1
|
van Bijlert PA, van Soest AJ, Schulp AS, Bates KT. Muscle-controlled physics simulations of bird locomotion resolve the grounded running paradox. SCIENCE ADVANCES 2024; 10:eado0936. [PMID: 39321289 PMCID: PMC11423892 DOI: 10.1126/sciadv.ado0936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/20/2024] [Indexed: 09/27/2024]
Abstract
Humans and birds use very different running styles. Unlike humans, birds adopt "grounded running" at intermediate speeds-a running gait where at least one foot always maintains ground contact. Avian grounded running is a paradox: Animals usually minimize locomotor energy expenditure, but birds prefer grounded running despite incurring higher energy costs. Using predictive gait simulations of the emu (Dromaius novaehollandiae), we resolve this paradox by demonstrating that grounded running represents an optimal gait for birds, from both energetics and muscle excitations perspectives. Our virtual experiments decoupled effects of posture and tendon elasticity, biomechanically relevant anatomical features that cannot be isolated in real birds. The avian body plan prevents (near) vertical leg postures, making the running style used by humans impossible. Under this anatomical constraint, grounded running is optimal if the muscles produce the highest forces in crouched postures, as is true in most birds. Shared anatomical features suggest that, as a behavior, avian grounded running first evolved within non-avian dinosaurs.
Collapse
Affiliation(s)
- Pasha A van Bijlert
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Vening Meinesz Building A, Princetonlaan 8A, 3584 CB Utrecht, Netherlands
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, Netherlands
| | - A J van Soest
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Van der Boechorststraat 7, 1081 BT Amsterdam, Netherlands
| | - Anne S Schulp
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Vening Meinesz Building A, Princetonlaan 8A, 3584 CB Utrecht, Netherlands
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, Netherlands
| | - Karl T Bates
- Department of Musculoskeletal and Ageing Science, Institute of Life Course & Medical Sciences, University of Liverpool, The William Henry Duncan Building, 6 West Derby Street, Liverpool L7 8TX, UK
| |
Collapse
|
2
|
Kubota K, Kobayashi Y, Ikeda T. Early Cretaceous troodontine troodontid (Dinosauria: Theropoda) from the Ohyamashimo Formation of Japan reveals the early evolution of Troodontinae. Sci Rep 2024; 14:16392. [PMID: 39054320 PMCID: PMC11272788 DOI: 10.1038/s41598-024-66815-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024] Open
Abstract
A new troodontid dinosaur, Hypnovenator matsubaraetoheorum gen. et sp. nov., is described based on an articulated postcranial skeleton recovered from the fluvial deposits of the Albian Ohyamashimo Formation of the Sasayama Group in Tambasasayama City, Hyogo Prefecture, Japan. Hypnovenator is distinguished from other troodontids by four autapomorphies and a combination of additional features. Our phylogenetic analysis positions Hypnovenator as the oldest and one of the most basal troodontines, forming a clade with Gobivenator mongoliensis. The discovery of Hypnovenator suggests that small-bodied maniraptorans with a sleeping posture were common not only in environments with volcanic and eolian events or alluvial systems but also in fluvial systems. Geometric morphometric analysis of manual ungual phalanges shows that manual ungual phalanges I and III of Hypnovenator exhibit considerable morphological variation but are functionally similar, which differs from those of non-troodontine troodontids, reflecting the transition of manual motion within Troodontinae. Hypnovenator also has mosaic features in the pes related to cursoriality. This study reveals that asymmetrical arctometatarsus occurred by the Albian, and some morphological changes, such as shorter digit IV than digit III and non-ungual phalanges of digits III with roller joints and digit IV with weakly ginglymoid articulation, arose during the early Late Cretaceous.
Collapse
Affiliation(s)
- Katsuhiro Kubota
- Museum of Nature and Human Activities, Hyogo, Sanda, Hyogo, 669‑1546, Japan.
- Institute of Natural and Environmental Sciences, University of Hyogo, Sanda, Hyogo, 669‑1546, Japan.
- Hokkaido University Museum, Hokkaido University, Sapporo, Hokkaido, 060‑0810, Japan.
| | - Yoshitsugu Kobayashi
- Hokkaido University Museum, Hokkaido University, Sapporo, Hokkaido, 060‑0810, Japan
| | - Tadahiro Ikeda
- Museum of Nature and Human Activities, Hyogo, Sanda, Hyogo, 669‑1546, Japan
- Institute of Natural and Environmental Sciences, University of Hyogo, Sanda, Hyogo, 669‑1546, Japan
| |
Collapse
|
3
|
Saghaei Z, Salehipour S, Hashemi A. Larger lateral hinges increase the probability of Takeuchi type II and III fractures in high tibial osteotomy. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY & TRAUMATOLOGY : ORTHOPEDIE TRAUMATOLOGIE 2024; 34:2717-2722. [PMID: 38761202 DOI: 10.1007/s00590-024-03935-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/25/2024] [Indexed: 05/20/2024]
Abstract
PURPOSE Lateral hinge fractures are the main complications in the high tibial osteotomy to treat varus deformities. The aim of present study is to answer the question whether the lateral hinge length (H) has an effect on the type of fracture and required force during the opening in high tibia osteotomy. It was hypothesized in this comparative research that extending the hinge length increased opening force and probability of a type II and type III fractures. METHODS A monoplanar medial open wedge osteotomy with different intact hinge lengths varying from 9 to 32 mm was performed in 20 ostrich bones. A biomechanical experiment using unidirectional tensile testing apparatus was performed to open the wedge, and the required force was increased until a 10 mm opening was reached; then, the presence of fracture in the lateral cortex and its direction were evaluated. Lateral hinge fracture type based on direction was classified as suggested by Takeuchi et al. RESULTS Fracture that grows along the osteotomy line (type I) was observed in 4 samples with the mean hinge length (H) of 11 ± 1.54 mm. For seven bones with Takeuchi fracture type II, with downward crack propagation, the mean H was 16 ± 3.36 mm. For the mean H of 25 ± 6.53 mm, the crack propagated upward to the cutting path, displaying a Takeuchi type III fracture in seven samples. The statistical analysis showed that the fracture type significantly depends on the hinge length (P value < 0.05). Also, the mean opening force significantly increased with hinge lengthening (P value < 0.05). The peak forces at crack initiation were 41.8 ± 21.9, 115.2 ± 41.5, and 167 ± 135.3 N, respectively, for the fracture types I, II, and III samples. CONCLUSION The lateral cortical hinge length was significantly associated with hinge fracture type. The experimental tests indicated that the hinge lengthening increases the risk of type II and III fractures, as classified by Takeuchi.
Collapse
Affiliation(s)
- Zahra Saghaei
- Biomechanical Engineering Group, Department of Biomedical Engineering, Amirkabir University of Technology, Hafez Avenue, Tehran, 15875, Iran
| | - Saeed Salehipour
- Biomechanical Engineering Group, Department of Biomedical Engineering, Amirkabir University of Technology, Hafez Avenue, Tehran, 15875, Iran
| | - Ata Hashemi
- Biomechanical Engineering Group, Department of Biomedical Engineering, Amirkabir University of Technology, Hafez Avenue, Tehran, 15875, Iran.
| |
Collapse
|
4
|
Kassem MAM, Tahon RR, Khalil KM, El-Ayat MA. Morphometric studies on the appendicular bony skeleton of the ostriches (Struthio Camelus). BMC Vet Res 2023; 19:109. [PMID: 37542302 PMCID: PMC10401756 DOI: 10.1186/s12917-023-03665-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 07/19/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND Morphometric study of the bony elements of the appendicular skeleton in the ostrich was fully described and identified. The appendicular skeleton included the bones of the pectoral girdle, the wing, the pelvic girdle and the pelvic limb. RESULTS The shoulder girdle of the ostrich included the scapula and coracoid bones. The scapula appeared as a flattened spoon-like structure. The coracoid bone appeared quadrilateral in outline. The mean length of the scapula and coracoid (sternal wing) were 15.00 ± 0.23 and 10.00 ± 0.17 cm, respectively. The wing included the humerus, ulna, radius, radial carpal bone, ulnar carpal bone, carpometacarpus and phalanges of three digits. The mean length of the humerus, radius, and ulna were 33.00 ± 0.46, 10.50 ± 0.40 and 11.50 ± 0.29 cm respectively. The carpometacarpus was formed by the fusion of the distal row of carpal bones and three metacarpal bones. Digits of the wing were three in number; the alular, major and minor digits. Os coxae comprised the ilium, ischium and pubis. Their mean lengths were 36.00 ± 0.82 cm, 32.00 ± 0.20 and 55.00 ± 0.2.9 cm, respectively. The femur was a stout short bone, that appeared shorter than the tibiotarsus. The mean length of the femur, tibiotarsus, and tarsometatarsus were 30.00 ± 0.23, 52.00 ± 0.50 and 46.00 ± 0.28 cm. Tibiotarsus was the longest bone in the pelvic limb. The fibula was a long bone (44.00 ± 0.41 cm) lying along the lateral surface of the tibiotarsus. The tarsometatarsus was a strong long bone formed by the fusion of the metatarsal (II, III, IV) and the distal row of tarsal bones. It was worth mentioning that metatarsal II was externally absent in adults. CONCLUSIONS In the appendicular skeleton of ostrich, there were special characteristic features that were detected in our study; the clavicle was absent, the coracoid bone was composed of a sternal wing and scapular wing, the ulna was slightly longer in length than the radius. The coupled patellae i.e., the proximal and distal patella were observed; and the ostrich pedal digits were only two; viz., the third (III) and fourth (IV) digits.
Collapse
Affiliation(s)
- Menna Allah M Kassem
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Reem R Tahon
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Karim M Khalil
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Medhat A El-Ayat
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
5
|
Zhang R, Sun X, Pang H, Xue S, Zhang H, Hu Z, Zou M. Research in superior bearing performance of the ostrich tarsometatarsus based on its structural features. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2023. [DOI: 10.1007/s12210-022-01128-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
6
|
Keeffe R, Blackburn DC. Diversity and function of the fused anuran radioulna. J Anat 2022; 241:1026-1038. [PMID: 35962544 PMCID: PMC9482697 DOI: 10.1111/joa.13737] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 12/03/2022] Open
Abstract
In tetrapods, fusion between elements of the appendicular skeleton is thought to facilitate rapid movements during running, flying, and jumping. Although such fusion is widespread, frogs stand out because adults of all living species exhibit fusion of the zeugopod elements (radius and ulna, tibia and fibula), regardless of jumping ability or locomotor mode. To better understand what drives the maintenance of limb bone fusion in frogs, we use finite element modeling methods to assess the functional consequences of fusion in the anuran radioulna, the forearm bone of frogs that is important to both locomotion and mating behavior (amplexus). Using CT scans of museum specimens, measurement tools, and mesh‐editing software, we evaluated how different degrees of fusion between the radius and ulna affect the von Mises stress and bending resistance of the radioulna in three loading scenarios: landing, amplexus, and long‐axis loading conditions. We find that the semi‐fused state observed in the radioulna exhibits less von Mises stress and more resistance to bending than unfused or completely fused models in all three scenarios. Our results suggest that radioulna morphology is optimized to minimize von Mises stress across different loading regimes while also minimizing volume. We contextualize our findings in an evaluation of the diversity of anuran radioulnae, which reveals unique, permanent pronation of the radioulna in frogs and substantial variation in wall thickness. This work provides new insight into the functional consequences of limb bone fusion in anuran evolution.
Collapse
Affiliation(s)
- Rachel Keeffe
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - David C Blackburn
- Department of Biology, University of Florida, Gainesville, Florida, USA.,Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
7
|
Yuwono LA, Siswanto, Sari M, Yusuf Y, Suciati T, Sari YW, Che Abdullah CA, Aminatun. Fabrication and characterization of hydroxyapatite-polycaprolactone-collagen bone scaffold by electrospun nanofiber. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2097675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | - Siswanto
- Department of Physics, Universitas Airlangga, Surabaya, Indonesia
| | - Mona Sari
- Department of Physics, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Yusril Yusuf
- Department of Physics, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Tri Suciati
- Department of Pharmaceutics, Institut Teknologi Bandung, Bandung, Indonesia
| | | | - Che Azurahanim Che Abdullah
- Nanomaterial Synthesis and Characterization Lab, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang, Malaysia
| | - Aminatun
- Department of Physics, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
8
|
Ding J, Yang W, Wang S, Zhang H, Zhang Y. Does environmental metal pollution affect bird morphometry? A case study on the tree sparrow Passer montanus. CHEMOSPHERE 2022; 295:133947. [PMID: 35151700 DOI: 10.1016/j.chemosphere.2022.133947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/19/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Morphological characteristics are the leading indicators of the health status of birds. To explore the effects of heavy metals on bird morphometry in natural populations, tree sparrows (Passer montanus) were studied in a polluted site [Baiyin (BY)] and a relatively unpolluted site [Liujiaxia (LJX)]. This study aimed to examine whether morphological variables, the fluctuating asymmetry (FA) of the wing, tarsus, and toe length, were associated with heavy metals (Cu, Zn, Pb, and Cd) and Ca levels in different tissues and feces of adults and nestlings. Results showed that adults collected from BY contained relatively higher heavy metal concentrations and lower Ca concentrations in different tissues than those from LJX. Smaller body sizes and higher FA levels of adults and nestlings were found in BY than in LJX. Although higher heavy metal concentrations in some tissues were associated with smaller morphological characteristics of adults, the effects were not obvious in nestlings. The most correlated heavy metal with as many characteristics was heavy metal in primary feather in both sites, and the most affected characteristic was body mass in BY. The FA values of adults and nestlings in BY were positively affected by heavy metal concentrations in different tissues and feces. The growth rate of wing and tarsus length of nestlings in BY were negatively affected by the FA values of wing and tarsus length, respectively. Taken together, environmental metal pollution might affect the morphological characteristics of tree sparrows. These findings suggest that the morphological characteristics of tree sparrows, especially FA, can be used as indicators of metal pollution, underscoring the importance of measuring morphological characteristics in avian ecotoxicology field studies.
Collapse
Affiliation(s)
- Jian Ding
- School of Life Sciences, Henan Normal University, Xinxiang, 453007, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Wenzhi Yang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shengnan Wang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Huijie Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yingmei Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
9
|
New Comparative Data on the Long Bone Microstructure of Large Extant and Extinct Flightless Birds. DIVERSITY 2022. [DOI: 10.3390/d14040298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Here, we investigate whether bone microanatomy can be used to infer the locomotion mode (cursorial vs. graviportal) of large terrestrial birds. We also reexamine, or describe for the first time, the bone histology of several large extant and extinct flightless birds to (i) document the histovariability between skeletal elements of the hindlimb; (ii) improve our knowledge of the histological diversity of large flightless birds; (iii) and reassess previous hypotheses pertaining to the growth strategies of modern palaeognaths. Our results show that large extinct terrestrial birds, inferred as graviportal based on hindlimb proportions, also have thicker diaphyseal cortices and/or more bony trabeculae in the medullary region than cursorial birds. We also report for the first time the occurrence of growth marks (not associated with an outer circumferential layer-OCL) in the cortices of several extant ratites. These observations support earlier hypotheses that flexible growth patterns can be present in birds when selection pressures for rapid growth within a single year are absent. We also document the occurrence of an OCL in several skeletally mature ratites. Here, the high incidence of pathologies among the modern species is attributed to the fact that these individuals were probably long-lived zoo specimens.
Collapse
|
10
|
Light and high-strength structure inspired by the characteristics of double-nutrient foramens in intertarsal joint of ostrich. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2021. [DOI: 10.1007/s12210-021-00998-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Nieto MN, Degrange FJ, Sellers KC, Pol D, Holliday CM. Biomechanical performance of the cranio-mandibular complex of the small notosuchian Araripesuchus gomesii (Notosuchia, Uruguaysuchidae). Anat Rec (Hoboken) 2021; 305:2695-2707. [PMID: 34132040 DOI: 10.1002/ar.24697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 11/12/2022]
Abstract
Notosuchia is a clade of crocodyliforms that was highly successful and diverse in the Cretaceous of Gondwana. Araripesuchus gomesii is a small notosuchian from the Early Cretaceous of Brazil that belongs to Uruguaysuchidae, one of the subgroups of notosuchians that first radiated, during the Aptian-Albian. Here we present a finite element analysis of A. gomesii based on a model reconstructed from CT scans and performed using published bone properties for crocodiles. The adductor musculature and their respective attachment areas were reconstructed based on Extant Phylogenetic Bracket. Different functional scenarios were tested applying an estimated 158 N bite force: unilateral bite, bilateral bite, pullback, head-shake, and head-twist. The results obtained were compared with those of Alligator mississippiensis, one of its closest living relatives. In the different simulations, the skull and lower jaws of Araripesuchus suffers more stress in the head-shake movement, followed by the unilateral and pullback bites with stress focalized in the premaxillary region. In contrast, the head-twist is the one with smaller stress values. Araripesuchus possess an oreinirostral skull that may provide greater overall resistance in the different scenarios on average, unlike Alligator that has a platyrostral skull with less resistance to dorsoventral mechanical loads. Previous hypotheses that considered A. gomesii as omnivorous coupled with our results, its small size, and likely limited bite force, suggest this taxon probably fed on small prey and other trophic items that could catch and handle entirely with its mouth, such as insects and small vertebrates.
Collapse
Affiliation(s)
- Mauro N Nieto
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), UNC, CONICET, Córdoba, Argentina
| | - Federico J Degrange
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), UNC, CONICET, Córdoba, Argentina
| | - Kaleb C Sellers
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, USA
| | - Diego Pol
- Museo Paleontológico Egidio Feruglio-CONICET, Trelew, Chubut, Argentina
| | - Casey M Holliday
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
12
|
Ramírez A CE, Hurtado-Macías A, Talamantes R, Flores E, Ladrón de Guevara HP, Delgado JI, Estrella RA, Riestra JM, Montes JM, Esmonde-White K, Vardaki M, González-Hernández J, Viveros JM. Assessing mechanical behavior of ostrich and equine trabecular and cortical bone based on depth sensing indentation measurements. J Mech Behav Biomed Mater 2021; 117:104404. [PMID: 33667799 DOI: 10.1016/j.jmbbm.2021.104404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/23/2020] [Accepted: 02/12/2021] [Indexed: 10/22/2022]
Abstract
Guided bone regeneration surgeries are based on grafting a scaffold in the site to be repaired. The main focus of the scaffold is to provide mechanical support to newly formed blood vessels and cells that will colonize the grafted site, achiving bone regenertation. In this regards, the aim of this study was to characterize the anatomy, structular, surface morphologycal, chemical composition, and nanomechanical properties of ostrich and equine trabecular bone. Ostrich and equine specimens were obtained from a local abattoir and bone was obtained by blunt dissection, n = 5. Tissue bone anatomy and trabecular structure were measured using Computerized Axial Tomography (CAT). Atomic Force Microscopy (AFM) and Energy dispersion spectrometry of X-ray (EDS) were used to examine surface morphology and chemical composition of the trabecular ostrich and equine bone. Mechanical behavior was analysted by nanoindentation. Equine specimens were examined as control. CAT results suggest that in terms of anthropometry, ostrich tarsometatarsus bone is more suitable due to its length is 432.56 ± 3.12 mm vs. the highest human bone structures reported, which femur length is 533.66 ± 18.81 mm. Besides, the low radiodensity in the Hounsfield scale exhibits equine trabecular bone more brittle (Av = 1538.4 ± 0.9) than ostrich trabecular bone (Av = 462.1 ± 1.5). EDS showed a slight variation of the element Calcium (Ca2+) ranging from 20% to 25.5% wt in equine bone; the Ca2+ content variation is consistent with the ring-shaped morphology, while in ostrich bone the chemical composition is homogeneous. The elastic modulus, nanohardness (E = 5.3 ± 0.7 GPa, H = 220 ± 10 MPa) and average roughness (Ra = 207 nm) are similar to the human trabecular bone which could reduce the stress shielding, all of these findings suggest that ostrich bone can be promising for native tissue scaffolds for mechanically demanding applications. This research makes innovative contributions to science and provides a framework, which will allow us to address future biomedical tests, and rapidly identify promising organic and sustainable waste for tissue scaffold.
Collapse
Affiliation(s)
- Cecilia E Ramírez A
- Departamento de Química, Departamento de Farmacología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Mexico
| | - Abel Hurtado-Macías
- Departamento de Metalugría e Integridad Estructural, Centro de Investigación de Materiales Avanzados-CIMAV, Chihuahua, Mexico.
| | - Roberto Talamantes
- Departamento de Metalugría e Integridad Estructural, Centro de Investigación de Materiales Avanzados-CIMAV, Chihuahua, Mexico
| | - Edgardo Flores
- Departamento de Biología Celular y Molecular, División de Ciencias Biológica y Agropecuarias, Universidad de Guadalajara, Jalisco, Mexico
| | - Héctor Pérez Ladrón de Guevara
- Departamento de Ciencias Exactas e Ingeniería, Centro Universitario de Lagos, Universidad de Guadalajara, Jalisco, Mexico
| | - J Iván Delgado
- Departamento de Química, Departamento de Farmacología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Mexico
| | - Rubén Anguiano Estrella
- Departamento de Cultivo Celular y Biología Molecular, División de Ciencias Veterinarias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Jalisco, Mexico
| | - Juan Manuel Riestra
- Departamento de Neurocirugía y Columna Vertebral, Instituto Mexicano del Seguro Social-IMSS, Jalisco, Mexico
| | - Jesús Máximo Montes
- Smart Cities Innovation Center, Centro Universitario de Ciencias Económico Administrativas, Universidad de Guadalajara, Jalisco, Mexico
| | | | - Martha Vardaki
- Michael Smith Laboratories, The University of British Columbia, Vancouver, Canada
| | - J González-Hernández
- Centro de Ingeniería y Desarrollo Industrial, Santiago de Querétaro, 76130, Qro, Mexico
| | - Juan M Viveros
- Departamento de Química, Departamento de Farmacología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Mexico
| |
Collapse
|
13
|
Rowe AJ, Snively E. Biomechanics of juvenile tyrannosaurid mandibles and their implications for bite force: Evolutionary biology. Anat Rec (Hoboken) 2021; 305:373-392. [PMID: 33586862 DOI: 10.1002/ar.24602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/25/2022]
Abstract
The tyrannosaurids are among the most well-studied dinosaurs described by science, and analysis of their feeding biomechanics allows for comparison between established tyrannosaurid genera and across ontogeny. 3D finite element analysis (FEA) was used to model and quantify the mechanical properties of the mandibles (lower jaws) of three tyrannosaurine tyrannosaurids of different sizes. To increase evolutionary scope and context for 3D tyrannosaurine results, a broader sample of validated 2D mandible FEA enabled comparisons between ontogenetic stages of Tyrannosaurus rex and other large theropods. It was found that mandibles of small juvenile and large subadult tyrannosaurs experienced lower stress overall because muscle forces were relatively lower, but experienced greater simulated stresses at decreasing sizes when specimen muscle force is normalized. The strain on post-dentary ligaments decreases stress and strain in the posterior region of the dentary and where teeth impacted food. Tension from the lateral insertion of the looping m. ventral pterygoid muscle increases compressive stress on the angular but may decrease anterior bending stress on the mandible. Low mid-mandible bending stresses are congruent with ultra-robust teeth and high anterior bite force in adult T. rex. Mandible strength increases with size through ontogeny in T. rex and phylogenetically among other tyrannosaurids, in addition to that tyrannosaurid mandibles exceed the mandible strength of other theropods at equivalent ramus length. These results may indicate separate predatory strategies used by juvenile and mature tyrannosaurids; juvenile tyrannosaurids lacked the bone-crunching bite of adult specimens and hunted smaller prey, while adult tyrannosaurids fed on larger prey.
Collapse
Affiliation(s)
- Andre J Rowe
- School of Earth Sciences, University of Bristol, Bristol, United Kingdom
| | - Eric Snively
- College of Osteopathic Medicine, Oklahoma State University, Tulsa, Oklahoma, USA
| |
Collapse
|
14
|
Bionic design in anti-bending and lightweight tube based on the tarsometatarsus of ostrich. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2020. [DOI: 10.1007/s12210-020-00876-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Curtis AA, Arbour JH, Santana SE. Mind the gap: natural cleft palates reduce biting performance in bats. J Exp Biol 2020; 223:jeb.196535. [PMID: 31852754 DOI: 10.1242/jeb.196535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 12/12/2019] [Indexed: 02/03/2023]
Abstract
Novel morphological traits pose interesting evolutionary paradoxes when they become widespread in a lineage while being deleterious in others. Cleft palate is a rare congenital condition in mammals in which the incisor-bearing premaxilla bones of the upper jaw develop abnormally. However, ∼50% of bat species have natural, non-pathological cleft palates. We used the family Vespertilionidae as a model and linear and geometric morphometrics within a phylogenetic framework to (1) explore evolutionary patterns in cleft morphology, and (2) test whether cleft morphological variation is correlated with skull shape in bats. We also used finite element (FE) analyses to experimentally test how presence of a cleft palate impacts skull performance during biting in a species with extreme cleft morphology (hoary bat, Lasiurus cinereus). We constructed and compared the performance of two FE models: one based on the hoary bat's natural skull morphology, and another with a digitally filled cleft simulating a complete premaxilla. Results showed that cleft length and width are correlated with skull shape in Vespertilionidae, with narrower, shallower clefts seen in more gracile skulls and broader, deeper clefts in more robust skulls. FE analysis showed that the model with a natural cleft produced lower bite forces, and had higher stress and strain than the model with a filled cleft. In the rostrum, safety factors were 1.59-2.20 times higher in the model with a filled cleft than in the natural model. Our results demonstrate that cleft palates in bats reduce biting performance, and evolution of skull robusticity may compensate for this reduction in performance.
Collapse
Affiliation(s)
- Abigail A Curtis
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - Jessica H Arbour
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - Sharlene E Santana
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA.,Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98195-1800, USA
| |
Collapse
|
16
|
Krahl A, Lipphaus A, Sander MP, Maffucci F, Hochscheid S, Witzel U. Humerus osteology, myology, and finite element structure analysis of Cheloniidae. Anat Rec (Hoboken) 2019; 303:2177-2191. [PMID: 31674155 DOI: 10.1002/ar.24311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/19/2022]
Abstract
Adaptation of osteology and myology lead to the formation of hydrofoil foreflippers in Cheloniidae (all recent sea turtles except Dermochelys coriacea) which are used mainly for underwater flight. Recent research shows the biomechanical advantages of a complex system of agonistic and antagonistic tension chords that reduce bending stress in bones. Finite element structure analysis (FESA) of a cheloniid humerus is used to provide a better understanding of morphology and microanatomy and to link these with the main flipper function, underwater flight. Dissection of a Caretta caretta gave insights into lines of action, that is, the course that a muscle takes between its origin and insertion, of foreflipper musculature. Lines of action were determined by spanning physical threads on a skeleton of Chelonia mydas. The right humerus of this skeleton was micro-CT scanned. Based on the scans, a finite element (FE) model was built and muscle force vectors were entered. Muscle forces were iteratively approximated until a uniform compressive stress distribution was attained. Two load cases, downstroke and upstroke, were computed. We found that muscle wrappings (m. coracobrachialis magnus and brevis, several extensors, humeral head of m. triceps) are crucial in addition to axial loading to obtain homogenous compressive loading in all bone cross-sections. Detailed knowledge on muscle disposition leads to compressive stress distribution in the FE model which corresponds with the bone microstructure. The FE analysis of the cheloniid humerus shows that bone may be loaded mainly by compression if the bending moments are minimized.
Collapse
Affiliation(s)
- Anna Krahl
- Biomechanics Research Group, Lehrstuhl für Produktentwicklung, Faculty of Mechanical Engineering, Ruhr-University Bochum, Bochum, Germany
| | - Andreas Lipphaus
- Biomechanics Research Group, Lehrstuhl für Produktentwicklung, Faculty of Mechanical Engineering, Ruhr-University Bochum, Bochum, Germany
| | - Martin P Sander
- Institute of Geosciences, Division of Paleontology, University of Bonn, Bonn, Germany
| | - Fulvio Maffucci
- Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Sandra Hochscheid
- Marine Turtle Research Center, Stazione Zoologica Anton Dohrn, Portici, Italy
| | - Ulrich Witzel
- Biomechanics Research Group, Lehrstuhl für Produktentwicklung, Faculty of Mechanical Engineering, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
17
|
Bishop PJ, Hocknull SA, Clemente CJ, Hutchinson JR, Barrett RS, Lloyd DG. Cancellous bone and theropod dinosaur locomotion. Part II-a new approach to inferring posture and locomotor biomechanics in extinct tetrapod vertebrates. PeerJ 2018; 6:e5779. [PMID: 30402348 PMCID: PMC6215447 DOI: 10.7717/peerj.5779] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 09/18/2018] [Indexed: 01/31/2023] Open
Abstract
This paper is the second of a three-part series that investigates the architecture of cancellous bone in the main hindlimb bones of theropod dinosaurs, and uses cancellous bone architectural patterns to infer locomotor biomechanics in extinct non-avian species. Cancellous bone is widely known to be highly sensitive to its mechanical environment, and therefore has the potential to provide insight into locomotor biomechanics in extinct tetrapod vertebrates such as dinosaurs. Here in Part II, a new biomechanical modelling approach is outlined, one which mechanistically links cancellous bone architectural patterns with three-dimensional musculoskeletal and finite element modelling of the hindlimb. In particular, the architecture of cancellous bone is used to derive a single 'characteristic posture' for a given species-one in which bone continuum-level principal stresses best align with cancellous bone fabric-and thereby clarify hindlimb locomotor biomechanics. The quasi-static approach was validated for an extant theropod, the chicken, and is shown to provide a good estimate of limb posture at around mid-stance. It also provides reasonable predictions of bone loading mechanics, especially for the proximal hindlimb, and also provides a broadly accurate assessment of muscle recruitment insofar as limb stabilization is concerned. In addition to being useful for better understanding locomotor biomechanics in extant species, the approach hence provides a new avenue by which to analyse, test and refine palaeobiomechanical hypotheses, not just for extinct theropods, but potentially many other extinct tetrapod groups as well.
Collapse
Affiliation(s)
- Peter J. Bishop
- Geosciences Program, Queensland Museum, Brisbane, QLD, Australia
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- Gold Coast Orthopaedic Research, Engineering and Education Alliance, Menzies Health Institute Queensland, Gold Coast, QLD, Australia
- Current affiliation: Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - Scott A. Hocknull
- Geosciences Program, Queensland Museum, Brisbane, QLD, Australia
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- School of Biosciences, University of Melbourne, Melbourne, VIC, Australia
| | - Christofer J. Clemente
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Biological Sciences, University of Queensland, Brisbane, QLD, Australia
| | - John R. Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - Rod S. Barrett
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- Gold Coast Orthopaedic Research, Engineering and Education Alliance, Menzies Health Institute Queensland, Gold Coast, QLD, Australia
| | - David G. Lloyd
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- Gold Coast Orthopaedic Research, Engineering and Education Alliance, Menzies Health Institute Queensland, Gold Coast, QLD, Australia
| |
Collapse
|
18
|
Sellers WI, Pond SB, Brassey CA, Manning PL, Bates KT. Investigating the running abilities of Tyrannosaurus rex using stress-constrained multibody dynamic analysis. PeerJ 2017; 5:e3420. [PMID: 28740745 PMCID: PMC5518979 DOI: 10.7717/peerj.3420] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/16/2017] [Indexed: 01/10/2023] Open
Abstract
The running ability of Tyrannosaurus rex has been intensively studied due to its relevance to interpretations of feeding behaviour and the biomechanics of scaling in giant predatory dinosaurs. Different studies using differing methodologies have produced a very wide range of top speed estimates and there is therefore a need to develop techniques that can improve these predictions. Here we present a new approach that combines two separate biomechanical techniques (multibody dynamic analysis and skeletal stress analysis) to demonstrate that true running gaits would probably lead to unacceptably high skeletal loads in T. rex. Combining these two approaches reduces the high-level of uncertainty in previous predictions associated with unknown soft tissue parameters in dinosaurs, and demonstrates that the relatively long limb segments of T. rex—long argued to indicate competent running ability—would actually have mechanically limited this species to walking gaits. Being limited to walking speeds contradicts arguments of high-speed pursuit predation for the largest bipedal dinosaurs like T. rex, and demonstrates the power of multiphysics approaches for locomotor reconstructions of extinct animals.
Collapse
Affiliation(s)
- William I Sellers
- School of Earth and Environmental Sciences, University of Manchester, Manchester, United Kingdom
| | - Stuart B Pond
- Ocean and Earth Science, National Oceanography Centre, University of Southampton, Southampton, United Kingdom
| | - Charlotte A Brassey
- School of Science and the Environment, The Manchester Metropolitan University, Manchester, United Kingdom
| | - Philip L Manning
- School of Earth and Environmental Sciences, University of Manchester, Manchester, United Kingdom.,Department of Geology and Environmental Geosciences, College of Charleston, Charleston, United States of America
| | - Karl T Bates
- Department of Musculoskeletal Biology, Institute of Aging and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
19
|
Chadwick KP, Shefelbine SJ, Pitsillides AA, Hutchinson JR. Finite-element modelling of mechanobiological factors influencing sesamoid tissue morphology in the patellar tendon of an ostrich. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170133. [PMID: 28680670 PMCID: PMC5493912 DOI: 10.1098/rsos.170133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 05/09/2017] [Indexed: 06/07/2023]
Abstract
The appearance and shape of sesamoid bones within a tendon or ligament wrapping around a joint are understood to be influenced by both genetic and epigenetic factors. Ostriches (Struthio camelus) possess two sesamoid patellae (kneecaps), one of which (the distal patella) is unique to their lineage, making them a good model for investigating sesamoid tissue development and evolution. Here we used finite-element modelling to test the hypothesis that specific mechanical cues in the ostrich patellar tendon favour the formation of multiple patellae. Using three-dimensional models that allow application of loading conditions in which all muscles, or only distal or only proximal muscles to be activated, we found that there were multiple regions within the tendon where transformation from soft tissue to fibrocartilage was favourable and therefore a potential for multiple patellae based solely upon mechanical stimuli. While more studies are needed to better understand universal mechanobiological principles as well as full developmental processes, our findings suggest that a tissue differentiation algorithm using shear strain and compressive strain as inputs may be a roughly effective predictor of the tissue differentiation required for sesamoid development.
Collapse
Affiliation(s)
- Kyle P. Chadwick
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hatfield, UK
| | - Sandra J. Shefelbine
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
| | - Andrew A. Pitsillides
- Skeletal Biology Group, Department of Comparative Biomedical Sciences, The Royal Veterinary College, London, UK
| | - John R. Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, The Royal Veterinary College, Hatfield, UK
| |
Collapse
|