1
|
Abbad Andaloussi M, Maser R, Hertel F, Lamoline F, Husch AD. Exploring adult glioma through MRI: A review of publicly available datasets to guide efficient image analysis. Neurooncol Adv 2025; 7:vdae197. [PMID: 39877749 PMCID: PMC11773385 DOI: 10.1093/noajnl/vdae197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Background Publicly available data are essential for the progress of medical image analysis, in particular for crafting machine learning models. Glioma is the most common group of primary brain tumors, and magnetic resonance imaging (MRI) is a widely used modality in their diagnosis and treatment. However, the availability and quality of public datasets for glioma MRI are not well known. Methods In this review, we searched for public datasets of glioma MRI using Google Dataset Search, The Cancer Imaging Archive, and Synapse. Results A total of 28 datasets published between 2005 and May 2024 were found, containing 62 019 images from 5515 patients. We analyzed the characteristics of these datasets, such as the origin, size, format, annotation, and accessibility. Additionally, we examined the distribution of tumor types, grades, and stages among the datasets. The implications of the evolution of the World Health Organization (WHO) classification on tumors of the brain are discussed, in particular the 2021 update that significantly changed the definition of glioblastoma. Conclusions Potential research questions that could be explored using these datasets were highlighted, such as tumor evolution through malignant transformation, MRI normalization, and tumor segmentation. Interestingly, only 2 datasets among the 28 studied reflect the current WHO classification. This review provides a comprehensive overview of the publicly available datasets for glioma MRI currently at our disposal, providing aid to medical image analysis researchers in their decision-making on efficient dataset choice.
Collapse
Affiliation(s)
- Meryem Abbad Andaloussi
- Faculty of Science, Technology and Medicine, University of Luxembourg, University of Luxembourg, Belvaux, Luxembourg
- Imaging AI Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Raphael Maser
- Imaging AI Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Frank Hertel
- National Department of Neurosurgery, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - François Lamoline
- Imaging AI Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| | - Andreas Dominik Husch
- Imaging AI Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
2
|
Leskinen S, Singha S, Mehta NH, Quelle M, Shah HA, D'Amico RS. Applications of Functional Magnetic Resonance Imaging to the Study of Functional Connectivity and Activation in Neurological Disease: A Scoping Review of the Literature. World Neurosurg 2024; 189:185-192. [PMID: 38843969 DOI: 10.1016/j.wneu.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/02/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND Functional magnetic resonance imaging (fMRI) has transformed our understanding of brain's functional architecture, providing critical insights into neurological diseases. This scoping review synthesizes the current landscape of fMRI applications across various neurological domains, elucidating the evolving role of both task-based and resting-state fMRI in different settings. METHODS We conducted a comprehensive scoping review following the Preferred Reporting Items for Systematic Review and Meta-Analyses Extension for Scoping Reviews guidelines. Extensive searches in Medline/PubMed, Embase, and Web of Science were performed, focusing on studies published between 2003 and 2023 that utilized fMRI to explore functional connectivity and regional activation in adult patients with neurological conditions. Studies were selected based on predefined inclusion and exclusion criteria, with data extracted. RESULTS We identified 211 studies, covering a broad spectrum of neurological disorders including mental health, movement disorders, epilepsy, neurodegeneration, traumatic brain injury, cerebrovascular accidents, vascular abnormalities, neurorehabilitation, neuro-critical care, and brain tumors. The majority of studies utilized resting-state fMRI, underscoring its prominence in identifying disease-specific connectivity patterns. Results highlight the potential of fMRI to reveal the underlying pathophysiological mechanisms of various neurological conditions, facilitate diagnostic processes, and potentially guide therapeutic interventions. CONCLUSIONS fMRI serves as a powerful tool for elucidating complex neural dynamics and pathologies associated with neurological diseases. Despite the breadth of applications, further research is required to standardize fMRI protocols, improve interpretative methodologies, and enhance the translation of imaging findings to clinical practice. Advances in fMRI technology and analytics hold promise for improving the precision of neurological assessments and interventions.
Collapse
Affiliation(s)
- Sandra Leskinen
- State University of New York Downstate Medical Center, New York, USA
| | - Souvik Singha
- Department of Neurological Surgery, Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA.
| | - Neel H Mehta
- Department of Neurosurgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | | | - Harshal A Shah
- Department of Neurological Surgery, Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA
| | - Randy S D'Amico
- Department of Neurological Surgery, Lenox Hill Hospital/Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA
| |
Collapse
|
3
|
Seghier ML. 7 T and beyond: toward a synergy between fMRI-based presurgical mapping at ultrahigh magnetic fields, AI, and robotic neurosurgery. Eur Radiol Exp 2024; 8:73. [PMID: 38945979 PMCID: PMC11214939 DOI: 10.1186/s41747-024-00472-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 04/22/2024] [Indexed: 07/02/2024] Open
Abstract
Presurgical evaluation with functional magnetic resonance imaging (fMRI) can reduce postsurgical morbidity. Here, we discuss presurgical fMRI mapping at ultra-high magnetic fields (UHF), i.e., ≥ 7 T, in the light of the current growing interest in artificial intelligence (AI) and robot-assisted neurosurgery. The potential of submillimetre fMRI mapping can help better appreciate uncertainty on resection margins, though geometric distortions at UHF might lessen the accuracy of fMRI maps. A useful trade-off for UHF fMRI is to collect data with 1-mm isotropic resolution to ensure high sensitivity and subsequently a low risk of false negatives. Scanning at UHF might yield a revival interest in slow event-related fMRI, thereby offering a richer depiction of the dynamics of fMRI responses. The potential applications of AI concern denoising and artefact removal, generation of super-resolution fMRI maps, and accurate fusion or coregistration between anatomical and fMRI maps. The latter can benefit from the use of T1-weighted echo-planar imaging for better visualization of brain activations. Such AI-augmented fMRI maps would provide high-quality input data to robotic surgery systems, thereby improving the accuracy and reliability of robot-assisted neurosurgery. Ultimately, the advancement in fMRI at UHF would promote clinically useful synergies between fMRI, AI, and robotic neurosurgery.Relevance statement This review highlights the potential synergies between fMRI at UHF, AI, and robotic neurosurgery in improving the accuracy and reliability of fMRI-based presurgical mapping.Key points• Presurgical fMRI mapping at UHF improves spatial resolution and sensitivity.• Slow event-related designs offer a richer depiction of fMRI responses dynamics.• AI can support denoising, artefact removal, and generation of super-resolution fMRI maps.• AI-augmented fMRI maps can provide high-quality input data to robotic surgery systems.
Collapse
Affiliation(s)
- Mohamed L Seghier
- Department of Biomedical Engineering and Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, UAE.
- Healtcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, UAE.
| |
Collapse
|
4
|
Chabert S, Salas R, Cantor E, Veloz A, Cancino A, González M, Torres F, Bennett C. Hemodynamic response function description in patients with glioma. J Neuroradiol 2024; 51:101156. [PMID: 37805126 DOI: 10.1016/j.neurad.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/09/2023]
Abstract
INTRODUCTION Functional magnetic resonance imaging is a powerful tool that has provided many insights into cognitive sciences. Yet, as its analysis is mostly based on the knowledge of an a priori canonical hemodynamic response function (HRF), its reliability in patients' applications has been questioned. There have been reports of neurovascular uncoupling in patients with glioma, but no specific description of the Hemodynamic Response Function (HRF) in glioma has been reported so far. The aim of this work is to describe the HRF in patients with glioma. METHODS Forty patients were included. MR images were acquired on a 1.5T scanner. Activated clusters were identified using a fuzzy general linear model; HRFs were adjusted with a double-gamma function. Analyses were undertaken considering the tumor grade, age, sex, tumor location, and activated location. RESULTS Differences are found in the occipital, limbic, insular, and sub-lobar areas, but not in the frontal, temporal, and parietal lobes. The presence of a glioma slows the time-to-peak and onset times by 5.2 and 3.8 % respectively; high-grade gliomas present 8.1 % smaller HRF widths than low-grade gliomas. DISCUSSION AND CONCLUSION There is significant HRF variation due to the presence of glioma, but the magnitudes of the observed differences are small. Most processing pipelines should be robust enough for this magnitude of variation and little if any impact should be visible on functional maps. The differences that have been observed in the literature between functional mapping obtained with magnetic resonance vs. that obtained with direct electrostimulation during awake surgery are more probably due to the intrinsic difference in the mapping process: fMRI mapping detects all recruited areas while intra-surgical mapping indicates only the areas indispensable for the realization of a certain task. Surgical mapping might not be the gold standard to use when trying to validate the fMRI mapping process.
Collapse
Affiliation(s)
- Stéren Chabert
- School of Biomedical Engineering, Universidad de Valparaiso, General Cruz 222, Valparaiso, Chile; Millennium Science Initiative Intelligent Healthcare Engineering, Santiago, Chile.
| | - Rodrigo Salas
- School of Biomedical Engineering, Universidad de Valparaiso, General Cruz 222, Valparaiso, Chile; Millennium Science Initiative Intelligent Healthcare Engineering, Santiago, Chile
| | - Erika Cantor
- Institute of Statistics, Universidad de Valparaíso, Valparaíso, Chile
| | - Alejandro Veloz
- School of Biomedical Engineering, Universidad de Valparaiso, General Cruz 222, Valparaiso, Chile
| | - Astrid Cancino
- Millennium Science Initiative Intelligent Healthcare Engineering, Santiago, Chile; Doctorado en Ciencias e Ingeniería para la Salud, Universidad de Valparaiso, Valparaiso, Chile
| | - Matías González
- Neurosurgery Department, Hospital Carlos van Buren, Valparaiso, Chile
| | - Francisco Torres
- Millennium Science Initiative Intelligent Healthcare Engineering, Santiago, Chile; Radiology Department, Hospital Carlos van Buren, Valparaiso, Chile
| | - Carlos Bennett
- Neurosurgery Department, Hospital Carlos van Buren, Valparaiso, Chile
| |
Collapse
|
5
|
Dhakal K, Rosenthal ES, Kulpanowski AM, Dodelson JA, Wang Z, Cudemus-Deseda G, Villien M, Edlow BL, Presciutti AM, Januzzi JL, Ning M, Taylor Kimberly W, Amorim E, Brandon Westover M, Copen WA, Schaefer PW, Giacino JT, Greer DM, Wu O. Increased task-relevant fMRI responsiveness in comatose cardiac arrest patients is associated with improved neurologic outcomes. J Cereb Blood Flow Metab 2024; 44:50-65. [PMID: 37728641 PMCID: PMC10905635 DOI: 10.1177/0271678x231197392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 09/21/2023]
Abstract
Early prediction of the recovery of consciousness in comatose cardiac arrest patients remains challenging. We prospectively studied task-relevant fMRI responses in 19 comatose cardiac arrest patients and five healthy controls to assess the fMRI's utility for neuroprognostication. Tasks involved instrumental music listening, forward and backward language listening, and motor imagery. Task-specific reference images were created from group-level fMRI responses from the healthy controls. Dice scores measured the overlap of individual subject-level fMRI responses with the reference images. Task-relevant responsiveness index (Rindex) was calculated as the maximum Dice score across the four tasks. Correlation analyses showed that increased Dice scores were significantly associated with arousal recovery (P < 0.05) and emergence from the minimally conscious state (EMCS) by one year (P < 0.001) for all tasks except motor imagery. Greater Rindex was significantly correlated with improved arousal recovery (P = 0.002) and consciousness (P = 0.001). For patients who survived to discharge (n = 6), the Rindex's sensitivity was 75% for predicting EMCS (n = 4). Task-based fMRI holds promise for detecting covert consciousness in comatose cardiac arrest patients, but further studies are needed to confirm these findings. Caution is necessary when interpreting the absence of task-relevant fMRI responses as a surrogate for inevitable poor neurological prognosis.
Collapse
Affiliation(s)
- Kiran Dhakal
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Eric S Rosenthal
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Annelise M Kulpanowski
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jacob A Dodelson
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Zihao Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Gaston Cudemus-Deseda
- Department of Cardiac Anesthesiology and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Marjorie Villien
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Brian L Edlow
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Alexander M Presciutti
- Department of Psychiatry, Center for Health Outcomes and Interdisciplinary Research, Massachusetts General Hospital, Boston, MA, USA
| | - James L Januzzi
- Department of Medicine, Cardiology Division, Massachusetts General Hospital and Baim Institute for Clinical Research, Boston, MA, USA
| | - MingMing Ning
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - W Taylor Kimberly
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Edilberto Amorim
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | | | - William A Copen
- Department of Radiology, Neuroradiology Division, Massachusetts General Hospital, Boston, MA, USA
| | - Pamela W Schaefer
- Department of Radiology, Neuroradiology Division, Massachusetts General Hospital, Boston, MA, USA
| | - Joseph T Giacino
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA, USA
| | - David M Greer
- Department of Neurology, Boston University School of Medicine, Boston Medical Center, Boston, MA, USA
| | - Ona Wu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
6
|
Meyer NK, Kang D, Black DF, Campeau NG, Welker KM, Gray EM, In MH, Shu Y, Huston III J, Bernstein MA, Trzasko JD. Enhanced clinical task-based fMRI metrics through locally low-rank denoising of complex-valued data. Neuroradiol J 2023; 36:273-288. [PMID: 36063799 PMCID: PMC10268095 DOI: 10.1177/19714009221122171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE This study investigates a locally low-rank (LLR) denoising algorithm applied to source images from a clinical task-based functional MRI (fMRI) exam before post-processing for improving statistical confidence of task-based activation maps. METHODS Task-based motor and language fMRI was obtained in eleven healthy volunteers under an IRB approved protocol. LLR denoising was then applied to raw complex-valued image data before fMRI processing. Activation maps generated from conventional non-denoised (control) data were compared with maps derived from LLR-denoised image data. Four board-certified neuroradiologists completed consensus assessment of activation maps; region-specific and aggregate motor and language consensus thresholds were then compared with nonparametric statistical tests. Additional evaluation included retrospective truncation of exam data without and with LLR denoising; a ROI-based analysis tracked t-statistics and temporal SNR (tSNR) as scan durations decreased. A test-retest assessment was performed; retest data were matched with initial test data and compared for one subject. RESULTS fMRI activation maps generated from LLR-denoised data predominantly exhibited statistically significant (p = 4.88×10-4 to p = 0.042; one p = 0.062) increases in consensus t-statistic thresholds for motor and language activation maps. Following data truncation, LLR data showed task-specific increases in t-statistics and tSNR respectively exceeding 20 and 50% compared to control. LLR denoising enabled truncation of exam durations while preserving cluster volumes at fixed thresholds. Test-retest showed variable activation with LLR data thresholded higher in matching initial test data. CONCLUSION LLR denoising affords robust increases in t-statistics on fMRI activation maps compared to routine processing, and offers potential for reduced scan duration while preserving map quality.
Collapse
Affiliation(s)
- Nolan K Meyer
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Daehun Kang
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - David F Black
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Kirk M Welker
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Erin M Gray
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Myung-Ho In
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Yunhong Shu
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | | |
Collapse
|
7
|
Osipowicz K, Profyris C, Mackenzie A, Nicholas P, Rudder P, Taylor HM, Young IM, Joyce AW, Dobbin L, Tanglay O, Thompson L, Mashilwane T, Sughrue ME, Doyen S. Real world demonstration of hand motor mapping using the structural connectivity atlas. Clin Neurol Neurosurg 2023; 228:107679. [PMID: 36965417 DOI: 10.1016/j.clineuro.2023.107679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Locating the hand-motor-cortex (HMC) is an essential component within many neurosurgeries. Despite advancements in these localization methods there are still downfalls for each. Additionally, the importance of presurgical planning calls for increasingly accurate and efficient methods of locating specific cortical regions. OBJECTIVE In this study we aimed to test the ability of the Structural Connectivity Atlas (SCA), a machine-learning based method to parcellate the human cortex, to locate the HMC in a small cohort study. METHODS Using MRI and DTI images obtained from adult subjects (n = 11), personalized brain maps were created for each individual based on a SCA paired with the Brainnetome region for the HMC. Subjects received single pulse TMS, over the HMC region through the use of a neuronavigation system. If they responded with motor movement, this was recorded. The SCA identified HMC region was compared to the visual-determined HMC through identifying the Omega fold on the Precentral Gyrus, which was completed by a trained neuroanatomist. A Kendall's Tau B correlation was conducted between anatomical match and visual movement. RESULTS This study concluded that the SCA was capable of locating the HMC in healthy and distorted brains. Overall, the SCA defined the anatomical area of the HMC in 90 % of subjects and triggered a motor response in 61 %. CONCLUSION The SCA could be suitable for incorporation into presurgical planning practices due to its ability to map anatomically abnormal brains. Further studies on larger cohorts and targeting different areas of cortex could be beneficial.
Collapse
|
8
|
BOLD fMRI and DTI fiber tracking for preoperative mapping of eloquent cerebral regions in brain tumor patients: impact on surgical approach and outcome. Neurol Sci 2023:10.1007/s10072-023-06667-2. [PMID: 36914833 DOI: 10.1007/s10072-023-06667-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 02/01/2023] [Indexed: 03/15/2023]
Abstract
PURPOSE Task-based BOLD fMRI and DTI-fiber tracking have become part of the routine presurgical work-up of brain tumor patients in many institutions. However, their potential impact on both surgical treatment and neurologic outcome remains unclear, in despite of the high costs and complex implementation. METHODS We retrospectively investigated whether performing fMRI and DTI-ft preoperatively substantially impacted surgical planning and patient outcome in a series of brain tumor patients. We assessed (i) the quality of fMRI and DTI-ft results, by using a scale of 0-2 (0 = failed mapping; 1 = intermediate confidence; 2 = good confidence), (ii) whether functional planning substantially contributed to defining the surgical strategy to be undertaken (i.e., no surgery, biopsy, or resection, with or without ESM), the surgical entry point and extent of resection, and (iii) the incidence of neurological deficits post-operatively. RESULTS Twenty-seven patients constituted the study population. The mean confidence rating was 1.9/2 for fMRI localization of the eloquent cortex and lateralization of the language function and 1.7/2 for DTI-ft results. Treatment strategy was altered in 33% (9/27) of cases. Surgical entry point was modified in 8% (2/25) of cases. The extent of resection was modified in 40% (10/25). One patient (1/25, 4%) developed one new functional deficit post-operatively. CONCLUSION Functional MR mapping - which must not be considered an alternative to ESM - has a critical role preoperatively, potentially modifying treatment strategy or increasing the neurosurgeons' confidence in the surgical approach hypothesized based on conventional imaging.
Collapse
|
9
|
Morrison MA, Walter S, Mueller S, Felton E, Jakary A, Stoller S, Molinaro AM, Braunstein SE, Hess CP, Lupo JM. Functional network alterations in young brain tumor patients with radiotherapy-induced memory impairments and vascular injury. Front Neurol 2022; 13:921984. [PMID: 36172034 PMCID: PMC9511024 DOI: 10.3389/fneur.2022.921984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 08/22/2022] [Indexed: 12/05/2022] Open
Abstract
Background Cognitive impairment and cerebral microbleeds (CMBs) are long-term side-effects of cranial radiation therapy (RT). Previously we showed that memory function is disrupted in young patients and that the rate of cognitive decline correlates with CMB development. However, vascular injury alone cannot explain RT-induced cognitive decline. Here we use resting-state functional MRI (rsfMRI) to further investigate the complex mechanisms underlying memory impairment after RT. Methods Nineteen young patients previously treated with or without focal or whole-brain RT for a brain tumor underwent cognitive testing followed by 7T rsfMRI and susceptibility-weighted imaging for CMB detection. Global brain modularity and efficiency, and rsfMRI signal variability within the dorsal attention, salience, and frontoparietal networks were computed. We evaluated whether MR metrics could distinguish age- and sex-matched controls (N = 19) from patients and differentiate patients based on RT exposure and aggressiveness. We also related MR metrics with memory performance, CMB burden, and risk factors for cognitive decline after RT. Results Compared to controls, patients exhibited widespread hyperconnectivity, similar modularity, and significantly increased efficiency (p < 0.001) and network variability (p < 0.001). The most abnormal values were detected in patients treated with high dose whole-brain RT, having supratentorial tumors, and who did not undergo RT but had hydrocephalus. MR metrics and memory performance were correlated (R = 0.34–0.53), though MR metrics were more strongly related to risk factors for cognitive worsening and CMB burden with evidence of functional recovery. Conclusions MR metrics describing brain connectivity and variability represent promising candidate imaging biomarkers for monitoring of long-term cognitive side-effects after RT.
Collapse
Affiliation(s)
- Melanie A. Morrison
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Melanie A. Morrison
| | - Sadie Walter
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
- College of Osteopathic Medicine, Pacific Northwest University of Health Sciences, Yakima, WA, United States
| | - Sabine Mueller
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Erin Felton
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Angela Jakary
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Schuyler Stoller
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Annette M. Molinaro
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- Department of Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, CA, United States
| | - Steve E. Braunstein
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, United States
| | - Christopher P. Hess
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Janine M. Lupo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
10
|
Elin K, Malyutina S, Bronov O, Stupina E, Marinets A, Zhuravleva A, Dragoy O. A New Functional Magnetic Resonance Imaging Localizer for Preoperative Language Mapping Using a Sentence Completion Task: Validity, Choice of Baseline Condition, and Test–Retest Reliability. Front Hum Neurosci 2022; 16:791577. [PMID: 35431846 PMCID: PMC9006995 DOI: 10.3389/fnhum.2022.791577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/04/2022] [Indexed: 11/24/2022] Open
Abstract
To avoid post-neurosurgical language deficits, intraoperative mapping of the language function in the brain can be complemented with preoperative mapping with functional magnetic resonance imaging (fMRI). The validity of an fMRI “language localizer” paradigm crucially depends on the choice of an optimal language task and baseline condition. This study presents a new fMRI “language localizer” in Russian using overt sentence completion, a task that comprehensively engages the language function by involving both production and comprehension at the word and sentence level. The paradigm was validated in 18 neurologically healthy volunteers who participated in two scanning sessions, for estimating test–retest reliability. For the first time, two baseline conditions for the sentence completion task were compared. At the group level, the paradigm significantly activated both anterior and posterior language-related regions. Individual-level analysis showed that activation was elicited most consistently in the inferior frontal regions, followed by posterior temporal regions and the angular gyrus. Test–retest reliability of activation location, as measured by Dice coefficients, was moderate and thus comparable to previous studies. Test–retest reliability was higher in the frontal than temporo-parietal region and with the most liberal statistical thresholding compared to two more conservative thresholding methods. Lateralization indices were expectedly left-hemispheric, with greater lateralization in the frontal than temporo-parietal region, and showed moderate test-retest reliability. Finally, the pseudoword baseline elicited more extensive and more reliable activation, although the syllable baseline appears more feasible for future clinical use. Overall, the study demonstrated the validity and reliability of the sentence completion task for mapping the language function in the brain. The paradigm needs further validation in a clinical sample of neurosurgical patients. Additionally, the study contributes to general evidence on test–retest reliability of fMRI.
Collapse
Affiliation(s)
- Kirill Elin
- Center for Language and Brain, HSE University, Moscow, Russia
| | - Svetlana Malyutina
- Center for Language and Brain, HSE University, Moscow, Russia
- *Correspondence: Svetlana Malyutina,
| | - Oleg Bronov
- Department of Radiology, National Medical and Surgical Center Named After N.I. Pirogov, Moscow, Russia
| | | | - Aleksei Marinets
- Department of Radiology, National Medical and Surgical Center Named After N.I. Pirogov, Moscow, Russia
| | - Anna Zhuravleva
- Center for Language and Brain, HSE University, Moscow, Russia
| | - Olga Dragoy
- Center for Language and Brain, HSE University, Moscow, Russia
- Institute of Linguistics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
11
|
Brahimaj BC, Kochanski RB, Pearce JJ, Guryildirim M, Gerard CS, Kocak M, Sani S, Byrne RW. Structural and Functional Imaging in Glioma Management. Neurosurgery 2021; 88:211-221. [PMID: 33313852 DOI: 10.1093/neuros/nyaa360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/26/2020] [Indexed: 01/08/2023] Open
Abstract
The goal of glioma surgery is maximal safe resection in order to provide optimal tumor control and survival benefit to the patient. There are multiple imaging modalities beyond traditional contrast-enhanced magnetic resonance imaging (MRI) that have been incorporated into the preoperative workup of patients presenting with gliomas. The aim of these imaging modalities is to identify cortical and subcortical areas of eloquence, and their relationship to the lesion. In this article, multiple modalities are described with an emphasis on the underlying technology, clinical utilization, advantages, and disadvantages of each. functional MRI and its role in identifying hemispheric dominance and areas of language and motor are discussed. The nuances of magnetoencephalography and transcranial magnetic stimulation in localization of eloquent cortex are examined, as well as the role of diffusion tensor imaging in defining normal white matter tracts in glioma surgery. Lastly, we highlight the role of stimulated Raman spectroscopy in intraoperative histopathological diagnosis of tissue to guide tumor resection. Tumors may shift the normal arrangement of functional anatomy in the brain; thus, utilization of multiple modalities may be helpful in operative planning and patient counseling for successful surgery.
Collapse
Affiliation(s)
- Bledi C Brahimaj
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois
| | - Ryan B Kochanski
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois
| | - John J Pearce
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois
| | - Melike Guryildirim
- Department of Radiology and Radiological Science, Johns Hopkins Hospital, Baltimore, Maryland
| | - Carter S Gerard
- Swedish Neuroscience Institute, Swedish Medical Center, Seattle, Washington
| | - Mehmet Kocak
- Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, Illinois
| | - Sepehr Sani
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois
| | - Richard W Byrne
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
12
|
Feasibility, Contrast Sensitivity and Network Specificity of Language fMRI in Presurgical Evaluation for Epilepsy and Brain Tumor Surgery. Brain Topogr 2021; 34:511-524. [PMID: 33837867 DOI: 10.1007/s10548-021-00839-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/30/2021] [Indexed: 02/05/2023]
Abstract
Language fMRI has become an integral part of the planning process in brain surgery. However, fMRI may suffer from confounding factors both on the patient side, as well as on the provider side. In this study, we investigate how patient-related confounds affect the ability of the patient to perform language fMRI tasks (feasibility), the task sensitivity from an image contrast point of view, and the anatomical specificity of expressive and receptive language fMRI protocols. 104 patients were referred for language fMRI in the context of presurgical procedures for epilepsy and brain tumor surgery. Four tasks were used: (1) a verbal fluency (VF) task to map vocabulary use, (2) a semantic description (SD) task to map sentence formation/semantic integration skills, (3) a reading comprehension (RC) task and (4) a listening comprehension (LC) task. Feasibility was excellent in the LC task (100%), but in the acceptable to mediocre range for the rest of the tasks (SD: 87.50%, RC: 85.57%, VF: 67.30%). Feasibility was significantly confounded by age (p = 0.020) and education level (p = 0.003) in VF, by education level (p = 0.004) and lesion laterality (p = 0.019) in SD and by age (p = 0.001), lesion laterality (p = 0.007) and lesion severity (p = 0.048) in RC. All tasks were comparable regarding sensitivity in generating statistically significant image contrast (VF: 90.00%, SD: 92.30%, RC: 93.25%, LC: 88.46%). The lobe of the lesion (p = 0.005) and the age (p = 0.009) confounded contrast sensitivity in the VF and SD tasks respectively. Both VF and LC tasks demonstrated unilateral lateralization of posterior language areas; only the LC task showed unilateral lateralization of anterior language areas. Our study highlights the effects of patient-related confounding factors on language fMRI and proposes LC as the most feasible, less confounded, and efficiently lateralizing task in the clinical presurgical context.
Collapse
|
13
|
Giammalva GR, Brunasso L, Costanzo R, Paolini F, Umana GE, Scalia G, Gagliardo C, Gerardi RM, Basile L, Graziano F, Gulì C, Messina D, Pino MA, Feraco P, Tumbiolo S, Midiri M, Iacopino DG, Maugeri R. Brain Mapping-Aided SupraTotal Resection (SpTR) of Brain Tumors: The Role of Brain Connectivity. Front Oncol 2021; 11:645854. [PMID: 33738262 PMCID: PMC7960910 DOI: 10.3389/fonc.2021.645854] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022] Open
Abstract
Brain gliomas require a deep knowledge of their effects on brain connectivity. Understanding the complex relationship between tumor and functional brain is the preliminary and fundamental step for the subsequent surgery. The extent of resection (EOR) is an independent variable of surgical effectiveness and it correlates with the overall survival. Until now, great efforts have been made to achieve gross total resection (GTR) as the standard of care of brain tumor patients. However, high and low-grade gliomas have an infiltrative behavior and peritumoral white matter is often infiltrated by tumoral cells. According to these evidences, many efforts have been made to push the boundary of the resection beyond the contrast-enhanced lesion core on T1w MRI, in the so called supratotal resection (SpTR). SpTR is aimed to maximize the extent of resection and thus the overall survival. SpTR of primary brain tumors is a feasible technique and its safety is improved by intraoperative neuromonitoring and advanced neuroimaging. Only transient cognitive impairments have been reported in SpTR patients compared to GTR patients. Moreover, SpTR is related to a longer overall and progression-free survival along with preserving neuro-cognitive functions and quality of life.
Collapse
Affiliation(s)
- Giuseppe Roberto Giammalva
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| | - Lara Brunasso
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| | - Roberta Costanzo
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| | - Federica Paolini
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| | | | | | - Cesare Gagliardo
- Section of Radiological Sciences, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Rosa Maria Gerardi
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| | - Luigi Basile
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| | | | - Carlo Gulì
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| | - Domenico Messina
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| | - Maria Angela Pino
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| | - Paola Feraco
- Neuroradiology Unit, S. Chiara Hospital, Trento, Italy
| | - Silvana Tumbiolo
- Department of Neurosurgery, Villa Sofia Hospital, Palermo, Italy
| | - Massimo Midiri
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| | - Domenico Gerardo Iacopino
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| | - Rosario Maugeri
- Unit of Neurosurgery, Department of Biomedicine, Neuroscience and Advanced Diagnostics, Post Graduate Residency Program in Neurosurgery, University of Palermo, Palermo, Italy
| |
Collapse
|
14
|
Manan HA, Franz EA, Yahya N. The utilisation of resting-state fMRI as a pre-operative mapping tool in patients with brain tumours in comparison to task-based fMRI and intraoperative mapping: A systematic review. Eur J Cancer Care (Engl) 2021; 30:e13428. [PMID: 33592671 DOI: 10.1111/ecc.13428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE Resting-state functional Magnetic Resonance Imaging (rs-fMRI) is suggested to be a viable option for pre-operative mapping for patients with brain tumours. However, it remains an open issue whether the tool is useful in the clinical setting compared to task-based fMRI (T-fMRI) and intraoperative mapping. Thus, a systematic review was conducted to investigate the usefulness of this technique. METHODS A systematic literature search of rs-fMRI methods applied as a pre-operative mapping tool was conducted using the PubMed/MEDLINE and Cochrane Library electronic databases following PRISMA guidelines. RESULTS Results demonstrated that 50% (six out of twelve) of the studies comparing rs-fMRI and T-fMRI showed good concordance for both language and sensorimotor networks. In comparison to intraoperative mapping, 86% (six out of seven) studies found a good agreement to rs-fMRI. Finally, 87% (twenty out of twenty-three) studies agreed that rs-fMRI is a suitable and useful pre-operative mapping tool. CONCLUSIONS rs-fMRI is a promising technique for pre-operative mapping in assessing the functional brain areas. However, the agreement between rs-fMRI with other techniques, including T-fMRI and intraoperative maps, is not yet optimal. Studies to ascertain and improve the sophistication in pre-processing of rs-fMRI imaging data are needed.
Collapse
Affiliation(s)
- Hanani Abdul Manan
- Makmal Pemprosesan Imej Kefungsian (Functional Image Processing Laboratory, Department of Radiology, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Elizabeth A Franz
- Department of Psychology and fMRIotago, University of Otago, Dunedin, New Zealand
| | - Noorazrul Yahya
- Diagnostic Imaging & Radiotherapy Program, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Lin Z, Tam F, Churchill NW, Schweizer TA, Graham SJ. Tablet Technology for Writing and Drawing during Functional Magnetic Resonance Imaging: A Review. SENSORS 2021; 21:s21020401. [PMID: 33430023 PMCID: PMC7826671 DOI: 10.3390/s21020401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/23/2022]
Abstract
Functional magnetic resonance imaging (fMRI) is a powerful modality to study brain activity. To approximate naturalistic writing and drawing behaviours inside the scanner, many fMRI-compatible tablet technologies have been developed. The digitizing feature of the tablets also allows examination of behavioural kinematics with greater detail than using paper. With enhanced ecological validity, tablet devices have advanced the fields of neuropsychological tests, neurosurgery, and neurolinguistics. Specifically, tablet devices have been used to adopt many traditional paper-based writing and drawing neuropsychological tests for fMRI. In functional neurosurgery, tablet technologies have enabled intra-operative brain mapping during awake craniotomy in brain tumour patients, as well as quantitative tremor assessment for treatment outcome monitoring. Tablet devices also play an important role in identifying the neural correlates of writing in the healthy and diseased brain. The fMRI-compatible tablets provide an excellent platform to support naturalistic motor responses and examine detailed behavioural kinematics.
Collapse
Affiliation(s)
- Zhongmin Lin
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada;
| | - Fred Tam
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada;
| | - Nathan W. Churchill
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada; (N.W.C.); (T.A.S.)
| | - Tom A. Schweizer
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada; (N.W.C.); (T.A.S.)
- Division of Neurosurgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
| | - Simon J. Graham
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON M5G 1L7, Canada;
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada;
- Correspondence:
| |
Collapse
|
16
|
Ala-Salomäki H, Kujala J, Liljeström M, Salmelin R. Picture naming yields highly consistent cortical activation patterns: Test-retest reliability of magnetoencephalography recordings. Neuroimage 2020; 227:117651. [PMID: 33338614 DOI: 10.1016/j.neuroimage.2020.117651] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 11/13/2020] [Accepted: 12/09/2020] [Indexed: 02/02/2023] Open
Abstract
Reliable paradigms and imaging measures of individual-level brain activity are paramount when reaching from group-level research studies to clinical assessment of individual patients. Magnetoencephalography (MEG) provides a direct, non-invasive measure of cortical processing with high spatiotemporal accuracy, and is thus well suited for assessment of functional brain damage in patients with language difficulties. This MEG study aimed to identify, in a delayed picture naming paradigm, source-localized evoked activity and modulations of cortical oscillations that show high test-retest reliability across measurement days in healthy individuals, demonstrating their applicability in clinical settings. For patients with a language disorder picture naming can be a challenging task. Therefore, we also determined whether a semantic judgment task ('Is this item living?') with a spoken response ("yes"/"no") would suffice to induce comparably consistent activity within brain regions related to language production. The MEG data was collected from 19 healthy participants on two separate days. In picture naming, evoked activity was consistent across measurement days (intraclass correlation coefficient (ICC)>0.4) in the left frontal (400-800 ms after image onset), sensorimotor (200-800 ms), parietal (200-600 ms), temporal (200-800 ms), occipital (400-800 ms) and cingulate (600-800 ms) regions, as well as the right temporal (600-800 ms) region. In the semantic judgment task, consistent evoked activity was spatially more limited, occurring in the left temporal (200-800 ms), sensorimotor (400-800 ms), occipital (400-600 ms) and subparietal (600-800 ms) regions, and the right supramarginal cortex (600-800 ms). The delayed naming task showed typical beta oscillatory suppression in premotor and sensorimotor regions (800-1200 ms) but other consistent modulations of oscillatory activity were mostly observed in posterior cortical regions that have not typically been associated with language processing. The high test-retest consistency of MEG evoked activity in the picture naming task testifies to its applicability in clinical evaluations of language function, as well as in longitudinal MEG studies of language production in clinical and healthy populations.
Collapse
Affiliation(s)
- Heidi Ala-Salomäki
- Department of Neuroscience and Biomedical Engineering, Aalto University, P.O. Box 12200, FI-00076 Aalto, Finland; Aalto NeuroImaging, Aalto University, FI-00076 Aalto, Finland.
| | - Jan Kujala
- Department of Neuroscience and Biomedical Engineering, Aalto University, P.O. Box 12200, FI-00076 Aalto, Finland; Department of Psychology, University of Jyväskylä, FI-40014, Finland.
| | - Mia Liljeström
- Department of Neuroscience and Biomedical Engineering, Aalto University, P.O. Box 12200, FI-00076 Aalto, Finland.
| | - Riitta Salmelin
- Department of Neuroscience and Biomedical Engineering, Aalto University, P.O. Box 12200, FI-00076 Aalto, Finland.
| |
Collapse
|
17
|
Nenning KH, Furtner J, Kiesel B, Schwartz E, Roetzer T, Fortelny N, Bock C, Grisold A, Marko M, Leutmezer F, Liu H, Golland P, Stoecklein S, Hainfellner JA, Kasprian G, Prayer D, Marosi C, Widhalm G, Woehrer A, Langs G. Distributed changes of the functional connectome in patients with glioblastoma. Sci Rep 2020; 10:18312. [PMID: 33110138 PMCID: PMC7591862 DOI: 10.1038/s41598-020-74726-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/09/2020] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma might have widespread effects on the neural organization and cognitive function, and even focal lesions may be associated with distributed functional alterations. However, functional changes do not necessarily follow obvious anatomical patterns and the current understanding of this interrelation is limited. In this study, we used resting-state functional magnetic resonance imaging to evaluate changes in global functional connectivity patterns in 15 patients with glioblastoma. For six patients we followed longitudinal trajectories of their functional connectome and structural tumour evolution using bi-monthly follow-up scans throughout treatment and disease progression. In all patients, unilateral tumour lesions were associated with inter-hemispherically symmetric network alterations, and functional proximity of tumour location was stronger linked to distributed network deterioration than anatomical distance. In the longitudinal subcohort of six patients, we observed patterns of network alterations with initial transient deterioration followed by recovery at first follow-up, and local network deterioration to precede structural tumour recurrence by two months. In summary, the impact of focal glioblastoma lesions on the functional connectome is global and linked to functional proximity rather than anatomical distance to tumour regions. Our findings further suggest a relevance for functional network trajectories as a possible means supporting early detection of tumour recurrence.
Collapse
Affiliation(s)
- Karl-Heinz Nenning
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.
| | - Julia Furtner
- Department of Biomedical Imaging and Image-Guided Therapy, Division for Neuro- and Musculo-Skeletal Radiology, Medical University of Vienna, Vienna, Austria
| | - Barbara Kiesel
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Ernst Schwartz
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria
| | - Thomas Roetzer
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Nikolaus Fortelny
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Anna Grisold
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Martha Marko
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Fritz Leutmezer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Hesheng Liu
- A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Cambridge, USA
| | - Polina Golland
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, USA
| | - Sophia Stoecklein
- Department of Radiology, Ludwig-Maximilians-University, Munich, Germany
| | - Johannes A Hainfellner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Gregor Kasprian
- Department of Biomedical Imaging and Image-Guided Therapy, Division for Neuro- and Musculo-Skeletal Radiology, Medical University of Vienna, Vienna, Austria
| | - Daniela Prayer
- Department of Biomedical Imaging and Image-Guided Therapy, Division for Neuro- and Musculo-Skeletal Radiology, Medical University of Vienna, Vienna, Austria
| | - Christine Marosi
- Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Adelheid Woehrer
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Georg Langs
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Spitalgasse 23, 1090, Vienna, Austria.
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, USA.
| |
Collapse
|
18
|
Morales C, Gohel S, Scheiman M, Li X, Santos EM, Sangoi A, Alvarez TL. Test-retest of a phoria adaptation stimulus-induced functional MRI experiment. J Vis 2020; 20:17. [PMID: 32797193 PMCID: PMC7438664 DOI: 10.1167/jov.20.8.17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This study was designed to identify the neural substrates activated during a phoria adaptation task using functional magnetic resonance imaging (MRI) in young adults with normal binocular vision and to test the repeatability of the fMRI measurements for this protocol. The phoria adaptation task consisted of a block protocol of 90 seconds of near visual crossed fixation followed by 90 seconds of far visual uncrossed fixation, repeated three times; the data were collected during two different experimental sessions. Results showed that the oculomotor vermis, cuneus, and primary visual cortex had the greatest functional activity within the regions of interest studied when stimulated by the phoria adaptation task. The oculomotor vermis functional activity had an intraclass correlation coefficient (ICC) of 0.3, whereas the bilateral cuneus and primary visual cortex had good ICC results of greater than 0.6. These results suggest that the sustained visual fixation task described within this study reliably activates the neural substrates of phoria adaptation. This protocol establishes a methodology that can be used in future longitudinal studies investigating therapeutic interventions that may modify phoria adaptation.
Collapse
Affiliation(s)
- Cristian Morales
- Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Suril Gohel
- Department of Health Informatics, Rutgers University School of Health Professions, Newark, NJ, USA
| | - Mitchell Scheiman
- Pennsylvania College of Optometry, Salus University, Philadelphia, PA, USA
| | - Xiaobo Li
- Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Elio M Santos
- Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Ayushi Sangoi
- Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Tara L Alvarez
- Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| |
Collapse
|
19
|
Soltysik DA. Optimizing data processing to improve the reproducibility of single-subject functional magnetic resonance imaging. Brain Behav 2020; 10:e01617. [PMID: 32307927 PMCID: PMC7303387 DOI: 10.1002/brb3.1617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/06/2020] [Accepted: 03/15/2020] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION High reproducibility is critical for ensuring the confidence needed to use functional magnetic resonance imaging (fMRI) activation maps for presurgical planning. METHODS In this study, the comparison of different motion correction methods, spatial smoothing methods, regression methods, and thresholding methods was performed to see whether specific data processing methods can be employed to improve the reproducibility of single-subject fMRI activation. Three test-retest metrics were used: the percent difference in activation volume (PDAV), the difference in the center of mass (DCM), and the Dice Similarity Coefficient (DSC). RESULTS The PDAV was minimized when using little or no spatial smoothing and AMPLE thresholding. The DCM was minimized when using affine motion correction and little or no spatial smoothing. The DSC was improved when using affine motion correction and generous spatial smoothing. However, it is believed that the overlap metric may be unsuitable for testing fMRI reproducibility. CONCLUSION Processing methods to improve fMRI reproducibility were determined. Importantly, the processing methods needed to improve reproducibility were dependent on the fMRI activation metric of interest.
Collapse
Affiliation(s)
- David A Soltysik
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Office of Medical Products and Tobacco, U.S. Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
20
|
Hinkley LBN, De Witte E, Cahill-Thompson M, Mizuiri D, Garrett C, Honma S, Findlay A, Gorno-Tempini ML, Tarapore P, Kirsch HE, Mariën P, Houde JF, Berger M, Nagarajan SS. Optimizing Magnetoencephalographic Imaging Estimation of Language Lateralization for Simpler Language Tasks. Front Hum Neurosci 2020; 14:105. [PMID: 32499685 PMCID: PMC7242765 DOI: 10.3389/fnhum.2020.00105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
Magnetoencephalographic imaging (MEGI) offers a non-invasive alternative for defining preoperative language lateralization in neurosurgery patients. MEGI indeed can be used for accurate estimation of language lateralization with a complex language task - auditory verb generation. However, since language function may vary considerably in patients with focal lesions, it is important to optimize MEGI for estimation of language function with other simpler language tasks. The goal of this study was to optimize MEGI laterality analyses for two such simpler language tasks that can have compliance from those with impaired language function: a non-word repetition (NWR) task and a picture naming (PN) task. Language lateralization results for these two tasks were compared to the verb-generation (VG) task. MEGI reconstruction parameters (regions and time windows) for NWR and PN were first defined in a presurgical training cohort by benchmarking these against laterality indices for VG. Optimized time windows and regions of interest (ROIs) for NWR and PN were determined by examining oscillations in the beta band (12-30 Hz) a marker of neural activity known to be concordant with the VG laterality index (LI). For NWR, additional ROIs include areas MTG/ITG and for both NWR and PN, the postcentral gyrus was included in analyses. Optimal time windows for NWR were defined as 650-850 ms (stimulus-locked) and -350 to -150 ms (response-locked) and for PN -450 to -250 ms (response-locked). To verify the optimal parameters defined in our training cohort for NWR and PN, we examined an independent validation cohort (n = 30 for NWR, n = 28 for PN) and found high concordance between VG laterality and PN laterality (82%) and between VG laterality and NWR laterality (87%). Finally, in a test cohort (n = 8) that underwent both the intracarotid amobarbital procedure (IAP) test and MEG for VG, NWR, and PN, we identified excellent concordance (100%) with IAP for VG + NWR + PN composite LI, high concordance for PN alone (87.5%), and moderate concordance for NWR alone (66.7%). These findings provide task options for non-invasive language mapping with MEGI that can be calibrated for language abilities of individual patients. Results also demonstrate that more accurate estimates can be obtained by combining laterality estimates obtained from multiple tasks. MEGI.
Collapse
Affiliation(s)
- Leighton B. N. Hinkley
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Elke De Witte
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Megan Cahill-Thompson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Danielle Mizuiri
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Coleman Garrett
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Susanne Honma
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Anne Findlay
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Maria Luisa Gorno-Tempini
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Phiroz Tarapore
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Heidi E. Kirsch
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Peter Mariën
- Department of Neurology, Ziekenhuis Netwerk Antwerpen, Antwerp, Belguim
| | - John F. Houde
- Department of Otolaryngology; University of California, San Francisco, San Francisco, CA, United States
| | - Mitchel Berger
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Srikantan S. Nagarajan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
21
|
Johnstone LT, Karlsson EM, Carey DP. The validity and reliability of quantifying hemispheric specialisation using fMRI: Evidence from left and right handers on three different cerebral asymmetries. Neuropsychologia 2020; 138:107331. [DOI: 10.1016/j.neuropsychologia.2020.107331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/16/2019] [Accepted: 01/05/2020] [Indexed: 12/21/2022]
|
22
|
Li X, Pan Y, Fang Z, Lei H, Zhang X, Shi H, Ma N, Raine P, Wetherill R, Kim JJ, Wan Y, Rao H. Test-retest reliability of brain responses to risk-taking during the balloon analogue risk task. Neuroimage 2019; 209:116495. [PMID: 31887425 PMCID: PMC7061333 DOI: 10.1016/j.neuroimage.2019.116495] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/24/2022] Open
Abstract
The Balloon Analogue Risk Task (BART) provides a reliable and ecologically valid model for the assessment of individual risk-taking propensity and is frequently used in neuroimaging and developmental research. Although the test-retest reliability of risk-taking behavior during the BART is well established, the reliability of brain activation patterns in response to risk-taking during the BART remains elusive. In this study, we used functional magnetic resonance imaging (fMRI) and evaluated the test-retest reliability of brain responses in 34 healthy adults during a modified BART by calculating the intraclass correlation coefficients (ICC) and Dice’s similarity coefficients (DSC). Analyses revealed that risk-induced brain activation patterns showed good test-retest reliability (median ICC = 0.62) and moderate to high spatial consistency, while brain activation patterns associated with win or loss outcomes only had poor to fair reliability (median ICC = 0.33 for win and 0.42 for loss). These findings have important implications for future utility of the BART in fMRI to examine brain responses to risk-taking and decision-making.
Collapse
Affiliation(s)
- Xiong Li
- School of Economics and Management, Beijing University of Posts and Telecommunications, Beijing, China
| | - Yu Pan
- School of Economics and Management, Beijing University of Posts and Telecommunications, Beijing, China; Key Laboratory of Applied Brain and Cognitive Sciences, School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Zhuo Fang
- Key Laboratory of Applied Brain and Cognitive Sciences, School of Business and Management, Shanghai International Studies University, Shanghai, China; Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Hui Lei
- Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Xiaocui Zhang
- Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Hui Shi
- Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ning Ma
- Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Philip Raine
- Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Reagan Wetherill
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Junghoon J Kim
- Department of Molecular, Cellular, and Biomedical Sciences, CUNY School of Medicine, The City College of New York, New York, NY, USA
| | - Yan Wan
- School of Economics and Management, Beijing University of Posts and Telecommunications, Beijing, China
| | - Hengyi Rao
- Key Laboratory of Applied Brain and Cognitive Sciences, School of Business and Management, Shanghai International Studies University, Shanghai, China; Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Test-Retest Reliability of Functional Magnetic Resonance Imaging Activation for a Vergence Eye Movement Task. Neurosci Bull 2019; 36:506-518. [PMID: 31872328 DOI: 10.1007/s12264-019-00455-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/18/2019] [Indexed: 01/10/2023] Open
Abstract
Vergence eye movements are the inward and outward rotation of the eyes responsible for binocular coordination. While studies have mapped and investigated the neural substrates of vergence, it is not well understood whether vergence eye movements evoke the blood oxygen level-dependent signal reliably in separate experimental visits. The test-retest reliability of stimulus-induced vergence eye movement tasks during a functional magnetic resonance imaging (fMRI) experiment is important for future randomized clinical trials (RCTs). In this study, we established region of interest (ROI) masks for the vergence neural circuit. Twenty-seven binocularly normal young adults participated in two functional imaging sessions measured on different days on the same 3T Siemens scanner. The fMRI experiments used a block design of sustained visual fixation and rest blocks interleaved between task blocks that stimulated eight or four vergence eye movements. The test-retest reliability of task-activation was assessed using the intraclass correlation coefficient (ICC), and that of spatial extent was assessed using the Dice coefficient. Functional activation during the vergence eye movement task of eight movements compared to rest was repeatable within the primary visual cortex (ICC = 0.8), parietal eye fields (ICC = 0.6), supplementary eye field (ICC = 0.5), frontal eye fields (ICC = 0.5), and oculomotor vermis (ICC = 0.6). The results demonstrate significant test-retest reliability in the ROIs of the vergence neural substrates for functional activation magnitude and spatial extent using the stimulus protocol of a task block stimulating eight vergence eye movements compared to sustained fixation. These ROIs can be used in future longitudinal RCTs to study patient populations with vergence dysfunctions.
Collapse
|
24
|
Agarwal S, Sair HI, Gujar S, Pillai JJ. Language Mapping With fMRI: Current Standards and Reproducibility. Top Magn Reson Imaging 2019; 28:225-233. [PMID: 31385902 DOI: 10.1097/rmr.0000000000000216] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Clinical use of blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) is a relatively new phenomenon, with only about 3 decades of collective experience. Nevertheless, task-based BOLD fMRI has been widely accepted for presurgical planning, over traditional methods, which are invasive and at times perilous. Many studies have demonstrated the ability of BOLD fMRI to make substantial clinical impact with respect to surgical planning and preoperative risk assessment, especially to localize the eloquent motor and visual areas. Reproducibility and repeatability of language fMRI are important in the assessment of its clinical usefulness. There are national efforts currently underway to standardize language fMRI. The American Society of Functional Neuroradiology (ASFNR) has recently provided guidelines on fMRI paradigm algorithms for presurgical language assessment for language lateralization and localization. In this review article, we provide a comprehensive overview of current standards of language fMRI mapping and its reproducibility.
Collapse
Affiliation(s)
- Shruti Agarwal
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Haris I Sair
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sachin Gujar
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jay J Pillai
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
25
|
Lu W, Dong K, Cui D, Jiao Q, Qiu J. Quality assurance of human functional magnetic resonance imaging: a literature review. Quant Imaging Med Surg 2019; 9:1147-1162. [PMID: 31367569 DOI: 10.21037/qims.2019.04.18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Functional magnetic resonance imaging (fMRI) has been a popular approach in brain research over the past 20 years. It offers a noninvasive method to probe the brain and uses blood oxygenation level dependent (BOLD) signal changes to access brain function. However, the BOLD signal only represents a small fraction of the total MR signal. System instability and various noise have a strong impact on the BOLD signal. Additionally, fMRI applies fast imaging technique to record brain cognitive process over time, requiring high temporal stability of MR scanners. Furthermore, data acquisition, image quality, processing, and statistical analysis methods also have a great effect on the results of fMRI studies. Quality assurance (QA) programs for fMRI can test the stability of MR scanners, evaluate the quality of fMRI and help to find errors during fMRI scanning, thereby greatly enhancing the success rate of fMRI. In this review, we focus on previous studies which developed QA programs and methods in SCI/SCIE citation peer-reviewed publications over the last 20 years, including topics on existing fMRI QA programs, QA phantoms, image QA metrics, quality evaluation of existing preprocessing pipelines and fMRI statistical analysis methods. The summarized studies were classified into four categories: QA of fMRI systems, QA of fMRI data, quality evaluation of data processing pipelines and statistical methods and QA of task-related fMRI. Summary tables and figures of QA programs and metrics have been developed based on the comprehensive review of the literature.
Collapse
Affiliation(s)
- Weizhao Lu
- Medical Engineering and Technical Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China.,Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Kejiang Dong
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Dong Cui
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Qing Jiao
- Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Jianfeng Qiu
- Medical Engineering and Technical Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China.,Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an 271016, China
| |
Collapse
|
26
|
Woodhead ZVJ, Bradshaw AR, Wilson AC, Thompson PA, Bishop DVM. Testing the unitary theory of language lateralization using functional transcranial Doppler sonography in adults. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181801. [PMID: 31032035 PMCID: PMC6458414 DOI: 10.1098/rsos.181801] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/12/2019] [Indexed: 05/08/2023]
Abstract
Hemispheric dominance for language can vary from task to task, but it is unclear if this reflects error of measurement or independent lateralization of different language systems. We used functional transcranial Doppler sonography to assess language lateralization within the middle cerebral artery territory in 37 adults (seven left-handers) on six tasks, each given on two occasions. Tasks taxed different aspects of language function. A pre-registered structural equation analysis was used to compare models of means and covariances. For most people, a single lateralized factor explained most of the covariance between tasks. A minority, however, showed dissociation of asymmetry, giving a second factor. This was mostly derived from a receptive task, which was highly reliable but not lateralized. The results suggest that variation in the strength of language lateralization reflects true individual differences and not just error of measurement. The inclusion of several tasks in a laterality battery makes it easier to detect cases of atypical asymmetry.
Collapse
Affiliation(s)
- Z V J Woodhead
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - A R Bradshaw
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - A C Wilson
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - P A Thompson
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - D V M Bishop
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
27
|
Visualization of Brain Shift Corrected Functional Magnetic Resonance Imaging Data for Intraoperative Brain Mapping. World Neurosurg X 2019; 2:100021. [PMID: 31218295 PMCID: PMC6580887 DOI: 10.1016/j.wnsx.2019.100021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/06/2019] [Indexed: 11/22/2022] Open
Abstract
Background Brain tumor surgery requires careful balance between maximizing tumor excision and preserving eloquent cortex. In some cases, the surgeon may opt to perform an awake craniotomy including intraoperative mapping of brain function by direct cortical stimulation (DCS) to assist in surgical decision-making. Preoperatively, functional magnetic resonance imaging (fMRI) facilitates planning by identification of eloquent brain areas, helping to guide DCS and other aspects of the surgical plan. However, brain deformation (shift) limits the usefulness of preoperative fMRI during surgery. To address this, an integrated visualization method for fMRI and DCS results is developed that is intuitive for the surgeon. Methods An image registration pipeline was constructed to display preoperative fMRI data corrected for brain shift overlaid on images of the exposed cortical surface at the beginning and completion of DCS mapping. Preoperative fMRI and DCS data were registered for a range of misalignments, and the residual registration errors were calculated. The pipeline was validated on imaging data from five brain tumor patients who underwent awake craniotomy. Results Registration errors were well under 5 mm (the approximate spatial resolution of DCS) for misalignments of up to 25 mm and approximately 10–15°. For rotational misalignments up to 20°, the success rate was 95% for an error tolerance of 5 mm. Failures were negligible for rotational misalignments up to 10°. Good quality registrations were observed for all five patients. Conclusions A proof-of-concept image registration pipeline is presented with acceptable accuracy for intraoperative use, providing multimodality visualization with potential benefits for intraoperative brain mapping.
Collapse
Key Words
- 2D, 2-dimensional
- 3D, 3-Dimensional
- Awake craniotomy
- Brain mapping
- Brain tumor resection
- CT, Computed tomography
- DCS, Direct cortical stimulation
- Electric stimulation
- FOV, Field of view
- Functional mapping
- MRI, Magnetic resonance imaging
- Multimodal imaging
- RE, Registration error
- Surgical planning
- TE, Echo time
- TR, Repetition time
- fMRI, Functional magnetic resonance imaging
Collapse
|
28
|
Yen M, DeMarco AT, Wilson SM. Adaptive paradigms for mapping phonological regions in individual participants. Neuroimage 2019; 189:368-379. [PMID: 30665008 DOI: 10.1016/j.neuroimage.2019.01.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/03/2018] [Accepted: 01/15/2019] [Indexed: 11/19/2022] Open
Abstract
Phonological encoding depends on left-lateralized regions in the supramarginal gyrus and the ventral precentral gyrus. Localization of these phonological regions in individual participants-including individuals with language impairments-is important in several research and clinical contexts. To localize these regions, we developed two paradigms that load on phonological encoding: a rhyme judgment task and a syllable counting task. Both paradigms relied on an adaptive staircase design to ensure that each individual performed each task at a similarly challenging level. The goal of this study was to assess the validity and reliability of the two paradigms, in terms of their ability to consistently produce left-lateralized activations of the supramarginal gyrus and ventral precentral gyrus in neurologically normal individuals with presumptively normal language localization. Sixteen participants were scanned with fMRI as they performed the rhyme judgment paradigm, the syllable counting paradigm, and an adaptive semantic paradigm that we have described previously. We found that the rhyme and syllable paradigms both yielded left-lateralized supramarginal and ventral precentral activations in the majority of participants. The rhyme paradigm produced more lateralized and more reliable activations, and so should be favored in future applications. In contrast, the semantic paradigm did not reveal supramarginal or precentral activations in most participants, suggesting that the recruitment of these regions is indeed driven by phonological encoding, not language processing in general. In sum, the adaptive rhyme judgment paradigm was effective in localizing left-lateralized phonological encoding regions in individual participants, and, in conjunction with the adaptive semantic paradigm, can be used to map individual language networks.
Collapse
Affiliation(s)
- Melodie Yen
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Andrew T DeMarco
- Department of Neurology, Georgetown University Medical Center, Washington, DC, USA
| | - Stephen M Wilson
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
29
|
Agarwal S, Hua J, Sair HI, Gujar S, Bettegowda C, Lu H, Pillai JJ. Repeatability of language fMRI lateralization and localization metrics in brain tumor patients. Hum Brain Mapp 2018; 39:4733-4742. [PMID: 30076768 PMCID: PMC6218318 DOI: 10.1002/hbm.24318] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 06/29/2018] [Accepted: 07/05/2018] [Indexed: 11/12/2022] Open
Abstract
To assess the within-subject intra-scan session repeatability of language functional MRI (fMRI) activation maps in patients with brain tumors who were undergoing presurgical fMRI as part of their preoperative clinical workup. Sentence completion (SC) and silent word generation (SWG) tasks were used for language localization and hemispheric lateralization for identifying the primary language cortex. Within-subject repeatability for each of these paradigms was assessed in right-handed patients-37 for SC and 78 for SWG. Repeatability of activation maps between consecutive runs of the same task within the same scan session was evaluated by comparing lateralization indexes in holohemispheric and regional language areas. Displacement of center of activation between consecutive runs was also used to assess the repeatability of activation maps. Holohemispheric and regional language lateralization results demonstrated high intra-subject intra-scan repeatability when lateralization indices were calculated using threshold-dependent and threshold-independent approaches. The high repeatability is demonstrated both when centers of mass of activation are considered within key eloquent regions of the brain, such as Broca's area and Wernicke's area, as well as in larger more inclusive expressive and receptive language regions. We examined two well-known and widely accepted language tasks that are known to activate eloquent language cortex. We have demonstrated very high degree of repeatability at a single-subject level within single scan sessions of language mapping in a large cohort of brain tumor patients undergoing presurgical fMRI across several years at our institution.
Collapse
Affiliation(s)
- Shruti Agarwal
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMaryland
| | - Jun Hua
- Division of MR Research, Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMaryland
- F. M. Kirby Research Center For Functional Brain ImagingKennedy Krieger InstituteBaltimoreMaryland
| | - Haris I. Sair
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMaryland
| | - Sachin Gujar
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMaryland
| | - Chetan Bettegowda
- Department of NeurosurgeryJohns Hopkins University School of MedicineBaltimoreMaryland
| | - Hanzhang Lu
- Division of MR Research, Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMaryland
- F. M. Kirby Research Center For Functional Brain ImagingKennedy Krieger InstituteBaltimoreMaryland
| | - Jay J. Pillai
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMaryland
- Department of NeurosurgeryJohns Hopkins University School of MedicineBaltimoreMaryland
| |
Collapse
|
30
|
Foster CH, Morone PJ, Cohen-Gadol A. Awake craniotomy in glioma surgery: is it necessary? J Neurosurg Sci 2018; 63:162-178. [PMID: 30259721 DOI: 10.23736/s0390-5616.18.04590-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION The awake craniotomy has evolved from its humble beginnings in ancient cultures to become one of the most eloquent modern neurosurgical procedures. The development of intraoperative mapping techniques like direct electrostimulation of the cortex and subcortical white matter have further argued for its place in the neurosurgeon's armamentarium. Yet the suitability of the awake craniotomy with intraoperative functional mapping (ACWM) to optimize oncofunctional balance after peri-eloquent glioma resection continues to be a topic of active investigation as new methods of intraoperative monitoring and some unfavorable outcome data question its necessity. EVIDENCE ACQUISITION The neurosurgery and anesthesiology literatures were scoured for English-language studies that analyzed or reviewed the ACWM or its components as applied to glioma surgery via the PubMed, ClinicalKey, and OvidMEDLINE® databases or via direct online searches of journal archives. EVIDENCE SYNTHESIS Information on background, conceptualization, standard techniques, and outcomes of the ACWM were provided and compared. We parceled the procedure into its components and qualitatively described positive and negative outcome data for each. Findings were presented in the context of each study without attempt at quantitative analysis or reconciliation of heterogeneity between studies. Certain illustrative studies were highlighted throughout the review. Overarching conclusions were drawn based on level of evidence, expert opinion, and predominate concordance of data across studies in the literature. CONCLUSIONS Most investigators and studies agree that the ACWM is the best currently available approach to optimize oncofunctional balance in this difficult-to-treat patient population. This qualitative review synthesizes the most currently available data on the topic to provide contemporaneous insight into how and why the ACWM has become a favorite operation of neurosurgeons worldwide for the resection of gliomas from eloquent brain.
Collapse
Affiliation(s)
- Chase H Foster
- Department of Neurological Surgery, George Washington University Hospital, Washington D.C., USA -
| | - Peter J Morone
- Department of Neurological Surgery, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN, USA
| | - Aaron Cohen-Gadol
- Goodman Campbell Brain and Spine, Department of Neurological Surgery, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
31
|
Lu J, Wang X, Qing Z, Li Z, Zhang W, Liu Y, Yuan L, Cheng L, Li M, Zhu B, Zhang X, Yang QX, Zhang B. Detectability and reproducibility of the olfactory fMRI signal under the influence of magnetic susceptibility artifacts in the primary olfactory cortex. Neuroimage 2018; 178:613-621. [PMID: 29885483 DOI: 10.1016/j.neuroimage.2018.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/03/2018] [Accepted: 06/04/2018] [Indexed: 10/14/2022] Open
Abstract
For human olfactory functional MRI studies, the primary olfactory cortex (POC) suffers severe magnetic susceptibility artifacts, which adversely influences the detectability and reproducibility of the olfactory fMRI data and its clinical applications. The goal of this work is to assess the impacts of the image artifacts on the detectability and reproducibility of the olfactory activation in the POC. The severity of artifacts in the POC were classified into three levels using a Subjective Artifact score (SA_score). The mean temporal signal-to-noise ratio (tSNR) of the fMRI data acquired by a given MRI sequence and olfactory activation (β value) in POC were evaluated and compared to the concurrent activations in the primary visual cortex (Brodmann area 17, BA17) by an odor-visual association paradigm using ninety-nine normal human subjects. Our study revealed that the mean tSNR in POC was above the threshold for reliable detection of the functional activation signal, and, consequently, the mean olfactory activations in the POC were not significantly different from those in BA17. The reproducibility of the activation in the POC was assessed by a random half-split stimulation of a test-retest experiment. The overlap of the activation maps for all the trials (n = 1000) in the POC were not statistically different from that observed in BA17. These results show that the detectability and reproducibility of olfactory activation in the presence of susceptibility artifacts in the POC was at similar level of that in the visual cortex.
Collapse
Affiliation(s)
- Jiaming Lu
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Xin Wang
- Department of Radiology, Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Zhao Qing
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Zhu Li
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Wen Zhang
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Ying Liu
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Lihua Yuan
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Le Cheng
- Department of Radiology, Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Ming Li
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Bin Zhu
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Xin Zhang
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Qing X Yang
- Radiology, Center for NMR Research, Penn State University College of Medicine, Hershey, PA, 17033, USA
| | - Bing Zhang
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China.
| |
Collapse
|
32
|
Nettekoven C, Reck N, Goldbrunner R, Grefkes C, Weiß Lucas C. Short- and long-term reliability of language fMRI. Neuroimage 2018; 176:215-225. [PMID: 29704615 DOI: 10.1016/j.neuroimage.2018.04.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/23/2018] [Accepted: 04/22/2018] [Indexed: 12/22/2022] Open
Abstract
When using functional magnetic resonance imaging (fMRI) for mapping important language functions, a high test-retest reliability is mandatory, both in basic scientific research and for clinical applications. We, therefore, systematically tested the short- and long-term reliability of fMRI in a group of healthy subjects using a picture naming task and a sparse-sampling fMRI protocol. We hypothesized that test-retest reliability might be higher for (i) speech-related motor areas than for other language areas and for (ii) the short as compared to the long intersession interval. 16 right-handed subjects (mean age: 29 years) participated in three sessions separated by 2-6 (session 1 and 2, short-term) and 21-34 days (session 1 and 3, long-term). Subjects were asked to perform the same overt picture naming task in each fMRI session (50 black-white images per session). Reliability was tested using the following measures: (i) Euclidean distances (ED) between local activation maxima and Centers of Gravity (CoGs), (ii) overlap volumes and (iii) voxel-wise intraclass correlation coefficients (ICCs). Analyses were performed for three regions of interest which were chosen based on whole-brain group data: primary motor cortex (M1), superior temporal gyrus (STG) and inferior frontal gyrus (IFG). Our results revealed that the activation centers were highly reliable, independent of the time interval, ROI or hemisphere with significantly smaller ED for the local activation maxima (6.45 ± 1.36 mm) as compared to the CoGs (8.03 ± 2.01 mm). In contrast, the extent of activation revealed rather low reliability values with overlaps ranging from 24% (IFG) to 56% (STG). Here, the left hemisphere showed significantly higher overlap volumes than the right hemisphere. Although mean ICCs ranged between poor (ICC<0.5) and moderate (ICC 0.5-0.74) reliability, highly reliable voxels (ICC>0.75) were found for all ROIs. Voxel-wise reliability of the different ROIs was influenced by the intersession interval. Taken together, we could show that, despite of considerable ROI-dependent variations of the extent of activation over time, highly reliable centers of activation can be identified using an overt picture naming paradigm.
Collapse
Affiliation(s)
- Charlotte Nettekoven
- Center of Neurosurgery, Cologne University Hospital, 50924, Cologne, Germany; Department of Neurology, Cologne University Hospital, 50924, Cologne, Germany
| | - Nicola Reck
- Center of Neurosurgery, Cologne University Hospital, 50924, Cologne, Germany
| | - Roland Goldbrunner
- Center of Neurosurgery, Cologne University Hospital, 50924, Cologne, Germany
| | - Christian Grefkes
- Department of Neurology, Cologne University Hospital, 50924, Cologne, Germany; Institute of Neuroscience and Medicine (INM-3), Juelich Research Centre, 52428, Juelich, Germany
| | - Carolin Weiß Lucas
- Center of Neurosurgery, Cologne University Hospital, 50924, Cologne, Germany.
| |
Collapse
|
33
|
Aleem Bhatti AU, Jakhrani NK, Parekh MA. Awake Craniotomy with Noninvasive Brain Mapping by 3-Tesla Functional Magnetic Resonance Imaging for Excision of Low-grade Glioma: A Case of a Young Patient from Pakistan. Asian J Neurosurg 2018; 13:471-474. [PMID: 29682064 PMCID: PMC5898135 DOI: 10.4103/ajns.ajns_144_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The past few years have seen increasing support for gross total resection in the management of low-grade gliomas (LGGs), with a greater extent of resection correlated with better overall survival, progression-free survival, and time to malignant transformation. There is consistent evidence in literature supporting extent of safe resection as a good prognostic indicator as well as positively affecting seizure control, symptomatic relief in pressure symptoms, and longer progression-free and total survival. The operative goal in most LGG cases is to maximize the extent of resection for these benefits while avoiding postoperative neurologic deficits. Several advanced invasive and noninvasive surgical techniques such as intraoperative magnetic resonance imaging (MRI), fluorescence-guided surgery, intraoperative functional pathway mapping, and neuronavigation have been developed in an attempt to better achieve maximal safe resection. We present a case of LGG in a young patient with a 5-year history of refractory seizures and gradual onset walking difficulty. Serial MRI brain scans revealed a progressive increase in right frontal tumor size with substantial edema and parafalcine herniation. Noninvasive brain mapping by functional MRI (fMRI) and sleep-awake-sleep type of anesthesia with endotracheal tube insertion was utilized during an awake craniotomy. Histopathology confirmed a Grade II oligodendroglioma, and genetic analysis revealed no codeletion at 1p/19q. Neurological improvement was remarkable in terms of immediate motor improvement, and the patient remained completely seizure free on a single antiepileptic drug. There is no radiologic or clinical evidence of recurrence 6 months postoperatively. This is the first published report of an awake craniotomy for LGG in Pakistan. The contemporary concept of supratotal resection in LGGs advocates generous functional resection even beyond MRI findings rather than mere excision of oncological boundaries. This relatively aggressive approach is only possible with an awake craniotomy, which ensures preservation of functional status and thus less postoperative morbidity and better outcomes. Noninvasive mapping for intracranial space-occupying lesions, including fMRI and blood-oxygen-level dependent (BOLD) imaging modality, is an essential tool in a resource-limited setting such as Pakistan.
Collapse
Affiliation(s)
| | | | - Maria Adnan Parekh
- Department of Neurosurgery, South City Hospital, Clifton, Karachi, Pakistan
| |
Collapse
|
34
|
Temporal reliability of ultra-high field resting-state MRI for single-subject sensorimotor and language mapping. Neuroimage 2018; 168:499-508. [DOI: 10.1016/j.neuroimage.2016.11.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/29/2016] [Accepted: 11/12/2016] [Indexed: 11/19/2022] Open
|
35
|
Hilderley AJ, Taylor MJ, Fehlings D, Chen JL, Wright FV. Optimization of fMRI methods to determine laterality of cortical activation during ankle movements of children with unilateral cerebral palsy. Int J Dev Neurosci 2018; 66:54-62. [PMID: 29413879 DOI: 10.1016/j.ijdevneu.2018.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 10/18/2022] Open
Abstract
Measurement of laterality of motor cortical activations may provide valuable information about lower limb control in children with unilateral cerebral palsy (UCP). Evidence from upper limb research suggests that increased contralateral activity may accompany functional gains. However, lower limb areas of activation and associated changes have been underexplored due to challenges with imaging motor cortical leg representations. In this study, methods for a task-based functional magnetic resonance imaging (fMRI) ankle dorsiflexion paradigm were refined with three pilot groups of participants: (i) adults (n = 5); (ii) typically developing (TD) children (n = 5) and; (iii) children with UCP (n = 4). Parameters of experimental design, task resistance, reproducibility, and pre-scan procedures were tested/refined using a staged development approach with additions or changes introduced if image quality did not meet pre-defined standards. When image quality was acceptable for two consecutive participants, the next participant group was recruited to test/refine the next parameter. The final paradigm involved an event-related design of a single dorsiflexion movement against individualized resistance, with two runs per leg. It included a pre-scan session to increase child comfort and determine task resistance. This paradigm produced valid data for laterality index (LI) calculations to determine the ratio of activity in each hemisphere. Ventricle and lesion masks were used in non-linear image registration, and individual thresholds were used for extent-based LI calculations. LI of dominant ankle movements were contralateral (LI ≥ +0.2) for TD children (mean LI = +0.89, std = 0.27) and children with UCP (mean LI = +0.86, std = 0.26). For the affected ankle of children with UCP, LI values indicated ipsilateral and/or contralateral activation (mean LI = +0.02, std = 0.71, range -0.92 to +1.00). This fMRI paradigm will support investigations of cortical activation and mechanisms of skill improvement following lower limb interventions.
Collapse
Affiliation(s)
- A J Hilderley
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, 150 Kilgour Rd, Toronto, M4K 1E1, Canada; Rehabilitation Sciences Institute, University of Toronto, 500 University Ave, Toronto, M5G 1V7, Canada.
| | - M J Taylor
- Diagnostic Imaging, Hospital for Sick Children, 555 University Avenue, Toronto, M5G 1X8, Canada; Department of Medical Imaging, University of Toronto, 263 McCaul Street, Toronto, M5T 1W7, Canada; Department of Psychology, University of Toronto, 100 St. George Street, Toronto, M5S 3G3, Canada.
| | - D Fehlings
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, 150 Kilgour Rd, Toronto, M4K 1E1, Canada; Rehabilitation Sciences Institute, University of Toronto, 500 University Ave, Toronto, M5G 1V7, Canada; Department of Developmental Paediatrics, University of Toronto, 1 King's College Circle, Toronto, M5S 1A8, Canada.
| | - J L Chen
- Rehabilitation Sciences Institute, University of Toronto, 500 University Ave, Toronto, M5G 1V7, Canada; Hurvitz Brain Sciences Program, Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, M4N 3M5, Canada; Department of Physical Therapy, University of Toronto, 500 University Ave, Toronto, M5G 1V7, Canada.
| | - F V Wright
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, 150 Kilgour Rd, Toronto, M4K 1E1, Canada; Rehabilitation Sciences Institute, University of Toronto, 500 University Ave, Toronto, M5G 1V7, Canada; Department of Physical Therapy, University of Toronto, 500 University Ave, Toronto, M5G 1V7, Canada.
| |
Collapse
|
36
|
Bradshaw AR, Thompson PA, Wilson AC, Bishop DV, Woodhead ZV. Measuring language lateralisation with different language tasks: a systematic review. PeerJ 2017; 5:e3929. [PMID: 29085748 PMCID: PMC5659218 DOI: 10.7717/peerj.3929] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/26/2017] [Indexed: 11/25/2022] Open
Abstract
Language lateralisation refers to the phenomenon in which one hemisphere (typically the left) shows greater involvement in language functions than the other. Measurement of laterality is of interest both to researchers investigating the neural organisation of the language system and to clinicians needing to establish an individual's hemispheric dominance for language prior to surgery, as in patients with intractable epilepsy. Recently, there has been increasing awareness of the possibility that different language processes may develop hemispheric lateralisation independently, and to varying degrees. However, it is not always clear whether differences in laterality across language tasks with fMRI are reflective of meaningful variation in hemispheric lateralisation, or simply of trivial methodological differences between paradigms. This systematic review aims to assess different language tasks in terms of the strength, reliability and robustness of the laterality measurements they yield with fMRI, to look at variability that is both dependent and independent of aspects of study design, such as the baseline task, region of interest, and modality of the stimuli. Recommendations are made that can be used to guide task design; however, this review predominantly highlights that the current high level of methodological variability in language paradigms prevents conclusions as to how different language functions may lateralise independently. We conclude with suggestions for future research using tasks that engage distinct aspects of language functioning, whilst being closely matched on non-linguistic aspects of task design (e.g., stimuli, task timings etc); such research could produce more reliable and conclusive insights into language lateralisation. This systematic review was registered as a protocol on Open Science Framework: https://osf.io/5vmpt/.
Collapse
Affiliation(s)
- Abigail R. Bradshaw
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Paul A. Thompson
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Alexander C. Wilson
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Dorothy V.M. Bishop
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Zoe V.J. Woodhead
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
37
|
Li Y, Li P, Yang QX, Eslinger PJ, Sica CT, Karunanayaka P. Lexical-Semantic Search Under Different Covert Verbal Fluency Tasks: An fMRI Study. Front Behav Neurosci 2017; 11:131. [PMID: 28848407 PMCID: PMC5550713 DOI: 10.3389/fnbeh.2017.00131] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 06/30/2017] [Indexed: 11/13/2022] Open
Abstract
Background: Verbal fluency is a measure of cognitive flexibility and word search strategies that is widely used to characterize impaired cognitive function. Despite the wealth of research on identifying and characterizing distinct aspects of verbal fluency, the anatomic and functional substrates of retrieval-related search and post-retrieval control processes still have not been fully elucidated. Methods: Twenty-one native English-speaking, healthy, right-handed, adult volunteers (mean age = 31 years; range = 21-45 years; 9 F) took part in a block-design functional Magnetic Resonance Imaging (fMRI) study of free recall, covert word generation tasks when guided by phonemic (P), semantic-category (C), and context-based fill-in-the-blank sentence completion (S) cues. General linear model (GLM), Independent Component Analysis (ICA), and psychophysiological interaction (PPI) were used to further characterize the neural substrate of verbal fluency as a function of retrieval cue type. Results: Common localized activations across P, C, and S tasks occurred in the bilateral superior and left inferior frontal gyrus, left anterior cingulate cortex, bilateral supplementary motor area (SMA), and left insula. Differential task activations were centered in the occipital, temporal and parietal regions as well as the thalamus and cerebellum. The context-based fluency task, i.e., the S task, elicited higher differential brain activity in a lateralized frontal-temporal network typically engaged in complex language processing. P and C tasks elicited activation in limited pathways mainly within the left frontal regions. ICA and PPI results of the S task suggested that brain regions distributed across both hemispheres, extending beyond classical language areas, are recruited for lexical-semantic access and retrieval during sentence completion. Conclusion: Study results support the hypothesis of overlapping, as well as distinct, neural networks for covert word generation when guided by different linguistic cues. The increased demand on word retrieval is met by the concurrent recruitment of classical as well as non-classical language-related brain regions forming a large cognitive neural network. The retrieval-related search and post-retrieval control processes that subserve verbal fluency, therefore, reverberates across distinct functional networks as determined by respective task demands.
Collapse
Affiliation(s)
- Yunqing Li
- Department of Radiology, Pennsylvania State University College of MedicineHershey, PA, United States
| | - Ping Li
- Department of Psychology and Center for Brain, Behavior, and Cognition, Pennsylvania State UniversityUniversity Park, PA, United States
| | - Qing X Yang
- Department of Radiology, Pennsylvania State University College of MedicineHershey, PA, United States.,Department of Neurosurgery, Pennsylvania State University College of MedicineHershey, PA, United States
| | - Paul J Eslinger
- Department of Radiology, Pennsylvania State University College of MedicineHershey, PA, United States.,Department of Neurology, Pennsylvania State University College of MedicineHershey, PA, United States.,Department of Neural and Behavioral Sciences, Pennsylvania State University College of MedicineHershey, PA, United States
| | - Chris T Sica
- Department of Radiology, Pennsylvania State University College of MedicineHershey, PA, United States
| | - Prasanna Karunanayaka
- Department of Radiology, Pennsylvania State University College of MedicineHershey, PA, United States
| |
Collapse
|
38
|
Bradshaw AR, Bishop DVM, Woodhead ZVJ. Methodological considerations in assessment of language lateralisation with fMRI: a systematic review. PeerJ 2017; 5:e3557. [PMID: 28713656 PMCID: PMC5508809 DOI: 10.7717/peerj.3557] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/18/2017] [Indexed: 11/20/2022] Open
Abstract
The involvement of the right and left hemispheres in mediating language functions has been measured in a variety of ways over the centuries since the relative dominance of the left hemisphere was first known. Functional magnetic resonance imaging (fMRI) presents a useful non-invasive method of assessing lateralisation that is being increasingly used in clinical practice and research. However, the methods used in the fMRI laterality literature currently are highly variable, making systematic comparisons across studies difficult. Here we consider the different methods of quantifying and classifying laterality that have been used in fMRI studies since 2000, with the aim of determining which give the most robust and reliable measurement. Recommendations are made with a view to informing future research to increase standardisation in fMRI laterality protocols. In particular, the findings reinforce the importance of threshold-independent methods for calculating laterality indices, and the benefits of assessing heterogeneity of language laterality across multiple regions of interest and tasks. This systematic review was registered as a protocol on Open Science Framework: https://osf.io/hyvc4/.
Collapse
Affiliation(s)
- Abigail R Bradshaw
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Dorothy V M Bishop
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Zoe V J Woodhead
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
39
|
Połczyńska M, Japardi K, Curtiss S, Moody T, Benjamin C, Cho A, Vigil C, Kuhn T, Jones M, Bookheimer S. Improving language mapping in clinical fMRI through assessment of grammar. NEUROIMAGE-CLINICAL 2017; 15:415-427. [PMID: 28616382 PMCID: PMC5458087 DOI: 10.1016/j.nicl.2017.05.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 05/03/2017] [Accepted: 05/25/2017] [Indexed: 11/27/2022]
Abstract
Introduction Brain surgery in the language dominant hemisphere remains challenging due to unintended post-surgical language deficits, despite using pre-surgical functional magnetic resonance (fMRI) and intraoperative cortical stimulation. Moreover, patients are often recommended not to undergo surgery if the accompanying risk to language appears to be too high. While standard fMRI language mapping protocols may have relatively good predictive value at the group level, they remain sub-optimal on an individual level. The standard tests used typically assess lexico-semantic aspects of language, and they do not accurately reflect the complexity of language either in comprehension or production at the sentence level. Among patients who had left hemisphere language dominance we assessed which tests are best at activating language areas in the brain. Method We compared grammar tests (items testing word order in actives and passives, wh-subject and object questions, relativized subject and object clauses and past tense marking) with standard tests (object naming, auditory and visual responsive naming), using pre-operative fMRI. Twenty-five surgical candidates (13 females) participated in this study. Sixteen patients presented with a brain tumor, and nine with epilepsy. All participants underwent two pre-operative fMRI protocols: one including CYCLE-N grammar tests (items testing word order in actives and passives, wh-subject and object questions, relativized subject and object clauses and past tense marking); and a second one with standard fMRI tests (object naming, auditory and visual responsive naming). fMRI activations during performance in both protocols were compared at the group level, as well as in individual candidates. Results The grammar tests generated more volume of activation in the left hemisphere (left/right angular gyrus, right anterior/posterior superior temporal gyrus) and identified additional language regions not shown by the standard tests (e.g., left anterior/posterior supramarginal gyrus). The standard tests produced more activation in left BA 47. Ten participants had more robust activations in the left hemisphere in the grammar tests and two in the standard tests. The grammar tests also elicited substantial activations in the right hemisphere and thus turned out to be superior at identifying both right and left hemisphere contribution to language processing. Conclusion The grammar tests may be an important addition to the standard pre-operative fMRI testing. We added comprehensive grammar tests to standard presurgical fMRI of language. The grammar tests generated more volume of activation bilaterally. The tests identified additional language regions not shown by the standard tests. The grammar tests may be an important addition to standard pre-operative fMRI.
Collapse
Affiliation(s)
- Monika Połczyńska
- UCLA Department of Psychiatry and Biobehavioral Sciences, Los Angeles, CA 90095, USA; Faculty of English, Adam Mickiewicz University, Poznań, Poland.
| | - Kevin Japardi
- UCLA Department of Psychiatry and Biobehavioral Sciences, Los Angeles, CA 90095, USA
| | | | - Teena Moody
- UCLA Department of Psychiatry and Biobehavioral Sciences, Los Angeles, CA 90095, USA.
| | | | - Andrew Cho
- UCLA Department of Psychiatry and Biobehavioral Sciences, Los Angeles, CA 90095, USA
| | - Celia Vigil
- UCLA Department of Psychiatry and Biobehavioral Sciences, Los Angeles, CA 90095, USA
| | - Taylor Kuhn
- UCLA Department of Psychiatry and Biobehavioral Sciences, Los Angeles, CA 90095, USA.
| | - Michael Jones
- UCLA Department of Psychiatry and Biobehavioral Sciences, Los Angeles, CA 90095, USA
| | - Susan Bookheimer
- UCLA Department of Psychiatry and Biobehavioral Sciences, Los Angeles, CA 90095, USA.
| |
Collapse
|
40
|
Prevention of radiotherapy-induced neurocognitive dysfunction in survivors of paediatric brain tumours: the potential role of modern imaging and radiotherapy techniques. Lancet Oncol 2017; 18:e91-e100. [DOI: 10.1016/s1470-2045(17)30030-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/24/2016] [Accepted: 10/26/2016] [Indexed: 02/06/2023]
|
41
|
Morrison MA, Tam F, Garavaglia MM, Hare GMT, Cusimano MD, Schweizer TA, Das S, Graham SJ. Sources of Variation Influencing Concordance between Functional MRI and Direct Cortical Stimulation in Brain Tumor Surgery. Front Neurosci 2016; 10:461. [PMID: 27803645 PMCID: PMC5067437 DOI: 10.3389/fnins.2016.00461] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/26/2016] [Indexed: 11/13/2022] Open
Abstract
Object: Preoperative functional magnetic resonance imaging (fMRI) remains a promising method to aid in the surgical management of patients diagnosed with brain tumors. For patients that are candidates for awake craniotomies, surgical decisions can potentially be improved by fMRI but this depends on the level of concordance between preoperative brain maps and the maps provided by the gold standard intraoperative method, direct cortical stimulation (DCS). There have been numerous studies of the concordance between fMRI and DCS using sensitivity and specificity measures, however the results are variable across studies and the key factors influencing variability are not well understood. Thus, the present work addresses the influence of technical factors on fMRI and DCS concordance. Methods: Motor and language mapping data were collected for a group of glioma patients (n = 14) who underwent both preoperative fMRI and intraoperative DCS in an awake craniotomy procedure for tumor removal. Normative fMRI data were also acquired in a healthy control group (n = 12). The fMRI and DCS mapping data were co-registered; true positive (TP), true negative (TN), false positive (FP), and false negative (FN) occurrences were tabulated over the exposed brain surface. Sensitivity and specificity were measured for the total group, and for the motor and language sub-groups. The influence of grid placement, fMRI statistical thresholding, and task standardization were assessed. Correlations between proportions of agreement and error were also carefully scrutinized to evaluate concordance in more detail. Results: Concordance was significantly better for motor vs. language mapping. There was an inverse relationship between TP and TN with increasing statistical threshold, and FP dominated the total error. Sensitivity and specificity were reduced when tasks were not standardized across fMRI and DCS. Conclusions: Although the agreement between fMRI and DCS is good, variability is introduced by technical factors that can diminish the quality of patient data. Neurosurgeons should evaluate the usefulness of fMRI data while considering that (a) discordance arises primarily from FP fMRI results; (b) there is an inherent trade-off between sensitivity and specificity with fMRI statistical threshold; and
Collapse
Affiliation(s)
- Melanie A. Morrison
- Physical Sciences Platform, Sunnybrook Research InstituteToronto, ON, Canada
- Department of Medical Biophysics, University of TorontoToronto, ON, Canada
| | - Fred Tam
- Physical Sciences Platform, Sunnybrook Research InstituteToronto, ON, Canada
| | - Marco M. Garavaglia
- Department of Anaesthesia, University of TorontoToronto, ON, Canada
- Department of Anaesthesia, Toronto Western HospitalToronto, ON, Canada
| | - Gregory M. T. Hare
- Department of Anaesthesia, University of TorontoToronto, ON, Canada
- Keenan Research Centre, St. Michael's HospitalToronto, ON, Canada
- Department of Anaesthesia, St. Michael's HospitalToronto, ON, Canada
| | - Michael D. Cusimano
- Keenan Research Centre, St. Michael's HospitalToronto, ON, Canada
- Division of Neurosurgery, St. Michael's HospitalToronto, ON, Canada
- Department of Surgery, University of TorontoToronto, ON, Canada
| | - Tom A. Schweizer
- Keenan Research Centre, St. Michael's HospitalToronto, ON, Canada
- Department of Surgery, University of TorontoToronto, ON, Canada
| | - Sunit Das
- Keenan Research Centre, St. Michael's HospitalToronto, ON, Canada
- Division of Neurosurgery, St. Michael's HospitalToronto, ON, Canada
- Department of Surgery, University of TorontoToronto, ON, Canada
| | - Simon J. Graham
- Physical Sciences Platform, Sunnybrook Research InstituteToronto, ON, Canada
- Department of Medical Biophysics, University of TorontoToronto, ON, Canada
| |
Collapse
|