1
|
Duarte JMN. Challenges of Investigating Compartmentalized Brain Energy Metabolism Using Nuclear Magnetic Resonance Spectroscopy in vivo. Neurochem Res 2025; 50:73. [PMID: 39754627 DOI: 10.1007/s11064-024-04324-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/06/2025]
Abstract
Brain function requires continuous energy supply. Thus, unraveling brain metabolic regulation is critical not only for our basic understanding of overall brain function, but also for the cellular basis of functional neuroimaging techniques. While it is known that brain energy metabolism is exquisitely compartmentalized between astrocytes and neurons, the metabolic and neuro-energetic basis of brain activity is far from fully understood. 1H nuclear magnetic resonance (NMR) spectroscopy has been widely used to detect variations in metabolite levels, including glutamate and GABA, while 13C NMR spectroscopy has been employed to study metabolic compartmentation and to determine metabolic rates coupled brain activity, focusing mainly on the component corresponding to excitatory glutamatergic neurotransmission. The rates of oxidative metabolism in neurons and astrocytes are both associated with the rate of the glutamate-glutamine cycle between neurons and astrocytes. However, any possible correlation between energy metabolism pathways and the inhibitory GABAergic neurotransmission rate in the living brain remains to be experimentally demonstrated. That is due to low GABA levels, and the consequent challenge of determining GABAergic rates in a non-invasive manner. This brief review surveys the state-of-the-art analyses of energy metabolism in neurons and astrocytes contributing to glutamate and GABA synthesis using 13C NMR spectroscopy in vivo, and identifies limitations that need to be overcome in future studies.
Collapse
Affiliation(s)
- João M N Duarte
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
2
|
Godbersen GM, Klug S, Wadsak W, Pichler V, Raitanen J, Rieckmann A, Stiernman L, Cocchi L, Breakspear M, Hacker M, Lanzenberger R, Hahn A. Task-evoked metabolic demands of the posteromedial default mode network are shaped by dorsal attention and frontoparietal control networks. eLife 2023; 12:e84683. [PMID: 37226880 PMCID: PMC10229117 DOI: 10.7554/elife.84683] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/03/2023] [Indexed: 05/26/2023] Open
Abstract
External tasks evoke characteristic fMRI BOLD signal deactivations in the default mode network (DMN). However, for the corresponding metabolic glucose demands both decreases and increases have been reported. To resolve this discrepancy, functional PET/MRI data from 50 healthy subjects performing Tetris were combined with previously published data sets of working memory, visual and motor stimulation. We show that the glucose metabolism of the posteromedial DMN is dependent on the metabolic demands of the correspondingly engaged task-positive networks. Specifically, the dorsal attention and frontoparietal network shape the glucose metabolism of the posteromedial DMN in opposing directions. While tasks that mainly require an external focus of attention lead to a consistent downregulation of both metabolism and the BOLD signal in the posteromedial DMN, cognitive control during working memory requires a metabolically expensive BOLD suppression. This indicates that two types of BOLD deactivations with different oxygen-to-glucose index may occur in this region. We further speculate that consistent downregulation of the two signals is mediated by decreased glutamate signaling, while divergence may be subject to active GABAergic inhibition. The results demonstrate that the DMN relates to cognitive processing in a flexible manner and does not always act as a cohesive task-negative network in isolation.
Collapse
Affiliation(s)
- Godber M Godbersen
- Department of Psychiatry and Psychotherapy, Medical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of ViennaViennaAustria
| | - Sebastian Klug
- Department of Psychiatry and Psychotherapy, Medical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of ViennaViennaAustria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of ViennaViennaAustria
- Center for Biomarker Research in Medicine (CBmed)GrazAustria
| | - Verena Pichler
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of ViennaViennaAustria
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of ViennaViennaAustria
| | - Julia Raitanen
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of ViennaViennaAustria
- Ludwig Boltzmann Institute Applied DiagnosticsViennaAustria
- Department of Inorganic Chemistry, Faculty of Chemistry, University of ViennaViennaAustria
| | - Anna Rieckmann
- Department of Integrative Medical Biology, Umeå UniversityUmeåSweden
- Department of Radiation Sciences, Umeå UniversityUmeåSweden
- Umeå Center for Functional Brain Imaging, Umeå UniversityUmeåSweden
- The Munich Center for the Economics of Aging, Max Planck Institute for Social Law and Social PolicyMunichGermany
| | - Lars Stiernman
- Department of Integrative Medical Biology, Umeå UniversityUmeåSweden
- Umeå Center for Functional Brain Imaging, Umeå UniversityUmeåSweden
| | - Luca Cocchi
- Clinical Brain Networks Group, QIMR Berghofer Medical Research InstituteBrisbaneAustralia
- School of Biomedical Sciences, Faculty of Medicine, University of QueenslandBrisbaneAustralia
| | - Michael Breakspear
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of NewcastleCallaghanAustralia
- School of Psychological Sciences, College of Engineering, Science and Environment, The University of NewcastleCallaghanAustralia
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of ViennaViennaAustria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of ViennaViennaAustria
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of ViennaViennaAustria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of ViennaViennaAustria
| |
Collapse
|
3
|
Gonzalez-Burgos I, Bainier M, Gross S, Schoenenberger P, Ochoa JA, Valencia M, Redondo RL. Glutamatergic and GABAergic Receptor Modulation Present Unique Electrophysiological Fingerprints in a Concentration-Dependent and Region-Specific Manner. eNeuro 2023; 10:ENEURO.0406-22.2023. [PMID: 36931729 PMCID: PMC10124153 DOI: 10.1523/eneuro.0406-22.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 03/19/2023] Open
Abstract
Brain function depends on complex circuit interactions between excitatory and inhibitory neurons embedded in local and long-range networks. Systemic GABAA-receptor (GABAAR) or NMDA-receptor (NMDAR) modulation alters the excitatory-inhibitory balance (EIB), measurable with electroencephalography (EEG). However, EEG signatures are complex in localization and spectral composition. We developed and applied analytical tools to investigate the effects of two EIB modulators, MK801 (NMDAR antagonist) and diazepam (GABAAR modulator), on periodic and aperiodic EEG features in freely-moving male Sprague Dawley rats. We investigated how, across three brain regions, EEG features are correlated with EIB modulation. We found that the periodic component was composed of seven frequency bands that presented region-dependent and compound-dependent changes. The aperiodic component was also different between compounds and brain regions. Importantly, the parametrization into periodic and aperiodic components unveiled correlations between quantitative EEG and plasma concentrations of pharmacological compounds. MK-801 exposures were positively correlated with the slope of the aperiodic component. Concerning the periodic component, MK-801 exposures correlated negatively with the peak frequency of low-γ oscillations but positively with those of high-γ and high-frequency oscillations (HFOs). As for the power, θ and low-γ oscillations correlated negatively with MK-801, whereas mid-γ correlated positively. Diazepam correlated negatively with the knee of the aperiodic component, positively to β and negatively to low-γ oscillatory power, and positively to the modal frequency of θ, low-γ, mid-γ, and high-γ. In conclusion, correlations between exposures and pharmacodynamic effects can be better-understood thanks to the parametrization of EEG into periodic and aperiodic components. Such parametrization could be key in functional biomarker discovery.
Collapse
Affiliation(s)
- Irene Gonzalez-Burgos
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
- Program of Neuroscience, Centro de Investigación Médica Aplicada, Universidad de Navarra, Pamplona 31080, Spain
- Instituto de Investigación Sanitaria de Navarra (Navarra Institute for Health Research), Pamplona 31080, Spain
| | - Marie Bainier
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Simon Gross
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Philipp Schoenenberger
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - José A Ochoa
- Program of Neuroscience, Centro de Investigación Médica Aplicada, Universidad de Navarra, Pamplona 31080, Spain
- Instituto de Investigación Sanitaria de Navarra (Navarra Institute for Health Research), Pamplona 31080, Spain
| | - Miguel Valencia
- Program of Neuroscience, Centro de Investigación Médica Aplicada, Universidad de Navarra, Pamplona 31080, Spain
- Instituto de Investigación Sanitaria de Navarra (Navarra Institute for Health Research), Pamplona 31080, Spain
- Institute of Data Science and Artificial Intelligence, Universidad de Navarra, Pamplona, Spain
| | - Roger L Redondo
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel 4070, Switzerland
| |
Collapse
|
4
|
Carmichael O. The Role of fMRI in Drug Development: An Update. ADVANCES IN NEUROBIOLOGY 2023; 30:299-333. [PMID: 36928856 DOI: 10.1007/978-3-031-21054-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Functional magnetic resonance imaging (fMRI) of the brain is a technology that holds great potential for increasing the efficiency of drug development for the central nervous system (CNS). In preclinical studies and both early- and late-phase human trials, fMRI has the potential to improve cross-species translation of drug effects, help to de-risk compounds early in development, and contribute to the portfolio of evidence for a compound's efficacy and mechanism of action. However, to date, the utilization of fMRI in the CNS drug development process has been limited. The purpose of this chapter is to explore this mismatch between potential and utilization. This chapter provides introductory material related to fMRI and drug development, describes what is required of fMRI measurements for them to be useful in a drug development setting, lists current capabilities of fMRI in this setting and challenges faced in its utilization, and ends with directions for future development of capabilities in this arena. This chapter is the 5-year update of material from a previously published workshop summary (Carmichael et al., Drug DiscovToday 23(2):333-348, 2018).
Collapse
Affiliation(s)
- Owen Carmichael
- Pennington Biomedical Research Center, Baton Rouge, LA, USA.
| |
Collapse
|
5
|
Beating Pain with Psychedelics: Matter over Mind? Neurosci Biobehav Rev 2021; 134:104482. [PMID: 34922987 DOI: 10.1016/j.neubiorev.2021.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/19/2021] [Accepted: 12/04/2021] [Indexed: 02/08/2023]
Abstract
Basic pain research has shed light on key cellular and molecular mechanisms underlying nociceptive and phenomenological aspects of pain. Despite these advances, [[we still yearn for] the discovery of novel therapeutic strategies to address the unmet needs of about 70% of chronic neuropathic pain patients whose pain fails to respond to opioids as well as to other conventional analgesic agents. Importantly, a substantial body of clinical observations over the past decade cumulatively suggests that the psychedelic class of drugs may possess heuristic value for understanding and treating chronic pain conditions. The present review presents a theoretical framework for hitherto insufficiently understood neuroscience-based mechanisms of psychedelics' potential analgesic effects. To that end, searches of PubMed-indexed journals were performed using the following Medical Subject Headings' terms: pain, analgesia, inflammatory, brain connectivity, ketamine, psilocybin, functional imaging, and dendrites. Recursive sets of scientific and clinical evidence extracted from this literature review were summarized within the following key areas: (1) studies employing psychedelics for alleviation of physical and emotional pain; (2) potential neuro-restorative effects of psychedelics to remediate the impaired connectivity underlying the dissociation between pain-related conscious states/cognitions and the subcortical activity/function leading to the eventual chronicity through immediate and long-term effects on dentritic plasticity; (3) anti-neuroinflammatory and pro-immunomodulatory actions of psychedelics as the may pertain to the role of these factors in the pathogenesis of neuropathic pain; (4) safety, legal, and ethical consideration inherent in psychedelics' pharmacotherapy. In addition to direct beneficial effects in terms of reduction of pain and suffering, psychedelics' inclusion in the analgesic armamentarium will contribute to deeper and more sophisticated insights not only into pain syndromes but also into frequently comorbid psychiatric condition associated with emotional pain, e.g., depressive and anxiety disorders. Further inquiry is clearly warranted into the above areas that have potential to evolve into further elucidate the mechanisms of chronic pain and affective disorders, and lead to the development of innovative, safe, and more efficacious neurobiologically-based therapeutic approaches.
Collapse
|
6
|
Wilson R, Thomas A, Mayhew SD. Spatially congruent negative BOLD responses to different stimuli do not summate in visual cortex. Neuroimage 2020; 218:116891. [DOI: 10.1016/j.neuroimage.2020.116891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 01/07/2023] Open
|
7
|
Tomasi D, Volkow ND. Association Between Brain Activation and Functional Connectivity. Cereb Cortex 2020; 29:1984-1996. [PMID: 29668865 DOI: 10.1093/cercor/bhy077] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/04/2018] [Accepted: 03/13/2018] [Indexed: 11/12/2022] Open
Abstract
The origin of the "resting-state" brain activity recorded with functional magnetic resonance imaging (fMRI) is still uncertain. Here we provide evidence for the neurovascular origins of the amplitude of the low-frequency fluctuations (ALFF) and the local functional connectivity density (lFCD) by comparing them with task-induced blood-oxygen level dependent (BOLD) responses, which are considered a proxy for neuronal activation. Using fMRI data for 2 different tasks (Relational and Social) collected by the Human Connectome Project in 426 healthy adults, we show that ALFF and lFCD have linear associations with the BOLD response. This association was significantly attenuated by a novel task signal regression (TSR) procedure, indicating that task performance enhances lFCD and ALFF in activated regions. We also show that lFCD predicts BOLD activation patterns, as was recently shown for other functional connectivity metrics, which corroborates that resting functional connectivity architecture impacts brain activation responses. Thus, our findings indicate a common source for BOLD responses, ALFF and lFCD, which is consistent with the neurovascular origin of local hemodynamic synchrony presumably reflecting coordinated fluctuations in neuronal activity. This study also supports the development of task-evoked functional connectivity density mapping.
Collapse
Affiliation(s)
- Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA.,National Institute on Drug Abuse, Bethesda, MD, USA
| |
Collapse
|
8
|
Duncan NW, Zhang J, Northoff G, Weng X. Investigating GABA concentrations measured with macromolecule suppressed and unsuppressed MEGA‐PRESS MR spectroscopy and their relationship with BOLD responses in the occipital cortex. J Magn Reson Imaging 2019; 50:1285-1294. [DOI: 10.1002/jmri.26706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 12/24/2022] Open
Affiliation(s)
- Niall W. Duncan
- Centre for Cognition and Brain DisordersHangzhou Normal University Hangzhou China
- Taipei Medical University Centre for Brain and Consciousness Research Taipei Taiwan
- Graduate Institute of Humanities in MedicineTaipei Medical University Taipei Taiwan
| | - Jianfeng Zhang
- College of Biomedical Engineering and Instrument SciencesZhejiang University Hangzhou China
| | - Georg Northoff
- Centre for Cognition and Brain DisordersHangzhou Normal University Hangzhou China
- Institute of Mental Health ResearchUniversity of Ottawa Ottawa Canada
- Mental Health CentreZhejiang University School of Medicine Hangzhou China
| | - Xuchu Weng
- Institute for Brain Research and RehabilitationSouth China Normal University Guangzhou China
| |
Collapse
|
9
|
Witt ST, Drissi NM, Tapper S, Wretman A, Szakács A, Hallböök T, Landtblom AM, Karlsson T, Lundberg P, Engström M. Evidence for cognitive resource imbalance in adolescents with narcolepsy. Brain Imaging Behav 2019; 12:411-424. [PMID: 28321606 PMCID: PMC5880867 DOI: 10.1007/s11682-017-9706-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022]
Abstract
The study investigated brain activity changes during performance of a verbal working memory task in a population of adolescents with narcolepsy. Seventeen narcolepsy patients and twenty healthy controls performed a verbal working memory task during simultaneous fMRI and EEG acquisition. All subjects also underwent MRS to measure GABA and Glutamate concentrations in the medial prefrontal cortex. Activation levels in the default mode network and left middle frontal gyrus were examined to investigate whether narcolepsy is characterized by an imbalance in cognitive resources. Significantly increased deactivation within the default mode network during task performance was observed for the narcolepsy patients for both the encoding and recognition phases of the task. No evidence for task performance deficits or reduced activation within the left middle frontal gyrus was noted for the narcolepsy patients. Correlation analyses between the spectroscopy and fMRI data indicated that deactivation of the anterior aspect of the default mode in narcolepsy patients correlated more with increased concentrations of Glutamate and decreased concentrations of GABA. In contrast, deactivation in the default mode was correlated with increased concentrations of GABA and decreased concentrations of Glutamate in controls. The results suggested that narcolepsy is not characterized by a deficit in working memory but rather an imbalance of cognitive resources in favor of monitoring and maintaining attention over actual task performance. This points towards dysregulation within the sustained attention system being the origin behind self-reported cognitive difficulties in narcolepsy.
Collapse
Affiliation(s)
- Suzanne T Witt
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköpings universitet/US, SE-581 85, Linköping, SE, Sweden.
| | - Natasha Morales Drissi
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköpings universitet/US, SE-581 85, Linköping, SE, Sweden.,Department of Medical and Health Sciences (IMH), Linköping University, Linköping, Sweden
| | - Sofie Tapper
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköpings universitet/US, SE-581 85, Linköping, SE, Sweden.,Radiation Physics, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Anna Wretman
- Linnaeus Center HEAD, Linköping University, Linköping, Sweden
| | - Attila Szakács
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tove Hallböök
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anne-Marie Landtblom
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköpings universitet/US, SE-581 85, Linköping, SE, Sweden.,Department of Neurology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Neuroscience and Neurology, Uppsala University, Uppsala, Sweden
| | - Thomas Karlsson
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköpings universitet/US, SE-581 85, Linköping, SE, Sweden.,Linnaeus Center HEAD, Linköping University, Linköping, Sweden.,Department of Behavioral Sciences and Learning, Linköping University, Linköping, Sweden
| | - Peter Lundberg
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköpings universitet/US, SE-581 85, Linköping, SE, Sweden.,Radiation Physics, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.,Radiology, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Maria Engström
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköpings universitet/US, SE-581 85, Linköping, SE, Sweden.,Department of Medical and Health Sciences (IMH), Linköping University, Linköping, Sweden
| |
Collapse
|
10
|
Carmichael O, Schwarz AJ, Chatham CH, Scott D, Turner JA, Upadhyay J, Coimbra A, Goodman JA, Baumgartner R, English BA, Apolzan JW, Shankapal P, Hawkins KR. The role of fMRI in drug development. Drug Discov Today 2018; 23:333-348. [PMID: 29154758 PMCID: PMC5931333 DOI: 10.1016/j.drudis.2017.11.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/19/2017] [Accepted: 11/13/2017] [Indexed: 12/17/2022]
Abstract
Functional magnetic resonance imaging (fMRI) has been known for over a decade to have the potential to greatly enhance the process of developing novel therapeutic drugs for prevalent health conditions. However, the use of fMRI in drug development continues to be relatively limited because of a variety of technical, biological, and strategic barriers that continue to limit progress. Here, we briefly review the roles that fMRI can have in the drug development process and the requirements it must meet to be useful in this setting. We then provide an update on our current understanding of the strengths and limitations of fMRI as a tool for drug developers and recommend activities to enhance its utility.
Collapse
Affiliation(s)
- Owen Carmichael
- Pennington Biomedical Research Center, Baton Rouge, LA, USA.
| | | | - Christopher H Chatham
- Translational Medicine Neuroscience and Biomarkers, Roche Innovation Center, Basel, Switzerland
| | | | - Jessica A Turner
- Psychology Department & Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | | | | | | | - Richard Baumgartner
- Biostatistics and Research Decision Sciences (BARDS), Merck & Co., Inc., Kenilworth, NJ, USA
| | | | - John W Apolzan
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | | | | |
Collapse
|
11
|
Sten S, Lundengård K, Witt S, Cedersund G, Elinder F, Engström M. Neural inhibition can explain negative BOLD responses: A mechanistic modelling and fMRI study. Neuroimage 2017; 158:219-231. [DOI: 10.1016/j.neuroimage.2017.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/03/2017] [Accepted: 07/02/2017] [Indexed: 12/13/2022] Open
|