1
|
Kreiter J, Tyschuk T, Pohl EE. Uncoupling Protein 3 Catalyzes the Exchange of C4 Metabolites Similar to UCP2. Biomolecules 2023; 14:21. [PMID: 38254621 PMCID: PMC10813146 DOI: 10.3390/biom14010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Uncoupling protein 3 (UCP3) belongs to the mitochondrial carrier protein superfamily SLC25 and is abundant in brown adipose tissue (BAT), the heart, and muscles. The expression of UCP3 in tissues mainly dependent on fatty acid oxidation suggests its involvement in cellular metabolism and has drawn attention to its possible transport function beyond the transport of protons in the presence of fatty acids. Based on the high homology between UCP2 and UCP3, we hypothesized that UCP3 transports C4 metabolites similar to UCP2. To test this, we measured the transport of substrates against phosphate (32Pi) in proteoliposomes reconstituted with recombinant murine UCP3 (mUCP3). We found that mUCP3 mainly transports aspartate and sulfate but also malate, malonate, oxaloacetate, and succinate. The transport rates calculated from the exchange of 32Pi against extraliposomal aspartate and sulfate were 23.9 ± 5.8 and 17.5 ± 5.1 µmol/min/mg, respectively. Using site-directed mutagenesis, we revealed that mutation of R84 resulted in impaired aspartate/phosphate exchange, demonstrating its critical role in substrate transport. The difference in substrate preference between mUCP2 and mUCP3 may be explained by their different tissue expression patterns and biological functions in these tissues.
Collapse
Affiliation(s)
| | | | - Elena E. Pohl
- Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, 1210 Vienna, Austria; (J.K.); (T.T.)
| |
Collapse
|
2
|
Jamal MH, AlOtaibi F, Dsouza C, Al-Sabah S, Al-Khaledi G, Al-Ali W, Ali H, Cherian P, Al-Khairi I, Devarajan S, Abu-Farha M, Al-Mulla F, Abubaker J. Changes in the expression of meteorin-like (METRNL), irisin (FNDC5), and uncoupling proteins (UCPs) after bariatric surgery. Obesity (Silver Spring) 2022; 30:1629-1638. [PMID: 35844163 DOI: 10.1002/oby.23473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Bariatric surgery is currently the most effective treatment for severe obesity. This study aims to investigate the changes in expression levels of meteorin-like protein (METRNL), irisin (FNDC5), and uncoupling proteins (UCP) 1/2/3 following bariatric surgery to understand their involvement in enhancing metabolism after surgery. METHOD A total of 40 participants were enrolled in this interventional study, 20 with obesity BMI ≥ 35 kg/m2 and 20 with BMI ≤ 25 kg/m2 . Bariatric surgery (laparoscopic sleeve gastrectomy and Roux-en-Y gastric bypass) was performed. The levels of various molecules of interest were analyzed before and after surgery. RESULTS Gene expression analysis revealed significantly higher levels of METRNL, UCP1, and UCP3 in individuals with obesity when compared with healthy individuals before surgery (p < 0.05). Gene expression levels of METRNL and UCP2 showed a significant increase after bariatric surgery (p < 0.05). METRNL plasma level was significantly higher in individuals with obesity before surgery (mean [SEM], 55,222.6 [1,421.1] pg/mL, p = 0.0319), as well as at 6 and 12 months (57,537.3 [1,303.9] pg/mL, p = 0.0005; 59,334.9 [1,214.3] pg/mL, p < 0.0001) after surgery. CONCLUSION The changes in the levels of various molecules of interest support their possible involvement in the inflammatory and thermogenic responses following bariatric surgery.
Collapse
Affiliation(s)
- Mohammad H Jamal
- Department of Surgery, Faculty of Medicine, Health Sciences Centre, Kuwait University, Kuwait City, Kuwait
- Department of Organ Transplant, Faculty of Medicine, Health Sciences Centre, Kuwait University, Kuwait City, Kuwait
- Department of Surgery, Jaber Al-Ahmed Hospital, Kuwait City, Kuwait
| | - Fatemah AlOtaibi
- Department of Surgery, Faculty of Medicine, Health Sciences Centre, Kuwait University, Kuwait City, Kuwait
| | - Carol Dsouza
- Department of Surgery, Faculty of Medicine, Health Sciences Centre, Kuwait University, Kuwait City, Kuwait
| | - Suleiman Al-Sabah
- Department of Pharmacology and Toxicology, Faculty of Medicine, Health Sciences Centre, Kuwait University, Kuwait City, Kuwait
| | - Ghanim Al-Khaledi
- Department of Pharmacology and Toxicology, Faculty of Medicine, Health Sciences Centre, Kuwait University, Kuwait City, Kuwait
| | - Waleed Al-Ali
- Department of Pathology, Faculty of Medicine, Health Sciences Centre, Kuwait University, Kuwait City, Kuwait
| | - Hamad Ali
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Centre, Kuwait University, Kuwait City, Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Preethi Cherian
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Irina Al-Khairi
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Sriraman Devarajan
- Special Service Facility, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute, Kuwait City, Kuwait
| |
Collapse
|
3
|
Osorio-Conles Ó, Olbeyra R, Moizé V, Ibarzabal A, Giró O, Viaplana J, Jiménez A, Vidal J, de Hollanda A. Positive Effects of a Mediterranean Diet Supplemented with Almonds on Female Adipose Tissue Biology in Severe Obesity. Nutrients 2022; 14:nu14132617. [PMID: 35807797 PMCID: PMC9267991 DOI: 10.3390/nu14132617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 02/06/2023] Open
Abstract
It has been suggested that weight-loss-independent Mediterranean diet benefits on cardiometabolic health and diabetes prevention may be mediated, at least in part, through the modulation of white adipose tissue (WAT) biology. This study aimed to evaluate the short-term effects of a dietary intervention based on the Mediterranean diet supplemented with almonds (MDSA) on the main features of obesity-associated WAT dysfunction. A total of 38 women with obesity were randomly assigned to a 3-month intervention with MDSA versus continuation of their usual dietary pattern. Subcutaneous (SAT) and visceral adipose tissue (VAT) biopsies were obtained before and after the dietary intervention, and at the end of the study period, respectively. MDSA favored the abundance of small adipocytes in WAT. In SAT, the expression of angiogenesis genes increased after MDSA intervention. In VAT, the expression of genes implicated in adipogenesis, angiogenesis, autophagy and fatty acid usage was upregulated. In addition, a higher immunofluorescence staining for PPARG, CD31+ cells and M2-like macrophages and increased ADRB1 and UCP2 protein contents were found compared to controls. Changes in WAT correlated with a significant reduction in circulating inflammatory markers and LDL-cholesterol levels. These results support a protective effect of a Mediterranean diet supplemented with almonds on obesity-related WAT dysfunction.
Collapse
Affiliation(s)
- Óscar Osorio-Conles
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (Ó.O.-C.); (V.M.); (J.V.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.O.); (O.G.); (A.J.)
| | - Romina Olbeyra
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.O.); (O.G.); (A.J.)
| | - Violeta Moizé
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (Ó.O.-C.); (V.M.); (J.V.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.O.); (O.G.); (A.J.)
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Ainitze Ibarzabal
- Gastrointestinal Surgery Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain;
| | - Oriol Giró
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.O.); (O.G.); (A.J.)
| | - Judith Viaplana
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (Ó.O.-C.); (V.M.); (J.V.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.O.); (O.G.); (A.J.)
| | - Amanda Jiménez
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.O.); (O.G.); (A.J.)
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Josep Vidal
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain; (Ó.O.-C.); (V.M.); (J.V.)
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.O.); (O.G.); (A.J.)
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Correspondence: (J.V.); (A.d.H.); Tel.: +34-93-227-20-12 (J.V.); +34-93-227-98-46 (A.d.H.); Fax: +34-93-227-55-89 (J.V. & A.d.H.)
| | - Ana de Hollanda
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (R.O.); (O.G.); (A.J.)
- Obesity Unit, Endocrinology and Nutrition Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Correspondence: (J.V.); (A.d.H.); Tel.: +34-93-227-20-12 (J.V.); +34-93-227-98-46 (A.d.H.); Fax: +34-93-227-55-89 (J.V. & A.d.H.)
| |
Collapse
|
4
|
Moslehi E, Minasian V, Sadeghi H. Subcutaneous Adipose Tissue Browning, Serum Orexin-A, and Insulin Resistance Following Aerobic Exercise in High-Fat Diet Obesity Male Wistar Rats. Int J Prev Med 2021; 12:132. [PMID: 34912508 PMCID: PMC8631127 DOI: 10.4103/ijpvm.ijpvm_110_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 12/04/2019] [Indexed: 11/04/2022] Open
Abstract
Background Subcutaneous adipose tissue (SAT) relative to the other adipose tissues may have different roles in health and insulin resistance. The purpose of this study was to investigate the effectiveness of aerobic exercise on SAT thermogenesis indices, serum orexin-A (OXA), and insulin resistance in high-fat diet-induced obesity male Wistar rats. Methods Thirty-two male Wistar rats with an average weight of 180-200 g were randomly assigned into 4 equal groups: normal fat diet (NFD), high-fat diet obesity (HFDO), normal fat diet after high-fat diet obesity (HFDO-NFD), and aerobic exercise group with normal fat diet after high-fat diet obesity (HFDO-AEX). Fasting levels of serum OXA, insulin, FBS, high-density lipoproteins, low-density lipoproteins, cholesterol and gene expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and UCP1 in SAT were evaluated. Samples were taken in the HFDO group after obesity-induced and in other groups 48 h after 8 weeks of aerobic exercise. Results The results showed that HFD significantly decreased serum levels of OXA, HDL-c and gene expression of PGC1α and UCP1 in SAT. In addition, it caused a significant increase in Lee index, FBS, insulin resistance, and serum lipid profile in comparison with the NFD group (P ≤ 0.001). Aerobic exercise significantly modified the changes caused by HFD to the normal levels (P ≤ 0.001). Conclusions These data suggest that aerobic exercise caused an improvement in insulin resistance and blood lipid profiles through an increase in the serum level of OXA and alteration in the SAT phenotype from white to brown or beige.
Collapse
Affiliation(s)
- Ebrahim Moslehi
- Department of Exercise Physiology, University of Isfahan, Isfahan, Iran
| | - Vazgen Minasian
- Department of Exercise Physiology, University of Isfahan, Isfahan, Iran
| | - Heibatollah Sadeghi
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, I.R. Iran
| |
Collapse
|
5
|
Lu YA, Lee HG, Li X, Hyun JM, Kim HS, Kim TH, Kim HM, Lee JJ, Kang MC, Jeon YJ. Anti-obesity effects of red seaweed, Plocamium telfairiae, in C57BL/6 mice fed a high-fat diet. Food Funct 2021; 11:2299-2308. [PMID: 32108840 DOI: 10.1039/c9fo02924a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This study aimed to demonstrate the anti-obesity effect of Plocamium telfairiae (PT), a red seaweed. Different percentages of ethanol (0%, 20%, 40%, 60%, 80%, and 100%) were used for the preparation of PT extract. Furthermore, 3T3-L1 cells were used to determine the percentage of ethanol for optimal anti-adipogenesis of PT, and the anti-obesity properties of the optimized extract of PT (PTE) (40%) was assessed in obese mice. The results indicate that 40% ethanol extract (40 PTE) significantly decreased fat accumulation and suppressed the expression of major adipogenesis factors such as peroxisome proliferator-activated receptor-γ (PPAR-γ), sterol regulatory element-binding protein 1 (SREBP-1), CCAAT/enhancer-binding protein (C/EBP)-α, and phosphorylated ACC (pACC) in 3T3-L1 cells. Furthermore, in the high-fat diet-induced obese mice, 40 PTE significantly reduced the weights of white adipose tissue, as well as the levels of triglyceride, total cholesterol, adiponectin, and insulin in the serum. Liver histopathology showed that steatosis decreased in all the PTE treatment groups. The adipogenesis-related proteins, PPAR-γ and SREBP-1, were also significantly decreased in PTE treatment groups. Additionally, 40 PTE increased mRNA expression of mitochondrial uncoupling proteins (UCP)-1 and UCP-3 in brown adipose tissue. These findings provide evidence that 40 PTE can alleviate lipid droplet accumulation in 3T3-L1 adipocytes and obese C57BL/6 mice, indicating that PTE has strong anti-obesity effects and could be used as a therapeutic agent or a component of pharmaceutical drugs and functional foods.
Collapse
Affiliation(s)
- Yu An Lu
- Department of Marine Life Science, Jeju National University, Jeju, 63243, Republic of Korea.
| | - Hyo Geun Lee
- Department of Marine Life Science, Jeju National University, Jeju, 63243, Republic of Korea.
| | - Xining Li
- Department of Marine Life Science, Jeju National University, Jeju, 63243, Republic of Korea.
| | - Ji-Min Hyun
- Department of Marine Life Science, Jeju National University, Jeju, 63243, Republic of Korea.
| | - Hyun-Soo Kim
- Department of Marine Life Science, Jeju National University, Jeju, 63243, Republic of Korea.
| | - Tae Hee Kim
- Naturetech Co., 29-8, Yongjeong-gil, chopyeong-myeon, Jincheon-gun, Chungbuk, Republic of Korea
| | - Hye-Min Kim
- Naturetech Co., 29-8, Yongjeong-gil, chopyeong-myeon, Jincheon-gun, Chungbuk, Republic of Korea
| | - Jeong Jun Lee
- Naturetech Co., 29-8, Yongjeong-gil, chopyeong-myeon, Jincheon-gun, Chungbuk, Republic of Korea
| | - Min-Cheol Kang
- Research Group of Process Engineering, Korea Food Research Institute, Jeollabuk-do 55365, Republic of Korea.
| | - You-Jin Jeon
- Department of Marine Life Science, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
6
|
Souza de Oliveira M, Sachs Nique P, Crispim D, Marmontel de Souza B. The association of uncoupling proteins 1, 2, and 3 with weight loss variability after bariatric surgery: a systematic review. Surg Obes Relat Dis 2020; 16:1858-1868. [DOI: 10.1016/j.soard.2020.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/05/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022]
|
7
|
Yin J, Zeng X, Ai Z, Yu M, Wu Y, Li S. Construction and analysis of a lncRNA-miRNA-mRNA network based on competitive endogenous RNA reveal functional lncRNAs in oral cancer. BMC Med Genomics 2020; 13:84. [PMID: 32571304 PMCID: PMC7310129 DOI: 10.1186/s12920-020-00741-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/15/2020] [Indexed: 12/24/2022] Open
Abstract
Background A growing evidence suggests that long non-coding RNAs (lncRNAs) can function as a microRNA (miRNA) sponge in various diseases including oral cancer. However, the pathophysiological function of lncRNAs remains unclear. Methods Based on the competitive endogenous RNA (ceRNA) theory, we constructed a lncRNA-miRNA-mRNA network in oral cancer with the human expression profiles GSE74530 from the Gene Expression Omnibus (GEO) database. We used topological analysis to determine the hub lncRNAs in the regulatory ceRNA network. Then, function enrichment analysis was performed using the clusterProfiler R package. Clinical information was downloaded from The Cancer Genome Atlas (TCGA) database and survival analysis was performed with Kaplan-Meier analysis. Results A total of 238 potential co-dysregulated competing triples were obtained in the lncRNA-associated ceRNA network in oral cancer, which consisted of 10 lncRNA nodes, 41 miRNA nodes and 122 mRNA nodes. Additionally, we found lncRNA HCG22 exhibiting superior potential as a diagnostic and prognostic marker of oral cancer. Conclusions Our findings provide novel insights to understand the ceRNA regulation in oral cancer and identify a novel lncRNA as a potential molecular biomarker.
Collapse
Affiliation(s)
- Junhao Yin
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Tongji University, Shanghai, 200072, China.,Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Xiaoli Zeng
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Tongji University, Shanghai, 200072, China.,Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Zexin Ai
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Tongji University, Shanghai, 200072, China.,Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Miao Yu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Tongji University, Shanghai, 200072, China.,Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Yang'ou Wu
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Tongji University, Shanghai, 200072, China.,Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Shengjiao Li
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Tongji University, Shanghai, 200072, China. .,Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China.
| |
Collapse
|
8
|
Hydroxy-octadecenoic acids instead of phorbol esters are responsible for the Jatropha curcas kernel cake's toxicity. Commun Biol 2020; 3:228. [PMID: 32385384 PMCID: PMC7210109 DOI: 10.1038/s42003-020-0919-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 03/25/2020] [Indexed: 11/25/2022] Open
Abstract
The toxic kernel cake of Jatropha curcas (KCakeJ) is an emerging health and environmental concern. Although phorbol esters are widely recognized as the major toxin of KCakeJ, convincing evidence is absent. Here, we show that rather than phorbol esters an isomeric mixture of 11-hydroxy-9E-octadecenoic acid, 12-hydroxy-10E-octadecenoic acid and 12-hydroxy-10Z-octadecenoic acid (hydroxy-octadecenoic acids, molecular formula C18H34O3) is the major toxic component. The toxicities of hydroxy-octadecenoic acids on experimental animals, e.g. acute lethality, causing inflammation, pulmonary hemorrhage and thrombi, allergies, diarrhea and abortion, are consistent with those on human/animals caused by Jatropha seed and/or KCakeJ. The hydroxyl group and the double bond are essential for hydroxy-octadecenoic acids’ toxicity. The main pathway of the toxicity mechanism includes down-regulating UCP3 gene expression, promoting ROS production, thus activating CD62P expression (platelet activation) and mast cell degranulation. The identification of the major toxin of KCakeJ lays a foundation for establishing an environmentally friendly Jatropha biofuel industry. Wang et al. report that an isomeric mixture of 3 hydroxy-octadecenoic acids, instead of widely recognised phorbol esters, are the major toxic component of Jatropha curcas kernel cake. They test its effects on animal models and also attempt to elucidate the mechanism behind the toxicity, with a goal to help establish an environmentally friendly Jatropha biofuel industry.
Collapse
|
9
|
Tarabra E, Nouws J, Vash-Margita A, Nadzam GS, Goldberg R, Van Name M, Pierpont B, Knight JR, Shulman GI, Caprio S. The omentum of obese girls harbors small adipocytes and browning transcripts. JCI Insight 2020; 5:135448. [PMID: 32125283 PMCID: PMC7213797 DOI: 10.1172/jci.insight.135448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/26/2020] [Indexed: 12/21/2022] Open
Abstract
Severe obesity (SO) affects about 6% of youth in the United States, augmenting the risks for cardiovascular disease and type 2 diabetes. Herein, we obtained paired omental adipose tissue (omVAT) and abdominal subcutaneous adipose tissue (SAT) biopsies from girls with SO undergoing sleeve gastrectomy (SG), to test whether differences in cellular and transcriptomic profiles between omVAT and SAT depots affect insulin sensitivity differently. Following weight loss, these analyses were repeated in a subgroup of subjects having a second SAT biopsy. We found that omVAT displayed smaller adipocytes compared with SAT, increased lipolysis through adipose triglyceride lipase phosphorylation, reduced inflammation, and increased expression of browning/beiging markers. Contrary to omVAT, SAT adipocyte diameter correlated with insulin resistance. Following SG, both weight and insulin sensitivity improved markedly in all subjects. SAT adipocytes' size became smaller, showing increased lipolysis through perilipin 1 phosphorylation, decreased inflammation, and increased expression in browning/beiging markers. In summary, in adolescent girls with SO, both omVAT and SAT depots showed distinct cellular and transcriptomic profiles. Following weight loss, the SAT depot changed its cellular morphology and transcriptomic profiles into more favorable ones. These changes in the SAT depot may play a fundamental role in the resolution of insulin resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - James R Knight
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
- Yale Center for Genome Analysis, Yale University West Campus, Orange, Connecticut, USA
| | - Gerald I Shulman
- Department of Internal Medicine
- Department of Cellular and Molecular Physiology, and
- Yale Diabetes Research Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
10
|
da Cruz BO, Cardozo LFMDF, Magliano DC, Stockler-Pinto MB. Nutritional strategies to modulate inflammation pathways via regulation of peroxisome proliferator-activated receptor β/δ. Nutr Rev 2020; 78:207-214. [PMID: 31584650 DOI: 10.1093/nutrit/nuz058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The peroxisome proliferator-activated receptor (PPAR) β/δ has an important role in multiple inflammatory conditions, including obesity, hypertension, cancer, cardiovascular disease, diabetes mellitus, and autoimmune diseases. PPARβ/δ forms a heterodimer with the retinoic acid receptor and binds to peroxisome proliferator response elements to initiate transcription of its target genes. PPARβ/δ is also able to suppress the activities of several transcription factors, including nuclear factor κB, and activator protein 1, thus regulating anti-inflammatory cellular responses and playing a protective role in several diseases. Recent studies have shown that nutritional compounds, including nutrients and bioactive compounds, can regulate PPARβ/δ expression. This review discusses key nutritional compounds that are known to modulate PPARβ/δ and are likely to affect human health.
Collapse
Affiliation(s)
- Beatriz O da Cruz
- B.O. da Cruz, L.F.M. de F. Cardozo, D.C. Magliano, and M.B. Stockler-Pinto are with the Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói-RJ, Brazil
| | - Ludmila F M de França Cardozo
- B.O. da Cruz, L.F.M. de F. Cardozo, D.C. Magliano, and M.B. Stockler-Pinto are with the Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói-RJ, Brazil
| | - D'Angelo C Magliano
- B.O. da Cruz, L.F.M. de F. Cardozo, D.C. Magliano, and M.B. Stockler-Pinto are with the Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói-RJ, Brazil.,D.C. Magliano is with Laboratory of Morphological and Metabolic Analyses, Fluminense Federal University (UFF), Niterói-RJ, Brazil
| | - Milena B Stockler-Pinto
- B.O. da Cruz, L.F.M. de F. Cardozo, D.C. Magliano, and M.B. Stockler-Pinto are with the Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói-RJ, Brazil.,M.B. Stockler-Pinto is with the Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói-RJ, Brazil
| |
Collapse
|
11
|
Transcriptional study after Beauvericin and Enniatin B combined exposure in Jurkat T cells. Food Chem Toxicol 2019; 130:122-129. [DOI: 10.1016/j.fct.2019.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/09/2019] [Accepted: 05/11/2019] [Indexed: 12/12/2022]
|
12
|
Efficacy of cinnamon in patients with type II diabetes mellitus: A randomized controlled clinical trial. Clin Nutr 2019; 38:549-556. [DOI: 10.1016/j.clnu.2018.03.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/26/2018] [Accepted: 03/03/2018] [Indexed: 12/22/2022]
|
13
|
Gui L, Jia J. Effect of single nucleotide polymorphisms in the UCP3 and FOXO1
genes on carcass quality traits in Qinchuan cattle. JOURNAL OF ANIMAL AND FEED SCIENCES 2018. [DOI: 10.22358/jafs/97366/2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Shizukuda S, Marchini JS, Adell A, Santos MA, Brandao CFC, Lima CMM, Cunha SFC, Itikawa EN, Silvah JH. Influences of weight, age, gender, genetics, diseases, and ethnicity on bitterness perception: a narrative review of current methodological aspects. ACTA ACUST UNITED AC 2018. [DOI: 10.1186/s41110-018-0069-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Barquissau V, Léger B, Beuzelin D, Martins F, Amri EZ, Pisani DF, Saris WHM, Astrup A, Maoret JJ, Iacovoni J, Déjean S, Moro C, Viguerie N, Langin D. Caloric Restriction and Diet-Induced Weight Loss Do Not Induce Browning of Human Subcutaneous White Adipose Tissue in Women and Men with Obesity. Cell Rep 2018; 22:1079-1089. [PMID: 29386128 DOI: 10.1016/j.celrep.2017.12.102] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/18/2017] [Accepted: 12/27/2017] [Indexed: 01/25/2023] Open
Abstract
Caloric restriction (CR) is standard lifestyle therapy in obesity management. CR-induced weight loss improves the metabolic profile of individuals with obesity. In mice, occurrence of beige fat cells in white fat depots favors a metabolically healthy phenotype, and CR promotes browning of white adipose tissue (WAT). Here, human subcutaneous abdominal WAT samples were analyzed in 289 individuals with obesity following a two-phase dietary intervention consisting of an 8 week very low calorie diet and a 6-month weight-maintenance phase. Before the intervention, we show sex differences and seasonal variation, with higher expression of brown and beige markers in women with obesity and during winter, respectively. The very low calorie diet resulted in decreased browning of subcutaneous abdominal WAT. During the whole dietary intervention, evolution of body fat and insulin resistance was independent of changes in brown and beige fat markers. These data suggest that diet-induced effects on body fat and insulin resistance are independent of subcutaneous abdominal WAT browning in people with obesity.
Collapse
Affiliation(s)
- Valentin Barquissau
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Benjamin Léger
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Diane Beuzelin
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Frédéric Martins
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Ez-Zoubir Amri
- University of Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| | | | - Wim H M Saris
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Arne Astrup
- Department of Nutrition, Exercise and Sports, Faculty of Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jean-José Maoret
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Jason Iacovoni
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Sébastien Déjean
- University of Toulouse, Paul Sabatier University, Toulouse, France; CNRS, UMR 5219, Toulouse Mathematics Institute, Toulouse, France
| | - Cédric Moro
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Nathalie Viguerie
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, Toulouse, France
| | - Dominique Langin
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, Toulouse, France; Toulouse University Hospitals, Laboratory of Clinical Biochemistry, Toulouse, France.
| |
Collapse
|
16
|
Nicoletti CF, Cortes-Oliveira C, Pinhel MAS, Nonino CB. Bariatric Surgery and Precision Nutrition. Nutrients 2017; 9:E974. [PMID: 28878180 PMCID: PMC5622734 DOI: 10.3390/nu9090974] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 12/13/2022] Open
Abstract
This review provides a literature overview of new findings relating nutritional genomics and bariatric surgery. It also describes the importance of nutritional genomics concepts in personalized bariatric management. It includes a discussion of the potential role bariatric surgery plays in altering the three pillars of nutritional genomics: nutrigenetics, nutrigenomics, and epigenetics. We present studies that show the effect of each patient's genetic and epigenetic variables on the response to surgical weight loss treatment. We include investigations that demonstrate the association of single nucleotide polymorphisms with obesity phenotypes and their influence on weight loss after bariatric surgery. We also present reports on how significant weight loss induced by bariatric surgery impacts telomere length, and we discuss studies on the existence of an epigenetic signature associated with surgery outcomes and specific gene methylation profile, which may help to predict weight loss after a surgical procedure. Finally, we show articles which evidence that bariatric surgery may affect expression of numerous genes involved in different metabolic pathways and consequently induce functional and taxonomic changes in gut microbial communities. The role nutritional genomics plays in responses to weight loss after bariatric surgery is evident. Better understanding of the molecular pathways involved in this process is necessary for successful weight management and maintenance.
Collapse
Affiliation(s)
- Carolina F Nicoletti
- Internal Medicine Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil.
| | - Cristiana Cortes-Oliveira
- Internal Medicine Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil.
| | - Marcela A S Pinhel
- Internal Medicine Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil.
- Molecular Biology Department, São Jose do Rio Preto Medical School, São José do Rio Preto, São Paulo 15090-000, Brazil.
| | - Carla B Nonino
- Internal Medicine Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil.
| |
Collapse
|
17
|
UCP2 and PLIN1 Expression Affects the Resting Metabolic Rate and Weight Loss on Obese Patients. Obes Surg 2016; 27:343-348. [DOI: 10.1007/s11695-016-2275-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|