs to be used as a prognostic of live birth has been shown [Jodar et al. (2015) Science Translational Medicine 7(295):295re6]. This relied on a set of 648 sperm RNA elements derived from 285 genes that are perhaps indicative of future health status. To address this tenet, the present study correlated the levels of each transcript among all samples to assess linkage between transcript absence, birth success, and possible disease association. Correlations between transcript levels of the 285 genes were analyzed amongst themselves, and within the context of the entire transcript population for these samples. The transcripts ACE, GIGYF2, and ODF2 had many negative correlations and form the majority of correlations, suggesting an important function for these transcripts. Eleven of the 285 queried genes had disease-associated variants within a sperm RNA element. Three genes, GPX4, NDRG1, and RPS24 had SREs were absent in at least one individual from the test cohort. GPX4 and RPS24 are associated with developmental defects and/or neonatal lethality. This leaves the intriguing possibility that, while sperm RNAs delivered to the oocyte inform the success of live birth, they may also be predictors of human health. ABBREVIATIONS GO: Gene Ontology; ART: assisted reproductive technology; IVF: in vitro fertilization; ICSI: intra-cytoplasmic sperm injection; RNA-seq: RNA-sequencing; TIC: timed intercourse; IUI: intrauterine insemination; SRE: sperm RNA elements; HPA: Human Protein Atlas; SMDS: sedaghatian-type spondylometaphyseal dysplasia; DBA: Diamond-Blackfan anemia; RPKM: reads per kilobase per million; TPM: transcripts per million; IPA: Ingenuity Pathway Analysis; OMIM: Online Mendelian Inheritance in Man.
Collapse
Affiliation(s)
- Rayanne B Burl
- a Center for Molecular Medicine and Genetics , Wayne State University School of Medicine
| | | | - Edward Sendler
- a Center for Molecular Medicine and Genetics , Wayne State University School of Medicine
| | - Molly Estill
- a Center for Molecular Medicine and Genetics , Wayne State University School of Medicine.,c Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Stephen A Krawetz
- a Center for Molecular Medicine and Genetics , Wayne State University School of Medicine.,c Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| |
Collapse
|
18
|
miR-541 Contributes to Microcystin-LR-Induced Reproductive Toxicity through Regulating the Expression of p15 in Mice. Toxins (Basel) 2016; 8:toxins8090260. [PMID: 27608041 PMCID: PMC5037486 DOI: 10.3390/toxins8090260] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 08/31/2016] [Indexed: 12/31/2022] Open
Abstract
Microcystin-leucine arginine (MC-LR) is a harmful cyanotoxin produced by cyanobacteria. MC-LR can exert endocrine-disrupting activities in many organisms. We have previously demonstrated that MC-LR exerts both acute and chronic reproductive toxicity in male mice, resulting in a decline in sperm quality and damage to testicular structure. Moreover, we also observed extensive alterations in a panel of microRNAs in spermatogonial cells after exposure to MC-LR. In this study, we have confirmed that miR-541 was significantly increased both in GC-1 cells (in vitro) and in mouse testes (in vivo) after exposure to MC-LR. Our data support that p15 was the target gene of miR-541. Increase in miR-541 led to a reduction of p15 and murine double minute2 (MDM2), promoting the activation of p53 signaling and MC-LR-mediated cell apoptosis. Moreover, cells responded to MC-LR with reduced viability and increased apoptosis. Consistently, inhibiting miR-541 could upregulate the expression of p15 and MDM2, resulting in the downregulation of phospho-p53. Downregulation of miR-541 promoted cell viability by reducing MC-LR-induced cell apoptosis. In conclusion, we demonstrate here a crucial role for miR-541 in MC-LR-induced toxic effects on the reproductive system, in an attempt to provide a rational strategy for the diagnosis and treatment of MC-LR-induced impairment in the reproductive system.
Collapse
|
19
|
Zhang JT, Weng Z, Tsang KS, Tsang LL, Chan HC, Jiang XH. Correction: MycN Is Critical for the Maintenance of Human Embryonic Stem Cell-Derived Neural Crest Stem Cells. PLoS One 2016; 11:e0154068. [PMID: 27077735 PMCID: PMC4831768 DOI: 10.1371/journal.pone.0154068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|