1
|
Rawat V, DeLear P, Prashanth P, Ozgurses ME, Tebeje A, Burns PA, Conger KO, Solís C, Hasnain Y, Novikova A, Endress JE, González-Sánchez P, Dong W, Stephanopoulos G, DeNicola GM, Harris IS, Sept D, Mason FM, Coloff JL. Drug screening in human physiologic medium identifies uric acid as an inhibitor of rigosertib efficacy. JCI Insight 2024; 9:e174329. [PMID: 38815134 PMCID: PMC11383364 DOI: 10.1172/jci.insight.174329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 05/29/2024] [Indexed: 06/01/2024] Open
Abstract
The nonphysiological nutrient levels found in traditional culture media have been shown to affect numerous aspects of cancer cell physiology, including how cells respond to certain therapeutic agents. Here, we comprehensively evaluated how physiological nutrient levels affect therapeutic response by performing drug screening in human plasma-like medium. We observed dramatic nutrient-dependent changes in sensitivity to a variety of FDA-approved and clinically trialed compounds, including rigosertib, an experimental cancer therapeutic that recently failed in phase III clinical trials. Mechanistically, we found that the ability of rigosertib to destabilize microtubules is strongly inhibited by the purine metabolism end product uric acid, which is uniquely abundant in humans relative to traditional in vitro and in vivo cancer models. These results demonstrate the broad and dramatic effects nutrient levels can have on drug response and how incorporation of human-specific physiological nutrient medium might help identify compounds whose efficacy could be influenced in humans.
Collapse
Affiliation(s)
- Vipin Rawat
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| | - Patrick DeLear
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Prarthana Prashanth
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| | - Mete Emir Ozgurses
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| | - Anteneh Tebeje
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Philippa A Burns
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| | - Kelly O Conger
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| | - Christopher Solís
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Yasir Hasnain
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| | - Anna Novikova
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| | | | | | - Wentao Dong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Greg Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Gina M DeNicola
- Department of Metabolism and Physiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Isaac S Harris
- Department of Biomedical Genetics, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - David Sept
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Frank M Mason
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jonathan L Coloff
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| |
Collapse
|
2
|
Rawat V, DeLear P, Prashanth P, Ozgurses ME, Tebeje A, Burns PA, Conger KO, Solís C, Hasnain Y, Novikova A, Endress JE, González-Sánchez P, Dong W, Stephanopoulos G, DeNicola GM, Harris IS, Sept D, Mason FM, Coloff JL. Drug screening in human physiologic medium identifies uric acid as an inhibitor of rigosertib efficacy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.26.550731. [PMID: 37546939 PMCID: PMC10402161 DOI: 10.1101/2023.07.26.550731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The non-physiological nutrient levels found in traditional culture media have been shown to affect numerous aspects of cancer cell physiology, including how cells respond to certain therapeutic agents. Here, we comprehensively evaluated how physiological nutrient levels impact therapeutic response by performing drug screening in human plasma-like medium (HPLM). We observed dramatic nutrient-dependent changes in sensitivity to a variety of FDA-approved and clinically trialed compounds, including rigosertib, an experimental cancer therapeutic that has recently failed in phase 3 clinical trials. Mechanistically, we found that the ability of rigosertib to destabilize microtubules is strongly inhibited by the purine metabolism waste product uric acid, which is uniquely abundant in humans relative to traditional in vitro and in vivo cancer models. Structural modelling studies suggest that uric acid interacts with the tubulin-rigosertib complex and may act as an uncompetitive inhibitor of rigosertib. These results offer a possible explanation for the failure of rigosertib in clinical trials and demonstrate the utility of physiological media to achieve in vitro results that better represent human therapeutic responses.
Collapse
Affiliation(s)
- Vipin Rawat
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| | - Patrick DeLear
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Prarthana Prashanth
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| | - Mete Emir Ozgurses
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| | - Anteneh Tebeje
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Philippa A. Burns
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| | - Kelly O. Conger
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| | - Christopher Solís
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL
| | - Yasir Hasnain
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| | - Anna Novikova
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| | | | | | - Wentao Dong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Greg Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Gina M. DeNicola
- Department of Metabolism and Physiology, H. Lee. Moffitt Cancer Center, Tampa, FL
| | - Isaac S. Harris
- Department of Biomedical Genetics, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY
| | - David Sept
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Frank M. Mason
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Jonathan L. Coloff
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, IL
| |
Collapse
|
3
|
Harwood SJ, Smith CR, Lawson JD, Ketcham JM. Selected Approaches to Disrupting Protein-Protein Interactions within the MAPK/RAS Pathway. Int J Mol Sci 2023; 24:ijms24087373. [PMID: 37108538 PMCID: PMC10139024 DOI: 10.3390/ijms24087373] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Within the MAPK/RAS pathway, there exists a plethora of protein-protein interactions (PPIs). For many years, scientists have focused efforts on drugging KRAS and its effectors in hopes to provide much needed therapies for patients with KRAS-mutant driven cancers. In this review, we focus on recent strategies to inhibit RAS-signaling via disrupting PPIs associated with SOS1, RAF, PDEδ, Grb2, and RAS.
Collapse
Affiliation(s)
| | | | - J David Lawson
- Mirati Therapeutics, 3545 Cray Court, San Diego, CA 92121, USA
| | - John M Ketcham
- Mirati Therapeutics, 3545 Cray Court, San Diego, CA 92121, USA
| |
Collapse
|
4
|
Pearson YE, Kremb S, Butterfoss GL, Xie X, Fahs H, Gunsalus KC. A statistical framework for high-content phenotypic profiling using cellular feature distributions. Commun Biol 2022; 5:1409. [PMID: 36550289 PMCID: PMC9780213 DOI: 10.1038/s42003-022-04343-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
High-content screening (HCS) uses microscopy images to generate phenotypic profiles of cell morphological data in high-dimensional feature space. While HCS provides detailed cytological information at single-cell resolution, these complex datasets are usually aggregated into summary statistics that do not leverage patterns of biological variability within cell populations. Here we present a broad-spectrum HCS analysis system that measures image-based cell features from 10 cellular compartments across multiple assay panels. We introduce quality control measures and statistical strategies to streamline and harmonize the data analysis workflow, including positional and plate effect detection, biological replicates analysis and feature reduction. We also demonstrate that the Wasserstein distance metric is superior over other measures to detect differences between cell feature distributions. With this workflow, we define per-dose phenotypic fingerprints for 65 mechanistically diverse compounds, provide phenotypic path visualizations for each compound and classify compounds into different activity groups.
Collapse
Affiliation(s)
- Yanthe E. Pearson
- grid.440573.10000 0004 1755 5934Center for Genomics and Systems Biology, New York University Abu Dhabi, P. O. Box 129188, Abu Dhabi, UAE
| | - Stephan Kremb
- grid.440573.10000 0004 1755 5934Center for Genomics and Systems Biology, New York University Abu Dhabi, P. O. Box 129188, Abu Dhabi, UAE
| | - Glenn L. Butterfoss
- grid.440573.10000 0004 1755 5934Center for Genomics and Systems Biology, New York University Abu Dhabi, P. O. Box 129188, Abu Dhabi, UAE
| | - Xin Xie
- grid.440573.10000 0004 1755 5934Center for Genomics and Systems Biology, New York University Abu Dhabi, P. O. Box 129188, Abu Dhabi, UAE
| | - Hala Fahs
- grid.440573.10000 0004 1755 5934Center for Genomics and Systems Biology, New York University Abu Dhabi, P. O. Box 129188, Abu Dhabi, UAE
| | - Kristin C. Gunsalus
- grid.440573.10000 0004 1755 5934Center for Genomics and Systems Biology, New York University Abu Dhabi, P. O. Box 129188, Abu Dhabi, UAE ,grid.137628.90000 0004 1936 8753Department of Biology and Center for Genomics and Systems Biology, New York University, New York, NY 10003 USA
| |
Collapse
|
5
|
Hughes R, Elliott RJR, Li X, Munro AF, Makda A, Carter RN, Morton NM, Fujihara K, Clemons NJ, Fitzgerald R, O’Neill JR, Hupp T, Carragher NO. Multiparametric High-Content Cell Painting Identifies Copper Ionophores as Selective Modulators of Esophageal Cancer Phenotypes. ACS Chem Biol 2022; 17:1876-1889. [PMID: 35696676 PMCID: PMC9295120 DOI: 10.1021/acschembio.2c00301] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Esophageal adenocarcinoma is of increasing global concern due to increasing incidence, a lack of effective treatments, and poor prognosis. Therapeutic target discovery and clinical trials have been hindered by the heterogeneity of the disease, the lack of "druggable" driver mutations, and the dominance of large-scale genomic rearrangements. We have previously undertaken a comprehensive small-molecule phenotypic screen using the high-content Cell Painting assay to quantify the morphological response to a total of 19,555 small molecules across a panel of genetically distinct human esophageal cell lines to identify new therapeutic targets and small molecules for the treatment of esophageal adenocarcinoma. In this current study, we report for the first time the dose-response validation studies for the 72 screening hits from the target-annotated LOPAC and Prestwick FDA-approved compound libraries and the full list of 51 validated esophageal adenocarcinoma-selective small molecules (71% validation rate). We then focus on the most potent and selective hit molecules, elesclomol, disulfiram, and ammonium pyrrolidinedithiocarbamate. Using a multipronged, multitechnology approach, we uncover a unified mechanism of action and a vulnerability in esophageal adenocarcinoma toward copper-dependent cell death that could be targeted in the future.
Collapse
Affiliation(s)
- Rebecca
E. Hughes
- Cancer
Research UK Edinburgh Centre, Institute of Genetics & Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XR, U.K.
| | - Richard J. R. Elliott
- Cancer
Research UK Edinburgh Centre, Institute of Genetics & Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XR, U.K.
| | - Xiaodun Li
- MRC
Cancer Unit, Hutchison-MRC Research Centre, University of Cambridge, Cambridge CB2 0XZ, U.K.
| | - Alison F. Munro
- Cancer
Research UK Edinburgh Centre, Institute of Genetics & Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XR, U.K.
| | - Ashraff Makda
- Cancer
Research UK Edinburgh Centre, Institute of Genetics & Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XR, U.K.
| | - Roderick N. Carter
- Centre
for Clinical Brain Sciences, Chancellors Building, University of Edinburgh, Edinburgh EH16 4SB, U.K.
- Centre
for Cardiovascular Science, The Queen’s
Medical Research Institute, Edinburgh BioQuarter, Edinburgh EH16 4TJ, U.K.
| | - Nicholas M. Morton
- Centre
for Cardiovascular Science, The Queen’s
Medical Research Institute, Edinburgh BioQuarter, Edinburgh EH16 4TJ, U.K.
| | - Kenji Fujihara
- Gastrointestinal
Cancer Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne 3000, Victoria, Australia
- Sir Peter
MacCallum Department of Oncology, The University
of Melbourne, Parkville 3010, Victoria, Australia
| | - Nicholas J. Clemons
- Gastrointestinal
Cancer Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne 3000, Victoria, Australia
- Sir Peter
MacCallum Department of Oncology, The University
of Melbourne, Parkville 3010, Victoria, Australia
| | - Rebecca Fitzgerald
- Early
Cancer Institute, Hutchison Research Centre, University of Cambridge, Cambridge CB2 0XZ, U.K.
| | - J. Robert O’Neill
- Cambridge
Oesophagogastric Centre, Cambridge University
Hospitals Foundation Trust, Cambridge CB2 2QQ, U.K.
| | - Ted Hupp
- Cancer
Research UK Edinburgh Centre, Institute of Genetics & Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XR, U.K.
| | - Neil O. Carragher
- Cancer
Research UK Edinburgh Centre, Institute of Genetics & Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XR, U.K.
| |
Collapse
|
6
|
Morphological profiling by means of the Cell Painting assay enables identification of tubulin-targeting compounds. Cell Chem Biol 2021; 29:1053-1064.e3. [PMID: 34968420 DOI: 10.1016/j.chembiol.2021.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/27/2021] [Accepted: 12/06/2021] [Indexed: 11/23/2022]
Abstract
In phenotypic compound discovery, conclusive identification of cellular targets and mode of action are often impaired by off-target binding. In particular, microtubules are frequently targeted in cellular assays. However, in vitro tubulin binding assays do not correctly reflect the cellular context, and conclusive high-throughput phenotypic assays monitoring tubulin binding are scarce, such that tubulin binding is rarely identified. We report that morphological profiling using the Cell Painting assay (CPA) can efficiently detect tubulin modulators in compound collections with a high throughput, including annotated reference compounds and unannotated compound classes with unrelated chemotypes and scaffolds. Small-molecule tubulin binders share similar CPA fingerprints, which enables prediction and experimental validation of microtubule-binding activity. Our findings suggest that CPA or a related morphological profiling approach will be an invaluable addition to small-molecule discovery programs in chemical biology and medicinal chemistry, enabling early identification of one of the most frequently observed off-target activities.
Collapse
|
7
|
Ziegler S, Sievers S, Waldmann H. Morphological profiling of small molecules. Cell Chem Biol 2021; 28:300-319. [PMID: 33740434 DOI: 10.1016/j.chembiol.2021.02.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/22/2021] [Accepted: 02/17/2021] [Indexed: 12/30/2022]
Abstract
Profiling approaches such as gene expression or proteome profiling generate small-molecule bioactivity profiles that describe a perturbed cellular state in a rather unbiased manner and have become indispensable tools in the evaluation of bioactive small molecules. Automated imaging and image analysis can record morphological alterations that are induced by small molecules through the detection of hundreds of morphological features in high-throughput experiments. Thus, morphological profiling has gained growing attention in academia and the pharmaceutical industry as it enables detection of bioactivity in compound collections in a broader biological context in the early stages of compound development and the drug-discovery process. Profiling may be used successfully to predict mode of action or targets of unexplored compounds and to uncover unanticipated activity for already characterized small molecules. Here, we review the reported approaches to morphological profiling and the kind of bioactivity that can be detected so far and, thus, predicted.
Collapse
Affiliation(s)
- Slava Ziegler
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
| | - Sonja Sievers
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Herbert Waldmann
- Max-Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany; Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany.
| |
Collapse
|
8
|
Jost M, Chen Y, Gilbert LA, Horlbeck MA, Krenning L, Menchon G, Rai A, Cho MY, Stern JJ, Prota AE, Kampmann M, Akhmanova A, Steinmetz MO, Tanenbaum ME, Weissman JS. Pharmaceutical-Grade Rigosertib Is a Microtubule-Destabilizing Agent. Mol Cell 2020; 79:191-198.e3. [PMID: 32619469 PMCID: PMC7332992 DOI: 10.1016/j.molcel.2020.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 05/13/2020] [Accepted: 06/01/2020] [Indexed: 11/17/2022]
Abstract
We recently used CRISPRi/a-based chemical-genetic screens and cell biological, biochemical, and structural assays to determine that rigosertib, an anti-cancer agent in phase III clinical trials, kills cancer cells by destabilizing microtubules. Reddy and co-workers (Baker et al., 2020, this issue of Molecular Cell) suggest that a contaminating degradation product in commercial formulations of rigosertib is responsible for the microtubule-destabilizing activity. Here, we demonstrate that cells treated with pharmaceutical-grade rigosertib (>99.9% purity) or commercially obtained rigosertib have qualitatively indistinguishable phenotypes across multiple assays. The two formulations have indistinguishable chemical-genetic interactions with genes that modulate microtubule stability, both destabilize microtubules in cells and in vitro, and expression of a rationally designed tubulin mutant with a mutation in the rigosertib binding site (L240F TUBB) allows cells to proliferate in the presence of either formulation. Importantly, the specificity of the L240F TUBB mutant for microtubule-destabilizing agents has been confirmed independently. Thus, rigosertib kills cancer cells by destabilizing microtubules, in agreement with our original findings.
Collapse
Affiliation(s)
- Marco Jost
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuwen Chen
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Luke A Gilbert
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Max A Horlbeck
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lenno Krenning
- Hubrecht Institute - KNAW and University Medical Center Utrecht, 3584CT Utrecht, the Netherlands
| | - Grégory Menchon
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Ankit Rai
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3548CH Utrecht, the Netherlands
| | - Min Y Cho
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jacob J Stern
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Andrea E Prota
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Martin Kampmann
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA; Institute for Neurodegenerative Diseases and Department of Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3548CH Utrecht, the Netherlands
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland; Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Marvin E Tanenbaum
- Hubrecht Institute - KNAW and University Medical Center Utrecht, 3584CT Utrecht, the Netherlands.
| | - Jonathan S Weissman
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
9
|
Godinez WJ, Chan H, Hossain I, Li C, Ranjitkar S, Rasper D, Simmons RL, Zhang X, Feng BY. Morphological Deconvolution of Beta-Lactam Polyspecificity in E. coli. ACS Chem Biol 2019; 14:1217-1226. [PMID: 31184469 DOI: 10.1021/acschembio.9b00141] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Beta-lactams comprise one of the earliest classes of antibiotic therapies. These molecules covalently inhibit enzymes from the family of penicillin-binding proteins (PBPs), which are essential in construction of the bacterial cell wall. As a result, beta-lactams cause striking changes to cellular morphology, the nature of which varies by the range of PBPs simultaneously engaged in the cell. The traditional method of exploring beta-lactam polyspecificity is a gel-based binding assay which is low-throughput and typically is run ex situ in cell extracts. Here, we describe a medium-throughput, image-based assay combined with machine learning methods to automatically profile the activity of beta-lactams in E. coli cells. By testing for morphological change across a panel of strains with perturbations to individual PBP enzymes, our approach automatically and quantifiably relates different beta-lactam antibiotics according to their preferences for individual PBPs in cells. We show the potential of our approach for guiding the design of novel inhibitors toward different PBP-binding profiles by predicting the mechanisms of two recently reported PBP inhibitors.
Collapse
Affiliation(s)
- William J. Godinez
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Basel, Switzerland
- Infectious Diseases, Novartis Institutes for BioMedical Research, Emeryville, California, United States
| | - Helen Chan
- Infectious Diseases, Novartis Institutes for BioMedical Research, Emeryville, California, United States
| | - Imtiaz Hossain
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Cindy Li
- Infectious Diseases, Novartis Institutes for BioMedical Research, Emeryville, California, United States
| | - Srijan Ranjitkar
- Infectious Diseases, Novartis Institutes for BioMedical Research, Emeryville, California, United States
| | - Dita Rasper
- Infectious Diseases, Novartis Institutes for BioMedical Research, Emeryville, California, United States
| | - Robert L. Simmons
- Infectious Diseases, Novartis Institutes for BioMedical Research, Emeryville, California, United States
| | - Xian Zhang
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Brian Y. Feng
- Infectious Diseases, Novartis Institutes for BioMedical Research, Emeryville, California, United States
| |
Collapse
|
10
|
Pahl A, Sievers S. The Cell Painting Assay as a Screening Tool for the Discovery of Bioactivities in New Chemical Matter. Methods Mol Biol 2019; 1888:115-126. [PMID: 30519943 DOI: 10.1007/978-1-4939-8891-4_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multiparametric phenotypic screening based on cellular morphology interrogates many biological pathways simultaneously and is therefore a valuable screening tool for the discovery of new biological activities. The cell painting assay stains various cellular features using six different dyes in one well. By automated image analysis, hundreds of parameters are calculated from the images which deliver a phenotypic profile of the cell. It has been shown that compounds with similar modes of action deliver similar phenotypic profiles. Using a reference set of compounds with known modes of action, it is possible to assign probable modes of action to new compounds and to discover compounds with potentially new modes of action.Here we describe the cell painting assay as a screening tool using a hit identification workflow which has been implemented using open-source software.
Collapse
Affiliation(s)
- Axel Pahl
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Sonja Sievers
- Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| |
Collapse
|
11
|
Tanabe K. Microtubule Depolymerization by Kinase Inhibitors: Unexpected Findings of Dual Inhibitors. Int J Mol Sci 2017; 18:ijms18122508. [PMID: 29168788 PMCID: PMC5751111 DOI: 10.3390/ijms18122508] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023] Open
Abstract
Microtubule-targeting agents are widely used as clinical drugs in the treatment of cancer. However, some kinase inhibitors can also disrupt microtubule organization by directly binding to tubulin. These unexpected effects may result in a plethora of harmful events and/or a misinterpretation of the experimental results. Thus, further studies are needed to understand these dual inhibitors. In this review, I discuss the roles of dual inhibitors of kinase activity and microtubule function as well as describe the properties underlining their dual roles. Since both kinase and microtubule inhibitors cause cell toxicity and cell cycle arrest, it is difficult to determine which inhibitor is responsible for each phenotype. A discrimination of cell cycle arrest at G0/G1 or G2/M and/or image analyses of cellular phenotype may eventually lead to new insights on drug duality. Because of the indispensable roles of microtubules in mitosis and vesicle transport, I propose a simple and easy method to identify microtubule depolymerizing compounds.
Collapse
Affiliation(s)
- Kenji Tanabe
- Medical Research Institute, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| |
Collapse
|
12
|
Jost M, Chen Y, Gilbert LA, Horlbeck MA, Krenning L, Menchon G, Rai A, Cho MY, Stern JJ, Prota AE, Kampmann M, Akhmanova A, Steinmetz MO, Tanenbaum ME, Weissman JS. Combined CRISPRi/a-Based Chemical Genetic Screens Reveal that Rigosertib Is a Microtubule-Destabilizing Agent. Mol Cell 2017; 68:210-223.e6. [PMID: 28985505 PMCID: PMC5640507 DOI: 10.1016/j.molcel.2017.09.012] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/19/2017] [Accepted: 09/07/2017] [Indexed: 02/08/2023]
Abstract
Chemical libraries paired with phenotypic screens can now readily identify compounds with therapeutic potential. A central limitation to exploiting these compounds, however, has been in identifying their relevant cellular targets. Here, we present a two-tiered CRISPR-mediated chemical-genetic strategy for target identification: combined genome-wide knockdown and overexpression screening as well as focused, comparative chemical-genetic profiling. Application of these strategies to rigosertib, a drug in phase 3 clinical trials for high-risk myelodysplastic syndrome whose molecular target had remained controversial, pointed singularly to microtubules as rigosertib's target. We showed that rigosertib indeed directly binds to and destabilizes microtubules using cell biological, in vitro, and structural approaches. Finally, expression of tubulin with a structure-guided mutation in the rigosertib-binding pocket conferred resistance to rigosertib, establishing that rigosertib kills cancer cells by destabilizing microtubules. These results demonstrate the power of our chemical-genetic screening strategies for pinpointing the physiologically relevant targets of chemical agents.
Collapse
Affiliation(s)
- Marco Jost
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuwen Chen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Luke A Gilbert
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA; Helen Diller Family Comprehensive Cancer Center, Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Max A Horlbeck
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lenno Krenning
- Hubrecht Institute - KNAW and University Medical Center Utrecht, 3584CT Utrecht, the Netherlands
| | - Grégory Menchon
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Ankit Rai
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3548CH Utrecht, the Netherlands
| | - Min Y Cho
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jacob J Stern
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Andrea E Prota
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Martin Kampmann
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA; Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA; Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3548CH Utrecht, the Netherlands
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232 Villigen, Switzerland; Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Marvin E Tanenbaum
- Hubrecht Institute - KNAW and University Medical Center Utrecht, 3584CT Utrecht, the Netherlands.
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Center for RNA Systems Biology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
13
|
Ritt DA, Abreu-Blanco MT, Bindu L, Durrant DE, Zhou M, Specht SI, Stephen AG, Holderfield M, Morrison DK. Inhibition of Ras/Raf/MEK/ERK Pathway Signaling by a Stress-Induced Phospho-Regulatory Circuit. Mol Cell 2016; 64:875-887. [PMID: 27889448 PMCID: PMC5135640 DOI: 10.1016/j.molcel.2016.10.029] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/20/2016] [Accepted: 10/21/2016] [Indexed: 11/17/2022]
Abstract
Ras pathway signaling plays a critical role in cell growth control and is often upregulated in human cancer. The Raf kinases selectively interact with GTP-bound Ras and are important effectors of Ras signaling, functioning as the initiating kinases in the ERK cascade. Here, we identify a route for the phospho-inhibition of Ras/Raf/MEK/ERK pathway signaling that is mediated by the stress-activated JNK cascade. We find that key Ras pathway components, the RasGEF Sos1 and the Rafs, are phosphorylated on multiple S/TP sites in response to JNK activation and that the hyperphosphorylation of these sites renders the Rafs and Sos1 unresponsive to upstream signals. This phospho-regulatory circuit is engaged by cancer therapeutics, such as rigosertib and paclitaxel/Taxol, that activate JNK through mitotic and oxidative stress as well as by physiological regulators of the JNK cascade and may function as a signaling checkpoint to suppress the Ras pathway during conditions of cellular stress.
Collapse
Affiliation(s)
- Daniel A Ritt
- Laboratory of Cell and Developmental Signaling, NCI-Frederick, Frederick, MD 21702, USA
| | - María T Abreu-Blanco
- NCI-Ras Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD 21702, USA
| | - Lakshman Bindu
- NCI-Ras Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD 21702, USA
| | - David E Durrant
- Laboratory of Cell and Developmental Signaling, NCI-Frederick, Frederick, MD 21702, USA
| | - Ming Zhou
- NCI-Ras Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD 21702, USA
| | - Suzanne I Specht
- Laboratory of Cell and Developmental Signaling, NCI-Frederick, Frederick, MD 21702, USA
| | - Andrew G Stephen
- NCI-Ras Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD 21702, USA
| | - Matthew Holderfield
- NCI-Ras Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD 21702, USA
| | - Deborah K Morrison
- Laboratory of Cell and Developmental Signaling, NCI-Frederick, Frederick, MD 21702, USA.
| |
Collapse
|