1
|
Dallinger R. Metals and metallothionein evolution in snails: a contribution to the concept of metal-specific functionality from an animal model group. Biometals 2024; 37:671-696. [PMID: 38416244 PMCID: PMC11101346 DOI: 10.1007/s10534-024-00584-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/10/2024] [Indexed: 02/29/2024]
Abstract
This is a critical review of what we know so far about the evolution of metallothioneins (MTs) in Gastropoda (snails, whelks, limpets and slugs), an important class of molluscs with over 90,000 known species. Particular attention will be paid to the evolution of snail MTs in relation to the role of some metallic trace elements (cadmium, zinc and copper) and their interaction with MTs, also compared to MTs from other animal phyla. The article also highlights the important distinction, yet close relationship, between the structural and metal-selective binding properties of gastropod MTs and their physiological functionality in the living organism. It appears that in the course of the evolution of Gastropoda, the trace metal cadmium (Cd) must have played an essential role in the development of Cd-selective MT variants. It is shown how the structures and Cd-selective binding properties in the basal gastropod clades have evolved by testing and optimizing different combinations of ancestral and novel MT domains, and how some of these domains have become established in modern and recent gastropod clades. In this context, the question of how adaptation to new habitats and lifestyles has affected the original MT traits in different gastropod lineages will also be addressed. The 3D structures and their metal binding preferences will be highlighted exemplarily in MTs of modern littorinid and helicid snails. Finally, the importance of the different metal requirements and pathways in snail tissues and cells for the shaping and functionality of the respective MT isoforms will be shown.
Collapse
|
2
|
Ferreira-Cravo M, Moreira DC, Hermes-Lima M. Glutathione Depletion Disrupts Redox Homeostasis in an Anoxia-Tolerant Invertebrate. Antioxidants (Basel) 2023; 12:1197. [PMID: 37371926 PMCID: PMC10294987 DOI: 10.3390/antiox12061197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
The upregulation of endogenous antioxidants is a widespread phenomenon in animals that tolerate hypoxia/anoxia for extended periods. The identity of the mobilized antioxidant is often context-dependent and differs among species, tissues, and stresses. Thus, the contribution of individual antioxidants to the adaptation to oxygen deprivation remains elusive. This study investigated the role of glutathione (GSH) in the control of redox homeostasis under the stress of anoxia and reoxygenation in Helix aspersa, an animal model of anoxia tolerance. To do so, the total GSH (tGSH) pool was depleted with l-buthionine-(S, R)-sulfoximine (BSO) before exposing snails to anoxia for 6 h. Then, the concentration of GSH, glutathione disulfide (GSSG), and oxidative stress markers (TBARS and protein carbonyl) and the activity of antioxidant enzymes (catalase, glutathione peroxidase, glutathione transferase, glutathione reductase, and glucose 6-phosphate dehydrogenase) were measured in foot muscle and hepatopancreas. BSO alone induced tGSH depletion by 59-75%, but no other changes happened in other variables, except for foot GSSG. Anoxia elicited a 110-114% increase in glutathione peroxidase in the foot; no other changes occurred during anoxia. However, GSH depletion before anoxia increased the GSSG/tGSH ratio by 84-90% in both tissues, which returned to baseline levels during reoxygenation. Our findings indicate that glutathione is required to withstand the oxidative challenge induced by hypoxia and reoxygenation in land snails.
Collapse
Affiliation(s)
- Marlize Ferreira-Cravo
- Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
- Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Daniel C. Moreira
- Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
- Research Center in Morphology and Applied Immunology, Faculty of Medicine, University of Brasilia, Brasilia 70910-900, Brazil
| | - Marcelo Hermes-Lima
- Department of Cell Biology, University of Brasilia, Brasilia 70910-900, Brazil
| |
Collapse
|
3
|
Effects of Cadmium Sulfate on the Brown Garden Snail Cornu aspersum: Implications for DNA Methylation. TOXICS 2021; 9:toxics9110306. [PMID: 34822697 PMCID: PMC8619149 DOI: 10.3390/toxics9110306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022]
Abstract
An extensive literature exists regarding the cellular, physiological, and genetic effects of cadmium (Cd)—A highly toxic, but commonly used trace metal in modern industry. However, limited data are available on its epigenetic effects, especially for terrestrial sentinel invertebrates. We determined Cd retention, total DNA methylation, and the methylation status of 5′ end of the Cd-MT gene in the hepatopancreas of the brown garden snail, Cornu aspersum, fed Cd sulfate for four weeks. Bodyweight changes and survival were also measured. Hepatopancreas cadmium increased in a dose-dependent manner from the third-lowest dose onward, with very large amounts being found for the highest treatment group. However, no mortalities occurred, irrespective of dietary Cd dose. We identified significant genome-wide hypermethylation in specimens given the highest dose, which overlapped with a significant bodyweight decrease. The Cd-MT gene showed an unmethylated 5′ end of the Cd-MT gene and this status was not affected by cadmium exposure. Hepatopancreas DNA methylation is as sensitive as bodyweight to non-lethal concentrations of dietary Cd given as cadmium sulfate but less responsive than tissue accumulation. Such an exposure event, by contrast, does not affect the methylation status of the Cd-MT gene 5′ end.
Collapse
|
4
|
Kukavica B, Davidović-Plavšić B, Dmitrović D, Šukalo G, Savić A, Pešić V. Seasonal Dynamics of Oxidative and Antioxidative Parameters in Sadleriana fluminensis (Gastropoda: Hydrobiidae). MALACOLOGIA 2021. [DOI: 10.4002/040.064.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Biljana Kukavica
- University of Banja Luka, Faculty of Natural Sciences and Mathematics, Mladena Stojanovića 2, 78 000 Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| | - Biljana Davidović-Plavšić
- University of Banja Luka, Faculty of Natural Sciences and Mathematics, Mladena Stojanovića 2, 78 000 Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| | - Dejan Dmitrović
- University of Banja Luka, Faculty of Natural Sciences and Mathematics, Mladena Stojanovića 2, 78 000 Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| | - Goran Šukalo
- University of Banja Luka, Faculty of Natural Sciences and Mathematics, Mladena Stojanovića 2, 78 000 Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| | - Ana Savić
- Department of Biology and Ecology, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia
| | - Vladimir Pešić
- University of Montenegro, Cetinjski put bb, 81000 Podgorica, Montenegro
| |
Collapse
|
5
|
Abstract
Background: Bio-indicator systems are vital in terms of monitoring of pollutants around the world. The impact of environmental change can be monitored by employing the responsive behaviour of snails. Heavy metal and organic pollutants affects snail reproduction, mortality, and normal metabolic activities. Various changes like a discontinuity in food intake, growth rate, twitching, and quenching of tentacles, are the biomarkers of the snails for biomonitoring. Different snails can bio-monitor eco-toxicological urban pollution, oil pollutant, terrestrial pollution, pesticide pollutants, mercury contamination, ammonia, chlorinated paraffin in soil, ethanol in water, ocean acidification pollutions. These animals can also make bio-sense about diverse environment spheres, which include the biosphere, lithosphere, anthroposphere, cryosphere, and hydrosphere.Methods: We examined the scientific literature and related articles listed in Pub-med, Google Scholar reporting on biomonitoring potential and biomarkers expression of various snail species and consequently explore the value of snails in the respective field by discussing various outcomes of a number of studies on the pollution biomonitoring and biosensing capabilities.Results: Several terrestrial, freshwater and sea snail species are characterized by the high sense of biomonitoring and biosensing potential. Various biomarkers such as expression of heat shock proteins and metallothioneins in the body are found to be the essential in-vivo biomarkers for pollution biomonitoring.Conclusion: It is observed that snails offer an environment friendly approach for the environmental bio monitoring by expressing their numerous physiological, biochemical, genetical and histological biomarkers in their body. Thus, it proved to be a critical bio monitoring tool and early warning indicators.
Collapse
Affiliation(s)
- Varun Dhiman
- Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamsala, India
| | - Deepak Pant
- School of Chemical Sciences, Central University of Haryana, Mahendragarh, India
| |
Collapse
|
6
|
Pedrini-Martha V, Schnegg R, Schäfer GG, Lieb B, Salvenmoser W, Dallinger R. Responsiveness of metallothionein and hemocyanin genes to cadmium and copper exposure in the garden snail Cornu aspersum. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 335:228-238. [PMID: 33146003 PMCID: PMC7984241 DOI: 10.1002/jez.2425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/13/2020] [Indexed: 12/21/2022]
Abstract
Terrestrial gastropods express metal-selective metallothioneins (MTs) by which they handle metal ions such as Zn2+ , Cd2+ , and Cu+ /Cu2+ through separate metabolic pathways. At the same time, they depend on the availability of sufficient amounts of Cu as an essential constituent of their respiratory protein, hemocyanin (Hc). It was, therefore, suggested that in snails Cu-dependent MT and Hc pathways might be metabolically connected. In fact, the Cu-specific snail MT (CuMT) is exclusively expressed in rhogocytes, a particular molluscan cell type present in the hemocoel and connective tissues. Snail rhogocytes are also the sites of Hc synthesis. In the present study, possible interactions between the metal-regulatory and detoxifying activity of MTs and the Cu demand of Hc isoforms was explored in the edible snail Cornu aspersum, one of the most common European helicid land snails. This species possesses CdMT and CuMT isoforms involved in metal-selective physiological tasks. In addition, C. aspersum expresses three different Hc isoforms (CaH ɑD, CaH ɑN, CaH β). We have examined the effect of Cd2+ and Cu2+ exposure on metal accumulation in the midgut gland and mantle of C. aspersum, testing the impact of these metals on transcriptional upregulation of CdMT, CuMT, and the three Hc genes in the two organs. We found that the CuMT and CaH ɑD genes exhibit an organ-specific transcriptional upregulation in the midgut gland of Cu-exposed snails. These results are discussed in view of possible interrelationships between the metal-selective activity of snail MT isoforms and the synthesis and metabolism of Hc isoforms.
Collapse
Affiliation(s)
- Veronika Pedrini-Martha
- Department of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Raimund Schnegg
- Department of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | | | - Bernhard Lieb
- Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Willi Salvenmoser
- Department of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Reinhard Dallinger
- Department of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
7
|
Breitwieser M, Bruneau M, Barbarin M, Churlaud C, Mouneyrac C, Thomas H. Is metallothionein in Mimachlamys varia a suitable biomarker of trace elements in the waters of the French Atlantic coast? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:20259-20272. [PMID: 32240510 DOI: 10.1007/s11356-020-08392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
The development of human activities along the Atlantic coast is responsible for the chronic pollution of the environment with organic and inorganic contaminants. In recent years, environmental regulations such as the MSFD (2008/56/EC) and the OSPAR commission have been developed to preserve coastal environments, giving rise to studies in aquatic biomonitoring. One of them is to use biomarkers to observe the pollutants impact on coastal species such as the bivalve Mimachlamys varia. A defence biomarker was considered in this research to study metal accumulation, with metallothioneins (Mts) involved in the uptake, storage and excretion of metals. To achieve this, bivalves were collected in March 2016 in seven sites along the French Atlantic coasts (open area) and in harbours (semi-open area) with contrasting levels of pollution. Biomarker assays were performed to compare the responses in several tissues (digestive glands, gonads, gills) to inorganic pollutants. The results showed that the accumulation of trace element was different depending on the site and the organ. Mts concentrations were greater in digestive gland compared with gills. Usually, Mts levels were decreased in site showing elevated levels of trace element which explained by downregulation of Mts. Furthermore, results of correlation between Mts and inorganic contaminants and the influence of abiotic factors on Mts suggested that Mts in M. varia is not a relevant biomarker in environments exposed to cocktails of contaminants.
Collapse
Affiliation(s)
- Marine Breitwieser
- Littoral Environnement & Sociétés (LIENSs) UMR 7266 CNRS, 2 rue Olympe de Gouges, 17000, La Rochelle, France.
| | - Mélanie Bruneau
- Mer, Molécules, Santé (MMS, EA2160), Université Catholique de l'Ouest (UCO), 3 place André Leroy, 49000, Angers, France
| | - Marine Barbarin
- Littoral Environnement & Sociétés (LIENSs) UMR 7266 CNRS, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - Carine Churlaud
- Littoral Environnement & Sociétés (LIENSs) UMR 7266 CNRS, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - Catherine Mouneyrac
- Mer, Molécules, Santé (MMS, EA2160), Université Catholique de l'Ouest (UCO), 3 place André Leroy, 49000, Angers, France
| | - Hélène Thomas
- Littoral Environnement & Sociétés (LIENSs) UMR 7266 CNRS, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| |
Collapse
|
8
|
Migliaccio V, Lionetti L, Putti R, Scudiero R. Exposure to Dichlorodiphenyldichloroethylene (DDE) and Metallothionein Levels in Rats Fed with Normocaloric or High-Fat Diet: A Review. Int J Mol Sci 2020; 21:ijms21051903. [PMID: 32164371 PMCID: PMC7084634 DOI: 10.3390/ijms21051903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 02/08/2023] Open
Abstract
The growing number of studies on metallothioneins (MTs), cysteine-rich metal-binding proteins, have been disclosing new functions of these proteins. Thanks to their inducibility, they were considered to play a pivotal role in regulating trace metals homeostasis and in detoxification from heavy metals; nowadays, it is known that they are involved in various physiological and pathological processes, such as regulation of apoptosis, elimination of free radicals, and protection of nucleic acids against toxic insults. MT induction has been demonstrated following stress factors other than heavy metals, such as endocrine-disrupting chemicals, insecticides, and herbicides. However, retrieved data are often controversial: in some cases, xenobiotics elicit MT expression and synthesis; under different conditions, they lead to a decrease in cellular MT content. This review describes the MT response to dichlorodiphenyltrichloroethane (DDT) contamination in mammalian tissues. In particular, attention focuses on changes in MT expression, synthesis, and localization in rat liver, kidneys, and testes following oral administration of dichlorodiphenyldichloroethylene (DDE), the main metabolite of DDT, under normal dietary conditions or in combination with a high fat diet potentially able to increase the cellular uptake of this lipophilic pesticide. The potential connection between MT expression and synthesis, lipophilic substances and trace metals availability is also discussed.
Collapse
Affiliation(s)
- Vincenzo Migliaccio
- Department of Chemistry and Biology “Adolfo Zambelli”, University of Salerno, 84084 Fisciano (Sa), Italy; (V.M.); (L.L.)
| | - Lillà Lionetti
- Department of Chemistry and Biology “Adolfo Zambelli”, University of Salerno, 84084 Fisciano (Sa), Italy; (V.M.); (L.L.)
| | - Rosalba Putti
- Department of Biology, University Federico II, 80126 Napoli, Italy;
| | - Rosaria Scudiero
- Department of Biology, University Federico II, 80126 Napoli, Italy;
- Correspondence:
| |
Collapse
|
9
|
Cadmium Uptake, MT Gene Activation and Structure of Large-Sized Multi-Domain Metallothioneins in the Terrestrial Door Snail Alinda biplicata (Gastropoda, Clausiliidae). Int J Mol Sci 2020; 21:ijms21051631. [PMID: 32120996 PMCID: PMC7084494 DOI: 10.3390/ijms21051631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Terrestrial snails (Gastropoda) possess Cd-selective metallothioneins (CdMTs) that inactivate Cd2+ with high affinity. Most of these MTs are small Cysteine-rich proteins that bind 6 Cd2+ equivalents within two distinct metal-binding domains, with a binding stoichiometry of 3 Cd2+ ions per domain. Recently, unusually large, so-called multi-domain MTs (md-MTs) were discovered in the terrestrial door snail Alinda biplicata (A.b.). The aim of this study is to evaluate the ability of A.b. to cope with Cd stress and the potential involvement of md-MTs in its detoxification. Snails were exposed to increasing Cd concentrations, and Cd-tissue concentrations were quantified. The gene structure of two md-MTs (9md-MT and 10md-MT) was characterized, and the impact of Cd exposure on MT gene transcription was quantified via qRT PCR. A.b. efficiently accumulates Cd at moderately elevated concentrations in the feed, but avoids food uptake at excessively high Cd levels. The structure and expression of the long md-MT genes of A.b. were characterized. Although both genes are intronless, they are still transcribed, being significantly upregulated upon Cd exposure. Overall, our results contribute new knowledge regarding the metal handling of Alinda biplicata in particular, and the potential role of md-MTs in Cd detoxification of terrestrial snails, in general.
Collapse
|
10
|
Dallinger R, Zerbe O, Baumann C, Egger B, Capdevila M, Palacios Ò, Albalat R, Calatayud S, Ladurner P, Schlick-Steiner BC, Steiner FM, Pedrini-Martha V, Lackner R, Lindner H, Dvorak M, Niederwanger M, Schnegg R, Atrian S. Metallomics reveals a persisting impact of cadmium on the evolution of metal-selective snail metallothioneins. Metallomics 2020; 12:702-720. [DOI: 10.1039/c9mt00259f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The tiny contribution of cadmium (Cd) to the composition of the earth's crust contrasts with its high biological significance. We suggest that in gastropod clades, the protein family of metallothioneins (MTs) has evolved to specifically detoxify Cd.
Collapse
Affiliation(s)
- Reinhard Dallinger
- Department of Zoology
- University of Innsbruck
- Austria
- Center for Molecular Biosciences Innsbruck
- Austria
| | - Oliver Zerbe
- Department of Chemistry
- University of Zürich
- Switzerland
| | | | | | - Mercé Capdevila
- Departament de Química
- Universitat Autònoma de Barcelona
- Spain
| | - Òscar Palacios
- Departament de Química
- Universitat Autònoma de Barcelona
- Spain
| | | | | | - Peter Ladurner
- Department of Zoology
- University of Innsbruck
- Austria
- Center for Molecular Biosciences Innsbruck
- Austria
| | | | | | | | | | - Herbert Lindner
- Division of Clinical Biochemistry
- Innsbruck Medical University
- Austria
| | | | | | | | | |
Collapse
|
11
|
Dvorak M, Schnegg R, Niederwanger M, Pedrini-Martha V, Ladurner P, Lindner H, Kremser L, Lackner R, Dallinger R. Cadmium Pathways in Snails Follow a Complementary Strategy between Metallothionein Detoxification and Auxiliary Inactivation by Phytochelatins. Int J Mol Sci 2019; 21:ijms21010007. [PMID: 31861343 PMCID: PMC6981842 DOI: 10.3390/ijms21010007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/02/2019] [Accepted: 12/14/2019] [Indexed: 11/16/2022] Open
Abstract
Metal detoxification is crucial for animals to cope with environmental exposure. In snails, a pivotal role in protection against cadmium (Cd) is attributed to metallothioneins (MTs). Some gastropod species express, in a lineage-specific manner, Cd-selective MTs devoted exclusively to the binding and detoxification of this single metal, whereas other species of snails possess non-selective MTs, but still show a high tolerance against Cd. An explanation for this may be that invertebrates and in particular snails may also synthetize phytochelatins (PCs), originally known to be produced by plants, to provide protection against metal or metalloid toxicity. Here we demonstrate that despite the fact that similar mechanisms for Cd inactivation exist in snail species through binding of the metal to MTs, the actual detoxification pathways for this metal may follow different traits in a species-specific manner. In particular, this depends on the detoxification capacity of MTs due to their Cd-selective or non-specific binding features. In the terrestrial slug Arion vulgaris, for example, Cd is solely detoxified by a Cd-selective MT isoform (AvMT1). In contrast, the freshwater snail Biomphalaria glabrata activates an additional pathway for metal inactivation by synthesizing phytochelatins, which compensate for the insufficient capacity of its non-selective MT system to detoxify Cd. We hypothesize that in other snails and invertebrate species, too, an alternative inactivation of the metal by PCs may occur, if their MT system is not Cd-selective enough, or its Cd loading capacity is exhausted.
Collapse
Affiliation(s)
- Martin Dvorak
- Institute of Zoology and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Raimund Schnegg
- Institute of Zoology and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Michael Niederwanger
- Institute of Zoology and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Veronika Pedrini-Martha
- Institute of Zoology and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Peter Ladurner
- Institute of Zoology and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Herbert Lindner
- Institute of Clinical Biochemistry, Innsbruck Medical University, Biocenter, Innrain 80, A-6020 Innsbruck, Austria
| | - Leopold Kremser
- Institute of Clinical Biochemistry, Innsbruck Medical University, Biocenter, Innrain 80, A-6020 Innsbruck, Austria
| | - Reinhard Lackner
- Institute of Zoology and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
- Correspondence: (R.L.); (R.D.)
| | - Reinhard Dallinger
- Institute of Zoology and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
- Correspondence: (R.L.); (R.D.)
| |
Collapse
|
12
|
Beil A, Jurt S, Walser R, Schönhut T, Güntert P, Palacios Ò, Atrian S, Capdevila M, Dallinger R, Zerbe O. The Solution Structure and Dynamics of Cd-Metallothionein from Helix pomatia Reveal Optimization for Binding Cd over Zn. Biochemistry 2019; 58:4570-4581. [DOI: 10.1021/acs.biochem.9b00830] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrea Beil
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Simon Jurt
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Reto Walser
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Tanja Schönhut
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Peter Güntert
- Institute of Biophysical Chemistry, Goethe-University Frankfurt am Main, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main, Germany
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Òscar Palacios
- Departmento de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Silvia Atrian
- Departmento de Genètica, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 645, E-08028 Barcelona, Spain
| | - Mercè Capdevila
- Departmento de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Reinhard Dallinger
- Institute of Zoology and Center of Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria
| | - Oliver Zerbe
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
13
|
Cadmium-dependent expression of a new metallothionein identified in Trichomonas vaginalis. Biometals 2019; 32:887-899. [DOI: 10.1007/s10534-019-00220-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/28/2019] [Indexed: 10/25/2022]
|
14
|
Schmielau L, Dvorak M, Niederwanger M, Dobieszewski N, Pedrini-Martha V, Ladurner P, Pedregal JRG, Maréchal JD, Dallinger R. Differential response to Cadmium exposure by expression of a two and a three-domain metallothionein isoform in the land winkle Pomatias elegans: Valuating the marine heritage of a land snail. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:561-571. [PMID: 30121534 DOI: 10.1016/j.scitotenv.2018.07.426] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/16/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
Through evolution, marine snails have adapted several times independently to terrestrial life. A prime example for such transitions is the adaptation to terrestrial conditions in members of the gastropod clade of Littorinoidea (Caenogastropoda). Some species of this lineage like the periwinkle (Littorina littorea), live in intertidal habitats, where they are intermittently exposed to semi-terrestrial conditions. Pomatias elegans is a close relative of Littorina littorea that has successfully colonized terrestrial habitats. Evolutionary transitions from marine to terrestrial conditions have often been fostered in marine ancestors by acquisition of physiological pre-adaptations to terrestrial life. Such pre-adaptations are based, among others, on the optimization of a wide repertoire of stress resistance mechanisms, such as the expression of metal inactivating metallothioneins (MTs). The objective of our study was to explore the Cd handling strategy in the terrestrial snail Pomatias elegans in comparison to that observed previously in Littorina littorea. After Cd exposure, the metal is accumulated mainly in the midgut gland of Pomatias elegans, in a similar way as in its marine relative. Upon Cd exposure, Pomatias elegans expresses Cd-specific MTs, as also described from Littorina littorea. In contrast to the latter species, however, the detoxification of Cd in Pomatias elegans is mediated by two different MT isoforms, one two-domain and one three-domain MT. Although the MT proteins of both species are homologous and clearly originate from one common ancestor, the three-domain MT isoform of Pomatias elegans has evolved independently from the three-domain MT of its marine counterpart, probably by addition of a third domain to the pre-existing two-domain MT. Obviously, the occurrence of homologous MT structures in both species is a hereditary character, whereas the differentiation into two distinct MT isoforms with different upregulation capacities in Pomatias elegans is an adaptive feature that probably emerged upon transition to life on land.
Collapse
Affiliation(s)
- Lara Schmielau
- Department of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Martin Dvorak
- Department of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Michael Niederwanger
- Department of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Nicole Dobieszewski
- Department of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Veronika Pedrini-Martha
- Department of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Peter Ladurner
- Department of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | | | - Jean-Didier Maréchal
- Insilichem, Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Reinhard Dallinger
- Department of Zoology and Center of Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| |
Collapse
|
15
|
Cortés-Gómez AA, Morcillo P, Guardiola FA, Espinosa C, Esteban MA, Cuesta A, Girondot M, Romero D. Molecular oxidative stress markers in olive ridley turtles (Lepidochelys olivacea) and their relation to metal concentrations in wild populations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:156-167. [PMID: 29073523 DOI: 10.1016/j.envpol.2017.10.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 06/07/2023]
Abstract
Due to their longevity and extensive migration areas, marine turtles are able to accumulate diverse contaminants over many years and as a consequence they represent an interesting bioindicator species for marine ecosystem pollution. Metals provoke toxicological effects in many aquatic animal species, but marine turtles have been under-investigated in this area. Thus, we have determined the presence of certain inorganic elements (As, Cd, Cu, Ni, Pb, Se and Zn) in olive ridley turtles (Lepidochelys olivacea) and related them to metallothionein (MT), superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) transcription and/or enzymatic activities. Gene expression of sod, cat and gr was found to be higher in blood than liver or kidney but most of the significant relationships were found in liver, not only for gene expression but also for enzyme activities. This must be related to the role the liver has as the first filter organ. Several positive relationships of sod, cat and gr gene expression in the different tissues were found in this population, as well as very high Cd concentrations. This could mean that these turtles are adapting to the metals-production of ROS and damage through a high transcription of these antioxidants. Multiple positive relationships with GR seem to be part of its compensatory effect due to the decrease of SOD production against the high and chronic exposure to certain xenobiotics. CAT, on the other hand, seems not to be used much, and glutathione detoxification of H2O2 may be more important in this species. Finally, despite the very high Cd concentrations found in this population, no significant relationship was found in any tissue with metallothionein gene expression. These results, along with very high Cd concentrations and a negative relationship with Cu, lead us to consider some kind of disruption in mt gene expression in these turtles.
Collapse
Affiliation(s)
- Adriana A Cortés-Gómez
- Laboratoire d'Ecologie Systématique et Evolution, Université Paris-Sud, AgroParisTech, CNRS, Paris Saclay, 91405 Orsay, France; Toxicology Area, Faculty of Veterinary, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain.
| | - Patricia Morcillo
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain.
| | - Francisco A Guardiola
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain; Fish Nutrition & Immunobiology Group, Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), University of Porto, Porto, Portugal.
| | - Cristobal Espinosa
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain.
| | - María A Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain
| | - Alberto Cuesta
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain.
| | - Marc Girondot
- Laboratoire d'Ecologie Systématique et Evolution, Université Paris-Sud, AgroParisTech, CNRS, Paris Saclay, 91405 Orsay, France.
| | - Diego Romero
- Toxicology Area, Faculty of Veterinary, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
16
|
Pedrini-Martha V, Schnegg R, Baurand PE, deVaufleury A, Dallinger R. The physiological role and toxicological significance of the non-metal-selective cadmium/copper-metallothionein isoform differ between embryonic and adult helicid snails. Comp Biochem Physiol C Toxicol Pharmacol 2017; 199:38-47. [PMID: 28254493 DOI: 10.1016/j.cbpc.2017.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 11/20/2022]
Abstract
Metal regulation is essential for terrestrial gastropods to survive. In helicid snails, two metal-selective metallothionein (MT) isoforms with different functions are expressed. A cadmium-selective isoform (CdMT) plays a major role in Cd2+ detoxification and stress response, whereas a copper-selective MT (CuMT) is involved in Cu homeostasis and hemocyanin synthesis. A third, non-metal-selective isoform, called Cd/CuMT, was first characterized in Cantareus aspersus. The aim of this study was to quantify the transcriptional activity of all three MT genes in unexposed and metal-exposed (Cd, Cu) embryonic Roman snails. In addition, the complete Cd/CuMT mRNA of the Roman snail (Helix pomatia) was characterized, and its expression quantified in unexposed and Cd-treated adult individuals. In embryos of Helix pomatia, the Cd/CuMT gene was induced upon Cu exposure. Its transcription levels were many times higher than that of the other two MT genes, and also exceeded by far the Cd/CuMT mRNA concentrations of adult snails. In the hepatopancreas of adult Roman snails, no Cd/CuMT could be detected at the protein level, irrespective of whether the snails had been exposed to Cd or not. This contrasts with the situation in the near relative, Cantareus aspersus. It appeared that the 3'-UTR of the Cd/CuMT mRNA differed largely between Cantareus aspersus and Helix pomatia, being larger in the latter species, with a number of putative binding sites for proteins and miRNAs known to inhibit mRNA translation. We suggest this as a possible mechanism responsible for the lack of Cd/CuMT protein expression in adult Roman snails.
Collapse
Affiliation(s)
| | - Raimund Schnegg
- Department of Zoology, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Pierre-Emmanuel Baurand
- Chrono-Environnement, UMR 6249 University of Franche-Comté, 16 route de Gray, 25030 Besançon cedex, France
| | - Annette deVaufleury
- Chrono-Environnement, UMR 6249 University of Franche-Comté, 16 route de Gray, 25030 Besançon cedex, France; Department of Health Safety Environment, avenue des Rives du Lac, BP179, 70003 Vesoul cedex, France
| | - Reinhard Dallinger
- Department of Zoology, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| |
Collapse
|
17
|
Niederwanger M, Dvorak M, Schnegg R, Pedrini-Martha V, Bacher K, Bidoli M, Dallinger R. Challenging the Metallothionein (MT) Gene of Biomphalaria glabrata: Unexpected Response Patterns Due to Cadmium Exposure and Temperature Stress. Int J Mol Sci 2017; 18:E1747. [PMID: 28800079 PMCID: PMC5578137 DOI: 10.3390/ijms18081747] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 02/04/2023] Open
Abstract
Metallothioneins (MTs) are low-molecular-mass, cysteine-rich, metal binding proteins. In most animal species, they are involved in metal homeostasis and detoxification, and provide protection from oxidative stress. Gastropod MTs are highly diversified, exhibiting unique features and adaptations like metal specificity and multiplications of their metal binding domains. Here, we show that the MT gene of Biomphalaria glabrata, one of the largest MT genes identified so far, is composed in a unique way. The encoding for an MT protein has a three-domain structure and a C-terminal, Cys-rich extension. Using a bioinformatic approach involving structural and in silico analysis of putative transcription factor binding sites (TFBs), we found that this MT gene consists of five exons and four introns. It exhibits a regulatory promoter region containing three metal-responsive elements (MREs) and several TFBs with putative involvement in environmental stress response, and regulation of gene expression. Quantitative real-time polymerase chain reaction (qRT-PCR) data indicate that the MT gene is not inducible by cadmium (Cd) nor by temperature challenges (heat and cold), despite significant Cd uptake within the midgut gland and the high Cd tolerance of metal-exposed snails.
Collapse
Affiliation(s)
- Michael Niederwanger
- Institute of Zoology and Center of Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria.
| | - Martin Dvorak
- Institute of Zoology and Center of Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria.
| | - Raimund Schnegg
- Institute of Zoology and Center of Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria.
| | - Veronika Pedrini-Martha
- Institute of Zoology and Center of Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria.
| | - Katharina Bacher
- Institute of Zoology and Center of Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria.
| | - Massimo Bidoli
- Institute of Zoology and Center of Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria.
| | - Reinhard Dallinger
- Institute of Zoology and Center of Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria.
| |
Collapse
|
18
|
Biomphalaria glabrata Metallothionein: Lacking Metal Specificity of the Protein and Missing Gene Upregulation Suggest Metal Sequestration by Exchange Instead of through Selective Binding. Int J Mol Sci 2017; 18:ijms18071457. [PMID: 28684706 PMCID: PMC5535948 DOI: 10.3390/ijms18071457] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/29/2017] [Accepted: 07/01/2017] [Indexed: 11/17/2022] Open
Abstract
The wild-type metallothionein (MT) of the freshwater snail Biomphalaria glabrata and a natural allelic mutant of it in which a lysine residue was replaced by an asparagine residue, were recombinantly expressed and analyzed for their metal-binding features with respect to Cd2+, Zn2+ and Cu⁺, applying spectroscopic and mass-spectrometric methods. In addition, the upregulation of the Biomphalaria glabrataMT gene was assessed by quantitative real-time detection PCR. The two recombinant proteins revealed to be very similar in most of their metal binding features. They lacked a clear metal-binding preference for any of the three metal ions assayed-which, to this degree, is clearly unprecedented in the world of Gastropoda MTs. There were, however, slight differences in copper-binding abilities between the two allelic variants. Overall, the missing metal specificity of the two recombinant MTs goes hand in hand with lacking upregulation of the respective MT gene. This suggests that in vivo, the Biomphalaria glabrata MT may be more important for metal replacement reactions through a constitutively abundant form, rather than for metal sequestration by high binding specificity. There are indications that the MT of Biomphalaria glabrata may share its unspecific features with MTs from other freshwater snails of the Hygrophila family.
Collapse
|
19
|
Carmona-Antoñanzas G, Santi M, Migaud H, Vera LM. Light- and clock-control of genes involved in detoxification. Chronobiol Int 2017; 34:1026-1041. [PMID: 28617195 DOI: 10.1080/07420528.2017.1336172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Circadian regulation of hepatic detoxification seems to be amongst the key roles of the biological clock. The liver is the major site for biotransformation, and in mammals, it contains several clock-controlled transcription factors such as proline and acidic amino acid-rich basic leucine zipper proteins (PAR bZIP) and basic-helix-loop-helix Per-Arnt-Sim (bHLH-PAS) family that act as circadian regulators of detoxification genes. This investigation explored the existence of daily and circadian expression of transcription factors involved in detoxification, as well as the temporal profile of a set of their target genes in zebrafish liver. In our study, zebrafish were able to synchronize to a light-dark (LD) cycle and displayed a diurnal pattern of activity. In addition, the expression of clock genes presented daily and circadian rhythmicity in liver. Apart from hlfa, the expression of PAR bZIP transcription factors also displayed daily rhythms, which appeared to be both light-dependent and clock-controlled, as circadian rhythms free-ran under constant conditions (continuous darkness, DD). Under LD, tefb, dbpa and dbpb expression peaked at the end of the darkness period whereas tefa showed peak levels of expression at the onset of the photophase. In addition, these four genes exhibited circadian expression under DD, with higher expression levels at the end of the subjective night. The expression of the bHLH-PAS transcription factor arh2 also showed circadian rhythmicity in zebrafish liver, peaking in the middle of the subjective night and approximately 3-4 h before peak expression of the PAR bZIP genes. Regarding the detoxification genes, the major target gene of AhR, cyp1a, showed daily and circadian expression with an acrophase 2 h after ahr2. Under LD, abcb4 also showed daily rhythmicity, with an acrophase 1-2 h after that of PAR bZIP factors during the transition between darkness and light phases, when zebrafish become active. However, the expression of six detoxification genes showed circadian rhythmicity under DD, including cyp1a and abcb4 as well as gstr1, mgst3a, abcg2 and sult2_st2. In all cases, the acrophases of these genes were found during the second half of the subjective night, in phase with the PAR bZIP transcription factors. This suggested that their expression is clock-controlled, either directly by core clock genes or through transcription factors. This study presents new data demonstrating that the process of detoxification is under circadian control in fish. Results showed that time of day should be considered when designing toxicological studies or administering drugs to fish.
Collapse
Affiliation(s)
- G Carmona-Antoñanzas
- a Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling , Stirling , UK
| | - M Santi
- a Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling , Stirling , UK.,b Life and Environmental Sciences Department , Marche Polytechnic University , Ancona , Italy
| | - H Migaud
- a Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling , Stirling , UK
| | - L M Vera
- a Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling , Stirling , UK
| |
Collapse
|
20
|
Drechsel V, Schauer K, Šrut M, Höckner M. Regulatory Plasticity of Earthworm wMT-2 Gene Expression. Int J Mol Sci 2017; 18:ijms18061113. [PMID: 28538660 PMCID: PMC5485937 DOI: 10.3390/ijms18061113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 05/16/2017] [Accepted: 05/21/2017] [Indexed: 12/11/2022] Open
Abstract
Metallothioneins (MTs) are multifunctional proteins occurring throughout the animal kingdom. While the expression and transcriptional regulation of MTs is well-studied in vertebrates, the mechanism of MT activation is still unknown for most invertebrates. Therefore, we examined wMT-2 gene regulation and expression patterns in Lumbricus rubellus and L. terrestris. Transcription levels, the occupation of DNA binding sites, the expression of putative transcriptional regulators, and promotor DNA methylation were determined. We found that wMT-2 expression does not follow a circadian pattern. However, Cd-induced wMT-2 induction was observed, and was, interestingly, suppressed by physical injury. Moreover, the promotor region that is responsible for the wMT-2 gene regulation was elucidated. ATF, a putative transcriptional regulator, showed increased phosphorylation upon Cd exposure, suggesting that it plays a major role in wMT-2 gene activation. The promotor methylation of wMT-2, on the other hand, is probably not involved in transcriptional regulation. Elucidating the regulatory mechanism of the earthworm MT gene activation might provide insights into the molecular coordination of the environmental stress response in invertebrates, and might also reveal a link to wound repair and, in a broader sense, to immunity.
Collapse
Affiliation(s)
- Victoria Drechsel
- Institute of Zoology, Center for Molecular Biosciences, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria.
| | - Karl Schauer
- Institute of Zoology, Center for Molecular Biosciences, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria.
| | - Maja Šrut
- Division of Zoology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia.
| | - Martina Höckner
- Institute of Zoology, Center for Molecular Biosciences, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria.
| |
Collapse
|
21
|
Martínez-Paz P, Morales M, Sánchez-Argüello P, Morcillo G, Martínez-Guitarte JL. Cadmium in vivo exposure alters stress response and endocrine-related genes in the freshwater snail Physa acuta. New biomarker genes in a new model organism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:1488-1497. [PMID: 27890585 DOI: 10.1016/j.envpol.2016.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/18/2016] [Accepted: 10/05/2016] [Indexed: 06/06/2023]
Abstract
The freshwater snail Physa acuta is a sensitive organism to xenobiotics that is appropriate for toxicity testing. Cadmium (Cd) is a heavy metal with known toxic effects on several organisms, which include endocrine disruption and activation of the cellular stress responses. There is scarce genomic information on P. acuta; hence, in this work, we identify several genes related to the hormonal system, the stress response and the detoxification system to evaluate the effects of Cd. The transcriptional activity of the endocrine-related genes oestrogen receptor (ER), oestrogen-related receptor (ERR), and retinoid X receptor (RXR), the heat shock proteins genes hsp70 and hsp90 and a metallothionein (MT) gene was analysed in P. acuta exposed to Cd. In addition, the hsp70 and hsp90 genes were also evaluated after heat shock treatment. Real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis showed that Cd presence induced a significant increase in the mRNA levels of ER, ERR and RXR, suggesting a putative mode of action that could explain the endocrine disruptor activity of this heavy metal at the molecular level on Gastropoda. Moreover, the hsp70 gene was upregulated after 24-h Cd treatment, but the hsp90 gene expression was not affected. In contrast, the hsp70 and hsp90 genes were strongly upregulated during heat shock response. Finally, the MT gene expression showed a non-significant variability after Cd exposure. In conclusion, this study provides, for the first time, information about the effects of Cd on the endocrine system of Gastropoda at the molecular level and offers new putative biomarker genes that could be useful in ecotoxicological studies, risk assessment and bioremediation.
Collapse
Affiliation(s)
- Pedro Martínez-Paz
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Senda del Rey 9, 28040 Madrid, Spain.
| | - Mónica Morales
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Senda del Rey 9, 28040 Madrid, Spain
| | - Paloma Sánchez-Argüello
- Laboratorio de Ecotoxicología, Departamento de Medioambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. La Coruña km 7, 28040 Madrid, Spain
| | - Gloria Morcillo
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Senda del Rey 9, 28040 Madrid, Spain
| | - José Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Departamento de Física Matemática y de Fluidos, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Senda del Rey 9, 28040 Madrid, Spain
| |
Collapse
|