1
|
Wu PS, Liu HY, Wong TH, Lin JT, Hu FR, Lin MH. Comparative Proteomics Reveals Prolonged Corneal Preservation Impaired Ocular Surface Immunity Accompanied by Fibrosis in Human Stroma. J Proteome Res 2023; 22:3730-3741. [PMID: 37976471 DOI: 10.1021/acs.jproteome.3c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Cornea transplantation is one of the most commonly performed allotransplantations worldwide. Prolonged storage of donor corneas leads to decreased endothelial cell viability, severe stromal edema, and opacification, significantly compromising the success rate of corneal transplantation. Corneal stroma, which constitutes the majority of the cornea, plays a crucial role in maintaining its shape and transparency. In this study, we conducted proteomic analysis of corneal stroma preserved in Optisol-GS medium at 4 °C for 7 or 14 days to investigate molecular changes during storage. Among 1923 identified proteins, 1634 were quantifiable and 387 were significantly regulated with longer preservation. Compared to stroma preserved for 7 days, proteins involved in ocular surface immunomodulation were largely downregulated while proteins associated with extracellular matrix reorganization and fibrosis were upregulated in those preserved for 14 days. The increase in extracellular matrix structural proteins together with upregulation of growth factor signaling implies the occurrence of stromal fibrosis, which may compromise tissue clarity and cause vision impairments. This study is the first to provide insights into how storage duration affects corneal stroma from a proteomic perspective. Our findings may contribute to future research efforts aimed at developing long-term preservation techniques and improving the quality of preserved corneas, thus maximizing their clinical application.
Collapse
Affiliation(s)
- Pei-Shan Wu
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - Hsin-Yu Liu
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - Tzu-Hsuan Wong
- Department of Microbiology, National Taiwan University College of Medicine, Taipei 100233, Taiwan
| | - Jui-Ti Lin
- Department of Microbiology, National Taiwan University College of Medicine, Taipei 100233, Taiwan
| | - Fung-Rong Hu
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - Miao-Hsia Lin
- Department of Microbiology, National Taiwan University College of Medicine, Taipei 100233, Taiwan
| |
Collapse
|
2
|
Kumar R, Sinha NR, Mohan RR. Corneal gene therapy: Structural and mechanistic understanding. Ocul Surf 2023; 29:279-297. [PMID: 37244594 DOI: 10.1016/j.jtos.2023.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
Cornea, a dome-shaped and transparent front part of the eye, affords 2/3rd refraction and barrier functions. Globally, corneal diseases are the leading cause of vision impairment. Loss of corneal function including opacification involve the complex crosstalk and perturbation between a variety of cytokines, chemokines and growth factors generated by corneal keratocytes, epithelial cells, lacrimal tissues, nerves, and immune cells. Conventional small-molecule drugs can treat mild-to-moderate traumatic corneal pathology but requires frequent application and often fails to treat severe pathologies. The corneal transplant surgery is a standard of care to restore vision in patients. However, declining availability and rising demand of donor corneas are major concerns to maintain ophthalmic care. Thus, the development of efficient and safe nonsurgical methods to cure corneal disorders and restore vision in vivo is highly desired. Gene-based therapy has huge potential to cure corneal blindness. To achieve a nonimmunogenic, safe and sustained therapeutic response, the selection of a relevant genes, gene editing methods and suitable delivery vectors are vital. This article describes corneal structural and functional features, mechanistic understanding of gene therapy vectors, gene editing methods, gene delivery tools, and status of gene therapy for treating corneal disorders, diseases, and genetic dystrophies.
Collapse
Affiliation(s)
- Rajnish Kumar
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; One-health One-medicine Vision Research Program, Departments of Veterinary Medicine and Surgery & Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA; Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow campus, UP, 226028, India
| | - Nishant R Sinha
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; One-health One-medicine Vision Research Program, Departments of Veterinary Medicine and Surgery & Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, 65201, USA; One-health One-medicine Vision Research Program, Departments of Veterinary Medicine and Surgery & Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, 65212, USA.
| |
Collapse
|
3
|
Sinha NR, Tripathi R, Balne PK, Suleiman L, Simkins K, Chaurasia SS, Mohan RR. Mustard Gas Exposure Actuates SMAD2/3 Signaling to Promote Myofibroblast Generation in the Cornea. Cells 2023; 12:1533. [PMID: 37296653 PMCID: PMC10252656 DOI: 10.3390/cells12111533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Sulfur mustard gas (SM) is a vesicating and alkylating agent used as a chemical weapon in many mass-casualty incidents since World War I. Ocular injuries were reported in >90% of exposed victims. The mechanisms underlying SM-induced blindness remain elusive. This study tested the hypothesis that SM-induced corneal fibrosis occurs due to the generation of myofibroblasts from resident fibroblasts via the SMAD2/3 signaling pathway in rabbit eyes in vivo and primary human corneal fibroblasts (hCSFs) isolated from donor corneas in vitro. Fifty-four New Zealand White Rabbits were divided into three groups (Naïve, Vehicle, SM-Vapor treated). The SM-Vapor group was exposed to SM at 200 mg-min/m3 for 8 min at the MRI Global facility. Rabbit corneas were collected on day 3, day 7, and day 14 for immunohistochemistry, RNA, and protein lysates. SM caused a significant increase in SMAD2/3, pSMAD, and ɑSMA expression on day 3, day 7, and day 14 in rabbit corneas. For mechanistic studies, hCSFs were treated with nitrogen mustard (NM) or NM + SIS3 (SMAD3-specific inhibitor) and collected at 30 m, 8 h, 24 h, 48 h, and 72 h. NM significantly increased TGFβ, pSMAD3, and SMAD2/3 levels. On the contrary, inhibition of SMAD2/3 signaling by SIS3 treatment significantly reduced SMAD2/3, pSMAD3, and ɑSMA expression in hCSFs. We conclude that SMAD2/3 signaling appears to play a vital role in myofibroblast formation in the cornea following mustard gas exposure.
Collapse
Affiliation(s)
- Nishant R. Sinha
- Departments of Veterinary Medicine & Surgery and Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| | - Ratnakar Tripathi
- Departments of Veterinary Medicine & Surgery and Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| | - Praveen K. Balne
- Departments of Veterinary Medicine & Surgery and Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
| | - Laila Suleiman
- Departments of Veterinary Medicine & Surgery and Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Katherine Simkins
- Departments of Veterinary Medicine & Surgery and Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Shyam S. Chaurasia
- Departments of Veterinary Medicine & Surgery and Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
- Ocular Immunology and Angiogenesis Lab, Department of Ophthalmology & Visual Sciences, Froedtert & Medical College of Wisconsin Eye Institute, Milwaukee, WI 53226, USA
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Rajiv R. Mohan
- Departments of Veterinary Medicine & Surgery and Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65201, USA
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
4
|
Recent Advancements in Molecular Therapeutics for Corneal Scar Treatment. Cells 2022; 11:cells11203310. [PMID: 36291182 PMCID: PMC9600986 DOI: 10.3390/cells11203310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
The process of corneal wound healing is complex and induces scar formation. Corneal scarring is a leading cause of blindness worldwide. The fibrotic healing of a major ocular wound disrupts the highly organized fibrillar collagen arrangement of the corneal stroma, rendering it opaque. The process of regaining this organized extracellular matrix (ECM) arrangement of the stromal layer to restore corneal transparency is complicated. The surface retention capacity of ocular drugs is poor, and there is a large gap between suitable corneal donors and clinical requirements. Therefore, a more efficient way of treating corneal scarring is needed. The eight major classes of interventions targeted as therapeutic tools for healing scarred corneas include those based on exosomes, targeted gene therapy, microRNAs, recombinant viral vectors, histone deacetylase inhibitors, bioactive molecules, growth factors, and nanotechnology. This review highlights the recent advancements in molecular therapeutics to restore a cornea without scarring. It also provides a scope to overcome the limitations of present studies and perform robust clinical research using these strategies.
Collapse
|
5
|
Dan Cosnita AR, Raica M, Sava MP, Cimpean AM. Gene Expression Profile of Vascular Endothelial Growth Factors (VEGFs) and Platelet-derived Growth Factors (PDGFs) in the Normal Cornea. In Vivo 2021; 35:805-813. [PMID: 33622873 DOI: 10.21873/invivo.12321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 11/26/2020] [Accepted: 12/03/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Angiogenic growth factors expression is not known in the normal cornea. The aim was to study corneal gene expression profile of VEGF and PDGF pathways influencing the avascular state of cornea. MATERIALS AND METHODS cDNA synthesis was performed from mRNA extracted from five fresh pig corneas followed by cDNA synthesis and analysis of VEGF and PDGF pathways by TaqMan Array gene expression profile. RESULTS Normal pig cornea lacks VEGFR2 and VEGFR3 gene expression. MK2 and AKT1 genes were significantly overexpressed (p=0.000684, p=0.050995, respectively). Six PDGF pathway genes were overexpressed: TIAM1 (p=0.047), PIK3CA (p=0.00005), IKBKG (p=0.000006), PAK4 (p=0.034), RAC1 (p=0.000006 and PTGS2, p=0.00375). PDGF A was up-regulated, but not with a statistical significance (p=0.79911), while PDGFRα was down-regulated and PDGFRβ was not expressed. CONCLUSION Normal cornea avascularity is given by growth factor receptors down-regulation. Rapid corneal neovascularisation is induced by activation of the main angiogenic growth factors that induce angiogenic cascade and vessel recruitment.
Collapse
Affiliation(s)
- Andrei Radu Dan Cosnita
- Department IX, Surgery I/Ophthalmology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Marius Raica
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania.,Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Mihai Poenaru Sava
- Department IX, Surgery I/Ophthalmology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Anca Maria Cimpean
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania; .,Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| |
Collapse
|
6
|
Yu Q, Biswas S, Ma G, Zhao P, Li B, Li J. Canonical NF-κB signaling maintains corneal epithelial integrity and prevents corneal aging via retinoic acid. eLife 2021; 10:e67315. [PMID: 34085926 PMCID: PMC8192125 DOI: 10.7554/elife.67315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
Disorders of the transparent cornea affect millions of people worldwide. However, how to maintain and/or regenerate this organ remains unclear. Here, we show that Rela (encoding a canonical NF-κB subunit) ablation in K14+ corneal epithelial stem cells not only disrupts corneal regeneration but also results in age-dependent epithelial deterioration, which triggers aberrant wound-healing processes including stromal remodeling, neovascularization, epithelial metaplasia, and plaque formation at the central cornea. These anomalies are largely recapitulated in normal mice that age naturally. Mechanistically, Rela deletion suppresses expression of Aldh1a1, an enzyme required for retinoic acid synthesis from vitamin A. Retinoic acid administration blocks development of ocular anomalies in Krt14-Cre; Relaf/f mice and naturally aged mice. Moreover, epithelial metaplasia and plaque formation are preventable by inhibition of angiogenesis. This study thus uncovers the major mechanisms governing corneal maintenance, regeneration, and aging and identifies the NF-κB-retinoic acid pathway as a therapeutic target for corneal disorders.
Collapse
MESH Headings
- Age Factors
- Aldehyde Dehydrogenase 1 Family/genetics
- Aldehyde Dehydrogenase 1 Family/metabolism
- Animals
- Burns, Chemical/drug therapy
- Burns, Chemical/etiology
- Burns, Chemical/metabolism
- Burns, Chemical/pathology
- Cell Differentiation/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Cellular Senescence/drug effects
- Corneal Neovascularization/metabolism
- Corneal Neovascularization/pathology
- Corneal Neovascularization/prevention & control
- Corneal Stroma/drug effects
- Corneal Stroma/metabolism
- Corneal Stroma/pathology
- Disease Models, Animal
- Epithelium, Corneal/drug effects
- Epithelium, Corneal/metabolism
- Epithelium, Corneal/pathology
- Eye Burns/chemically induced
- Eye Burns/drug therapy
- Eye Burns/metabolism
- Eye Burns/pathology
- Mice, Knockout
- Regeneration/drug effects
- Retinal Dehydrogenase/genetics
- Retinal Dehydrogenase/metabolism
- Signal Transduction
- Stem Cells/drug effects
- Stem Cells/metabolism
- Stem Cells/pathology
- Transcription Factor RelA/genetics
- Transcription Factor RelA/metabolism
- Tretinoin/pharmacology
- Mice
Collapse
Affiliation(s)
- Qian Yu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong UniversityShanghaiChina
| | - Soma Biswas
- Department of Ophthalmology, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Gang Ma
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong UniversityShanghaiChina
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Baojie Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong UniversityShanghaiChina
- Institute of Traditional Chinese Medicine and Stem Cell Research, School of Basic Medicine, Chengdu University of Traditional Chinese MedicineChengduChina
| | - Jing Li
- Department of Ophthalmology, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
7
|
Nikoloudaki G, Brooks S, Peidl AP, Tinney D, Hamilton DW. JNK Signaling as a Key Modulator of Soft Connective Tissue Physiology, Pathology, and Healing. Int J Mol Sci 2020; 21:E1015. [PMID: 32033060 PMCID: PMC7037145 DOI: 10.3390/ijms21031015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/27/2020] [Accepted: 01/31/2020] [Indexed: 12/20/2022] Open
Abstract
In healthy individuals, the healing of soft tissues such as skin after pathological insult or post injury follows a relatively predictable and defined series of cell and molecular processes to restore tissue architecture and function(s). Healing progresses through the phases of hemostasis, inflammation, proliferation, remodeling, and concomitant with re-epithelialization restores barrier function. Soft tissue healing is achieved through the spatiotemporal interplay of multiple different cell types including neutrophils, monocytes/macrophages, fibroblasts, endothelial cells/pericytes, and keratinocytes. Expressed in most cell types, c-Jun N-terminal kinases (JNK) are signaling molecules associated with the regulation of several cellular processes involved in soft tissue wound healing and in response to cellular stress. A member of the mitogen-activated protein kinase family (MAPK), JNKs have been implicated in the regulation of inflammatory cell phenotype, as well as fibroblast, stem/progenitor cell, and epithelial cell biology. In this review, we discuss our understanding of JNKs in the regulation of cell behaviors related to tissue injury, pathology, and wound healing of soft tissues. Using models as diverse as Drosophila, mice, rats, as well as human tissues, research is now defining important, but sometimes conflicting roles for JNKs in the regulation of multiple molecular processes in multiple different cell types central to wound healing processes. In this review, we focus specifically on the role of JNKs in the regulation of cell behavior in the healing of skin, cornea, tendon, gingiva, and dental pulp tissues. We conclude that while parallels can be drawn between some JNK activities and the control of cell behavior in healing, the roles of JNK can also be very specific modes of action depending on the tissue and the phase of healing.
Collapse
Affiliation(s)
- Georgia Nikoloudaki
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, ON N6A 5C1, Canada;
| | - Sarah Brooks
- Biomedical Engineering Graduate Program, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, ON N6A 5C1, Canada; (S.B.); (D.T.)
| | - Alexander P. Peidl
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, ON N6A 5C1, Canada;
| | - Dylan Tinney
- Biomedical Engineering Graduate Program, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, ON N6A 5C1, Canada; (S.B.); (D.T.)
| | - Douglas W. Hamilton
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, ON N6A 5C1, Canada;
- Biomedical Engineering Graduate Program, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, ON N6A 5C1, Canada; (S.B.); (D.T.)
- Division of Oral Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond St, London, ON N6A 5C1, Canada
| |
Collapse
|
8
|
Pietraszkiewicz A, Hampton C, Caplash S, Lei L, Capetanaki Y, Tadvalkar G, Pal-Ghosh S, Stepp MA, Bargagna-Mohan P, Mohan R. Desmin deficiency is not sufficient to prevent corneal fibrosis. Exp Eye Res 2019; 180:155-163. [PMID: 30590024 PMCID: PMC6389382 DOI: 10.1016/j.exer.2018.12.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/08/2018] [Accepted: 12/22/2018] [Indexed: 12/16/2022]
Abstract
The type III intermediate filament (IF) proteins vimentin and desmin are sequentially overexpressed in stromal myofibroblasts over the period when fibrosis sets in after corneal injury. Prior findings have revealed vimentin-deficient mice are significantly protected from corneal fibrosis after alkali injury, which has implicated this IF protein as an important regulator of corneal fibrosis. It has remained as yet unproven whether desmin contributes in any significant manner to corneal fibrosis. Here we have employed desmin-deficient (Des KO) mice in the corneal alkali injury model and show that injured Des KO mice develop fibrosis and show similar levels of corneal opacity at 14 days post-injury as wild type (WT) mice and retain this phenotype even at 30d post injury. Des KO corneas from injured mice show upregulation of vimentin and alpha-smooth muscle actin expression to equivalent levels as WT corneas, illuminating that desmin deficiency does not interfere with myofibrobast differentiation. Employing the small molecule withaferin A (WFA), an inhibitor of vimentin, we show that WFA treatment causes the decrease in steady state levels of vimentin and serine 38 phosphorylated vimentin, the latter a biomarker associated with corneal fibrosis, and improved corneal clarity through blockade of myofibroblast differentiation. To investigate further the mechanism of fibrosis in desmin deficiency, we examined keratin 8 expression in the epithelium, and found reduced levels of this cytokeratin in injured Des KO corneas compared to WT corneas. This finding also corroborates the decrease of cell proliferation in injured Des KO corneas compared to that in WT corneas. The fibrotic phenotype of Des KO corneas also features abundant vascularization, further exemplifying the magnitude of corneal pathology. Together, these findings illuminate that desmin does not contribute significantly to corneal fibrosis in this injury model.
Collapse
Affiliation(s)
| | - Christopher Hampton
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Sonny Caplash
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Ling Lei
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Yassemi Capetanaki
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Gauri Tadvalkar
- Department of Ophthalmology, George Washington University, Washington, DC, USA
| | - Sonali Pal-Ghosh
- Department of Ophthalmology, George Washington University, Washington, DC, USA
| | - Mary Ann Stepp
- Department of Ophthalmology, George Washington University, Washington, DC, USA
| | - Paola Bargagna-Mohan
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Royce Mohan
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
9
|
Guo X, Sriram S, Tran JA, Hutcheon AEK, Zieske JD. Inhibition of Human Corneal Myofibroblast Formation. Invest Ophthalmol Vis Sci 2018; 59:3511-3520. [PMID: 30025094 PMCID: PMC6044211 DOI: 10.1167/iovs.18-24239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/02/2018] [Indexed: 12/16/2022] Open
Abstract
Purpose Transforming growth factor-beta (TGF-β) isoform 1 (T1) is involved in corneal fibrotic wound healing by stimulating myofibroblast transformation and altering fibrotic gene expression. In this study, two specific inhibitors were used to dissect the relationship between myofibroblast generation and the TGF-β/Smad- or TGF-β/p38-signaling pathway in human corneal fibroblasts (HCF). Methods In HCF, Trx-SARA (Smad-pathway inhibitor) was used to block the TGF-β/Smad-signaling pathway, and the p38 inhibitor (p38inh, SB202190) was used to inhibit p38MAPK, thus blocking the TGF-β/p38-signaling pathway. HCF ± Trx-SARA or Trx-GA (SARA control) were serum starved overnight in Eagle's minimum essential medium (EMEM) ± p38inh, grown in EMEM ± T1 ± p38inh for 24 hours, and then processed for indirect-immunofluorescence, Western blot, or quantitative real-time polymerase chain reaction to examine α-smooth muscle actin (αSMA) and other fibrotic genes, such as fibronectin, thrombospondin1, and type III collagen. In addition, the morphology and the effect of p38inh on myofibroblast phenotype after myofibroblast formation were examined. Results We observed that Trx-SARA had little effect on αSMA expression, indicating that blocking the Smad pathway did not significantly inhibit myofibroblast formation. However, p38inh did significantly inhibit αSMA and other fibrotic genes, thus efficiently preventing the transition of HCFs to myofibroblasts. In addition, morphology changed and αSMA decreased in myofibroblasts exposed to p38inh medium, as compared with controls. Conclusions HCF transition to myofibroblasts was mainly through the p38 pathway. Therefore, blocking the p38 pathway may be a potential therapeutic tool for human corneal fibrosis prevention/treatment, because it controls myofibroblast formation in human corneal cells, while leaving other functions of T1 unaffected.
Collapse
Affiliation(s)
- Xiaoqing Guo
- Schepens Eye Research Institute/Massachusetts Eye and Ear and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Sriniwas Sriram
- Schepens Eye Research Institute/Massachusetts Eye and Ear and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Jennifer A. Tran
- Schepens Eye Research Institute/Massachusetts Eye and Ear and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Audrey E. K. Hutcheon
- Schepens Eye Research Institute/Massachusetts Eye and Ear and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - James D. Zieske
- Schepens Eye Research Institute/Massachusetts Eye and Ear and Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
10
|
Yao B, Wang S, Xiao P, Wang Q, Hea Y, Zhang Y. MAPK signaling pathways in eye wounds: Multifunction and cooperation. Exp Cell Res 2017; 359:10-16. [DOI: 10.1016/j.yexcr.2017.06.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022]
|
11
|
Zhang L, Anderson MC, Liu CY. The role of corneal stroma: A potential nutritional source for the cornea. JOURNAL OF NATURE AND SCIENCE 2017; 3:e428. [PMID: 28936480 PMCID: PMC5605150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Corneal stroma plays a pivotal role in normal visual function. Anatomically, it is located between the outer epithelium and the inner endothelium and is the thickest layer of the cornea. Keratocytes in the stroma produce a variety of cellular products, including growth factors/cytokines, extracellular matrix (ECM) components, and kinases. These products support normal corneal development and homeostasis.
Collapse
|