1
|
López-Méndez I, Maldonado-Rojas ADC, Uribe M, Juárez-Hernández E. Hunger & satiety signals: another key mechanism involved in the NAFLD pathway. Front Endocrinol (Lausanne) 2023; 14:1213372. [PMID: 37753211 PMCID: PMC10518611 DOI: 10.3389/fendo.2023.1213372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent metabolic disease, although prevalence could change according to region, nowadays is considered a public health problem whose real impact on the health system is unknown. NAFLD has a multifactorial and complex pathophysiology, due to this, developing a unique and effective pharmacological treatment has not been successful in reverting or avoiding the progression of this liver disease. Even though NAFLD pathophysiology is known, all actual treatments are focused on modifying or regulating the metabolic pathways, some of which interplay with obesity. It has been known that impairments in hunger and satiety signals are associated with obesity, however, abnormalities in these signals in patients with NAFLD and obesity are not fully elucidated. To describe these mechanisms opens an additional option as a therapeutic target sharing metabolic pathways with NAFLD, therefore, this review aims to describe the hormones and peptides implicated in both hunger-satiety in NAFLD. It has been established that NAFLD pharmacological treatment cannot be focused on a single purpose; hence, identifying interplays that lead to adding or modifying current treatment options could also have an impact on another related outcome such as hunger or satiety signals.
Collapse
Affiliation(s)
- Iván López-Méndez
- Hepatology and Transplants Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | | | - Misael Uribe
- Gastroenterology and Obesity Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | - Eva Juárez-Hernández
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| |
Collapse
|
2
|
Bati B, Celik I, Turan A, Eray N, Alkan EE, Zirek AK. Effect of isgin ( Rheum ribes L.) on biochemical parameters, antioxidant activity and DNA damage in rats with obesity induced with high-calorie diet. Arch Physiol Biochem 2023; 129:298-306. [PMID: 32924615 DOI: 10.1080/13813455.2020.1819338] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The present study was designed to investigate the effects of Rheum ribes L. plant root extracts on DNA damage, biochemical and antioxidant parameters in rats with experimental obesity induced with a high-calorie diet. The study groups were divided as "normal control(NC)", "obese control(OC)", "obese + Rheum ribes(OR1)(200 mg/kg)" and "obese + Rheum ribes (OR2)(400 mg/kg)". At the end of the application, rats were sacrificed and blood and tissue samples were obtained. According to the results obtained, the marker of DNA damage in tissues of 8-OHdG was determined to be significantly reduced in brain tissue of the OR1 and OR2 groups compared to the NC group. However, fluctuations were identified in the MDA activity, antioxidant defense system elements and serum biomarkers in tissues. In conclusion, Rheum ribes plant root extract ensured improvements in DNA damage in brain tissues and MDA levels and showed positive effects on antioxidant parameter activities in different tissues.
Collapse
Affiliation(s)
- Bedia Bati
- Faculty of Education, Department of Mathematics and Science Education, Yuzuncu Yil University, Van, Turkey
| | - Ismail Celik
- Science Faculty, Department of Molecular Biology and Genetics, Yuzuncu Yil University, Van, Turkey
| | - Abdullah Turan
- Science Faculty, Department of Molecular Biology and Genetics, Yuzuncu Yil University, Van, Turkey
| | - Nese Eray
- Science Faculty, Department of Molecular Biology and Genetics, Yuzuncu Yil University, Van, Turkey
| | - Elif Ebru Alkan
- Faculty of Education, Department of Mathematics and Science Education, Yuzuncu Yil University, Van, Turkey
| | - Ali Kemal Zirek
- Institute of Sciences, Medical Services and Techniques, Hakkari University, Hakkari, Turkey
| |
Collapse
|
3
|
Sun SF, Zhong HJ, Zhao YL, Ma XY, Luo JB, Zhu L, Zhang YT, Wang WX, Luo XD, Geng JW. Indole alkaloids of Alstonia scholaris (L.) R. Br. alleviated nonalcoholic fatty liver disease in mice fed with high-fat diet. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:14. [PMID: 35364708 PMCID: PMC8975985 DOI: 10.1007/s13659-022-00335-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/17/2022] [Indexed: 05/06/2023]
Abstract
Alstonia scholaris (L.) R. Br (Apocynaceae) is a well-documented medicinal plant for treating respiratory diseases, liver diseases and diabetes traditionally. The current study aimed to investigate the effects of TA on non-alcoholic fatty liver disease (NAFLD). A NAFLD model was established using mice fed a high-fat diet (HFD) and administered with TA (7.5, 15 and 30 mg/kg) orally for 6 weeks. The biochemical parameters, expressions of lipid metabolism-related genes or proteins were analyzed. Furthermore, histopathological examinations were evaluated with Hematoxylin-Eosin and MASSON staining. TA treatment significantly decreased the bodyweight of HFD mice. The concentrations of low-density lipoprotein (LDL), triglyceride (TG), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were also decreased significantly in TA-treated mice group, accompanied by an increase in high-density lipoprotein (HDL). Furthermore, TA alleviated hepatic steatosis injury and lipid droplet accumulation of liver tissues. The liver mRNA levels involved in hepatic lipid synthesis such as sterol regulatory element-binding protein 1C (SREBP-1C), regulators of liver X receptor α (LXRα), peroxisome proliferator activated receptor (PPAR)γ, acetyl-CoA carboxylase (ACC1) and stearyl coenzyme A dehydrogenase-1 (SCD1), were markedly decreased, while the expressions involved in the regulation of fatty acid oxidation, PPARα, carnitine palmitoyl transterase 1 (CPT1A), and acyl coenzyme A oxidase 1 (ACOX1) were increased in TA-treated mice. TA might attenuate NAFLD by regulating hepatic lipogenesis and fatty acid oxidation.
Collapse
Affiliation(s)
- Shui-Fen Sun
- Department of Infectious Disease and Hepatic Disease, First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Hui-Jie Zhong
- Department of Infectious Disease and Hepatic Disease, First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
- School of Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Yun-Li Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Xiu-Ying Ma
- Department of Infectious Disease and Hepatic Disease, First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
| | - Jin-Bo Luo
- Department of Infectious Disease and Hepatic Disease, First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
| | - Ling Zhu
- Department of Infectious Disease and Hepatic Disease, First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
| | - Yu-Ting Zhang
- Department of Infectious Disease and Hepatic Disease, First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
| | - Wen-Xue Wang
- Department of Infectious Disease and Hepatic Disease, First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China.
- School of Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
| | - Xiao-Dong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
| | - Jia-Wei Geng
- Department of Infectious Disease and Hepatic Disease, First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China.
- School of Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
| |
Collapse
|
4
|
Huang Z, Wang W, Huang L, Guo L, Chen C. Suppression of Insulin Secretion in the Treatment of Obesity: A Systematic Review and Meta-Analysis. Obesity (Silver Spring) 2020; 28:2098-2106. [PMID: 33150747 DOI: 10.1002/oby.22955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE This proof-of-concept study aimed to evaluate the efficacy and safety of suppression of insulin secretion in the treatment of obesity. METHODS A search of PubMed, Embase, and Cochrane databases was performed to identify randomized controlled trials (up to January 1, 2020) that used drugs that directly suppress insulin secretion (diazoxide or octreotide) in the treatment of obesity. The extracted data were analyzed using random-effects meta-analysis. RESULTS A total of seven randomized controlled trials were included, with four using diazoxide and three using octreotide to suppress insulin secretion. Suppression of insulin secretion significantly reduced fasting insulin level (mean difference: -3.94 mIU/L; 95% CI: -7.40 to -0.47) but slightly increased fasting blood glucose level (mean difference: 0.48 mmol/L; 95% CI: 0.24 to 0.72). Following the suppression of insulin secretion, significant reductions in body weight (mean difference: -3.19 kg; 95% CI: -5.71 to -0.66), BMI (mean difference: -1.65 kg/m2 ; 95% CI: -2.41 to -0.90), and fat mass (mean difference: -5.92 kg; 95% CI: -8.28 to -3.56) were observed compared with placebo in the pooled data. No significant difference in fat-free mass was observed (mean difference: 0.56 kg; 95% CI: -0.40 to 1.52). CONCLUSIONS Results suggest that suppression of insulin secretion may lead to reduced body weight and fat mass with slightly increased blood glucose in individuals with obesity.
Collapse
Affiliation(s)
- Zhengxiang Huang
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Weihao Wang
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Lili Huang
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Lixin Guo
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Chen Chen
- School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia
| |
Collapse
|
5
|
Unsal V, Deveci K, Ozmen ZC, Tumer MK. Research on the effects of L-carnitine and trans-chalcone on endoplasmic reticulum stress and oxidative stress in high-fructose corn syrup-fed rats. ACTA ACUST UNITED AC 2020. [DOI: 10.1108/nfs-05-2020-0162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
The debate on the metabolic effects of high fructose corn syrup (HFCS) continues. The deterioration of endoplasmic reticulum (ER) homeostasis is called ER stress. Glucose-regulated protein-78 (GRP-78) and X-box binding protein-1 (XBP-1) are key markers of ER stress and the therapeutic targets of diseases. Sterol regulatory element binding protein-1c (SREBP-1c) is the most important transcription factor that regulates the expression of enzymes for fatty acid synthesis. The purpose of this paper is to research the effects of L-carnitine and trans-chalcone on ER stress and oxidative stress parameters, and to explore the therapeutic potential of L-carnitine and trans-chalcone molecules.
Design/methodology/approach
Forty male wistar albino rats randomly selected were divided into five groups. All groups are fed with standard chow (ad libitum). While Group I was fed with drinking water, Group II, III, IV and V were fed with water containing 15% HFCS. L-carnitine was given to Group IV and trans-chalcone to Group V, and both were dissolved with DMSO and given intraperitoneally. Group III was not given anything additional.
Findings
While the amount of water consumption of HFCS-fed rats has increased, the amount of feed consumption has decreased. The weights of rats in Group II and Group III have increased significantly compared to Group I (p = 0.001, p = 0.001 respectively). In Group III, GRP78, XBP-1; malondialdehyde level (p < 0.001, p = 0.001, p = 0.041); total cholesterol, triglyceride, LDL levels (p = 0.001, p < 0.001, p = 0.009, p = 0.001, respectively) have increased significantly.
Originality/value
To the best of the authors’ knowledge, this study is the first report to show that excessive HFCS consumption causes oxidative stress and ER stress. The antioxidant and antiobesity properties of trans chalcone have been demonstrated. Extensive experimental and clinical studies should be conducted.
Collapse
|
6
|
Fan H, Diao H, Lu Y, Xie J, Cheng X. The relation between serum adipose differentiation-related protein and non-alcoholic fatty liver disease in type 2 diabetes mellitus. Ther Adv Endocrinol Metab 2020; 11:2042018820969025. [PMID: 33194172 PMCID: PMC7607795 DOI: 10.1177/2042018820969025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/06/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Adipose differentiation-related protein (ADRP) is an adipokine. In vitro and animal studies have verified the role of ADRP in lipid metabolism and non-alcoholic fatty liver disease (NAFLD). The aim of this study was to evaluate the interaction between levels of ADRP and NAFLD in type 2 diabetes mellitus (T2DM). METHODS Cross-sectional design. A total of 142 patients with T2DM were assigned to NAFLD (Group-I) and non-NAFLD (Group-II). Anthropometric data were collected. Serum ADRP levels and biochemical parameters were also determined. t test or χ2 test was conducted to compare the data between two groups. Receiver operating characteristic (ROC) curve analysis and logistic regression models were used to assess the interaction between ADRP levels and NAFLD in T2DM. Pearson correlation analysis and linear regression model were used to assess the correlations between serum ADRP levels and other parameters. RESULTS The serum ADRP level was higher in Group-I than in Group-II. Further, binary logistic regression models demonstrated that ADRP was an independent risk factor related to NAFLD in patients with T2DM. Moreover, as the ADRP level elevated across its tertiles, the percentage of NAFLD in T2DM increased. Multivariate logistic regression models demonstrated that the odds ratio of NAFLD was 8.831 in the highest tertile of ADRP, after adjustment for potential confounders. Area under THE ROC curve of ADRP for predicting the presence of NAFLD in T2DM was 0.738. Finally, multiple stepwise regression analysis indicated that age, waist circumference (WC), homeostasis model assessment of insulin resistance index (HOMA-IR) and triglyceride (TG) were independent factors associated with ADRP levels. CONCLUSION High serum ADRP level may be used as an independent risk factor for NAFLD in T2DM. The expression of ADRP may be affected by age, WC, HOMA-IR and TG.
Collapse
Affiliation(s)
- Huaying Fan
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hongjie Diao
- XieTang Community Health Service Center, Suzhou, Jiangsu, China
| | | | | | - Xingbo Cheng
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
7
|
Miao YF, Kang HX, Li J, Zhang YM, Ren HY, Zhu L, Chen H, Yuan L, Su H, Wan MH, Tang WF. Effect of Sheng-jiang powder on multiple-organ inflammatory injury in acute pancreatitis in rats fed a high-fat diet. World J Gastroenterol 2019; 25:683-695. [PMID: 30783372 PMCID: PMC6378539 DOI: 10.3748/wjg.v25.i6.683] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/10/2019] [Accepted: 01/21/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Obesity worsens inflammatory organ injury in acute pancreatitis (AP), but there is no effective preventive strategy. Sheng-jiang powder (SJP) has been shown to alleviate multiple-organ inflammatory injury in rats with high-fat diet-induced obesity. Hence, SJP is supposed to have an effect on multiple-organ inflammatory injury in AP in rats fed a high-fat diet.
AIM To explore how obesity may contribute to aggravating inflammatory organ injury in AP in rats and observe the effect of SJP on multiple-organ inflammatory injury in AP in rats fed a high-fat diet.
METHODS Rats were randomly assigned to a control group (CG), an obese group (OG), and an SJP treatment group (SG), with eight rats per group. The rats in the OG and SG were fed a high-fat diet. From the third week, the rats in the SG were given oral doses of SJP (5 g/kg of body weight). After 12 wk, AP was induced in the three groups. Serum amylase level, body weight, Lee’s index, serum biochemistry parameters, and serum inflammatory cytokine and tissue cytokine levels were assessed, and the tissue histopathological scores were evaluated and compared.
RESULTS Compared with the CG, serum triglyceride, total cholesterol, interleukin-6, and interleukin-10 levels were significantly higher in the OG, and serum high-density lipoprotein cholesterol level was significantly lower in the OG. Moreover, enhanced oxidative damage was observed in the pancreas, heart, spleen, lung, intestine, liver, and kidney. Evidence of an imbalanced antioxidant defense system, especially in the pancreas, spleen, and intestine, was observed in the obese AP rats. Compared with the OG, serum high-density lipoprotein cholesterol, interleukin-10, and superoxide dismutase expression levels in the pancreas, spleen, and intestine were increased in the SG. Additionally, SJP intervention led to a decrease in the following parameters: body weight; Lee’s index; serum triglyceride levels; serum total cholesterol levels; malondialdehyde expression levels in the pancreas, heart, spleen, lung, and liver; myeloperoxidase expression levels in the lung; and pathological scores in the liver.
CONCLUSION Obesity may aggravate the inflammatory reaction and pathological multiple-organ injury in AP rats, and SJP may alleviate multiple-organ inflammatory injury in AP in rats fed a high-fat diet.
Collapse
Affiliation(s)
- Yi-Fan Miao
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Hong-Xin Kang
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Juan Li
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yu-Mei Zhang
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Hong-Yu Ren
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Lv Zhu
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Huan Chen
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ling Yuan
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Hang Su
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Mei-Hua Wan
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Wen-Fu Tang
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
8
|
Aziz NM, Ragy MM, Ahmed SM. Somatostatin analogue, Octreotide, improves restraint stress-induced liver injury by ameliorating oxidative stress, inflammatory response, and activation of hepatic stellate cells. Cell Stress Chaperones 2018; 23:1237-1245. [PMID: 30109542 PMCID: PMC6237684 DOI: 10.1007/s12192-018-0929-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/06/2018] [Accepted: 08/02/2018] [Indexed: 12/17/2022] Open
Abstract
The aim of this study is to investigate the effect of somatostatin (SST) analogue, Octreotide, on some features of liver injury induced by immobilization stress (IS) in adult male albino rats. Eighteen adult male albino rats were randomly divided into three equal groups: control, IS, and Octreotide-treated stressed groups. Octreotide (40 μg/kg body weight, subcutaneously) was administrated twice daily for 8 days during the exposure to IS. Octreotide was found to reduce the IS significantly and induce elevations in the plasma level of corticosterone, liver transaminases, and tumor necrosis factor α (TNF-α) as compared with IS group. Furthermore, Octreotide administration has significantly elevated the decline in the total antioxidant capacities (TAC) and lowered the elevated malondialdehyde (MDA) levels observed with IS in the hepatic tissue. Additionally, Octreotide treatment provided protection against the histopathological changes in the stressed liver in the form of significant reduction in the mean number of degenerated hepatocytes, the area % of collagen fibers, and glial fibrillary acid protein (GFAP) immunostaining with a significant increase in the mean number of normal hepatocytes. In conclusion, stressed rats showed disturbed liver functions and its oxidant-antioxidant status with highly expression hepatic stellate cells (HSCs), which were all improved by Octreotide administration, SST analogue.
Collapse
Affiliation(s)
- Neven Makram Aziz
- Department of Physiology, Faculty of Medicine, Minia University, Minia, 61111, Egypt
- Deraya University, New Minia, Egypt
| | - Merhan Mamdouh Ragy
- Department of Physiology, Faculty of Medicine, Minia University, Minia, 61111, Egypt.
| | - Sabreen Mahmoud Ahmed
- Department of Physiology, Faculty of Medicine, Minia University, Minia, 61111, Egypt
- Department of Anatomy, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
9
|
Electroacupuncture: A Feasible Sirt1 Promoter Which Modulates Metainflammation in Diet-Induced Obesity Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:5302049. [PMID: 30425749 PMCID: PMC6217753 DOI: 10.1155/2018/5302049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 09/25/2018] [Indexed: 02/08/2023]
Abstract
It is generally accepted that metainflammation, a state of chronic and low-grade inflammation in obesity, plays a great role in metabolic disorder like insulin resistance. To gain further insight into the mechanism of metainflammation and find feasible therapy of obesity, diet-induced obesity (DIO) rats model and Electroacupuncture (EA) treatment were established in this trail. The results indicated that rising Lee's index, hyperlipidemia, insulin resistance, and increasing inflammation factors including NF-κB, TNF-α, and Macrophages 1 were determined in DIO rats while EA is exhibiting an effective intervention. Furthermore, to clarify this phenomenon and provide new recognition of alternative medicine for the treatment of metainflammation, we found that EA activating Sirt1 and Sirt1-dependent deacetylation of histone (H3K9) was the key of modulation. It should be noted that, while possible, the activating of Sirt1 could lead to deacetylation of NF-κB also. In this study, the deacetylation of NF-κB depended on higher level of Sirt1 than H3K9, which suggested that the deacetylation via Sirt1 in metainflammation could be specific and programmed.
Collapse
|
10
|
Miao YF, Li J, Zhang YM, Zhu L, Chen H, Yuan L, Hu J, Yi XL, Wu QT, Wan MH, Tang WF. Sheng-jiang powder ameliorates obesity-induced pancreatic inflammatory injury via stimulating activation of the AMPK signalling pathway in rats. World J Gastroenterol 2018; 24:4448-4461. [PMID: 30356974 PMCID: PMC6196332 DOI: 10.3748/wjg.v24.i39.4448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/12/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the mechanisms by which Sheng-jiang powder (SJP) ameliorates obesity-induced pancreatic inflammatory injury.
METHODS Sprague-Dawley rats were randomized into three groups: normal group (NG), obese group (HLG), or SJP treatment group (HSG). Obesity was induced by feeding a high-fat diet in the HLG and HSG, while the NG received standard chow. Rats were euthanized after 12 wk, and blood and pancreatic tissues were collected for histopathological analyses. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and transforming growth factor beta (TGF-β) expression, serum triglyceride and adiponectin levels, and apoptosis in pancreatic acinar cells were assessed. A high-fat AR42J acinar cell injury model was established using very low-density lipoprotein (VLDL). AR42J acinar cell culture supernatant, treated with different interventions, was applied to seven groups of pancreatic stellate cells (PSCs). The proliferation of PSCs and the expression of fibronectin and type I collagenase were assessed.
RESULTS Compared with the NG, we found higher pathological scores for pancreatic tissues, lower serum adiponectin levels, higher expression levels of NF-κB in pancreatic tissues and TGF-β in pancreatic inflammatory cells, and increased apoptosis among pancreatic acinar cells for the HLG (P < 0.05). Compared with the HLG, we found reduced body weight, Lee’s index scores, serum triglyceride levels, and pathological scores for pancreatic tissues; higher serum adiponectin levels; and lower expression levels of NF-κB, in pancreatic tissue and TGF-β in pancreatic inflammatory cells for the HSG (P < 0.05). The in vitro studies showed enhanced PSC activation and increased expression levels of fibronectin and type I collagenase after SJP treatment. An adenosine 5‘-monophosphate-activated protein kinase (AMPK) inhibitor inhibited PSC activation.
CONCLUSION SJP may ameliorate obesity-induced pancreatic inflammatory injury in rats by regulating key molecules of the adiponectin-AMPK signalling pathway.
Collapse
Affiliation(s)
- Yi-Fan Miao
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Juan Li
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yu-Mei Zhang
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Lv Zhu
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Huan Chen
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ling Yuan
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jing Hu
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xiao-Lin Yi
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Qiu-Ting Wu
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Mei-Hua Wan
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Wen-Fu Tang
- Department of Integrative Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
11
|
Lee J, Kim E, Kim Y, Yoo SH. Leucrose, a Sucrose Isomer, Suppresses Hepatic Fat Accumulation by Regulating Hepatic Lipogenesis and Fat Oxidation in High-fat Diet-induced Obese Mice. J Cancer Prev 2018; 23:99-106. [PMID: 30003071 PMCID: PMC6037208 DOI: 10.15430/jcp.2018.23.2.99] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 06/21/2018] [Accepted: 06/24/2018] [Indexed: 11/15/2022] Open
Abstract
Obesity is currently one of the most serious public health problems and it can lead to numerous metabolic diseases. Leucrose, d-glucopyranosyl-α-(1-5)-d-fructopyranose, is an isoform of sucrose and it is naturally found in pollen and honey. The aim of this study was to investigate the effect of leucrose on metabolic changes induced by a high-fat diet (HFD) that lead to obesity. C57BL/6 mice were fed a 60% HFD or a HFD with 25% (L25) or 50% (L50) of its total sucrose content replaced with leucrose for 12 weeks. Leucrose supplementation improved fasting blood glucose levels and hepatic triglyceride content. In addition, leucrose supplementation reduced mRNA levels of lipogenesis-related genes, including peroxisome proliferator-activated receptor γ, sterol regulatory element binding protein 1C, and fatty acid synthase in HFD mice. Conversely, mRNA levels of β oxidation-related genes, such as carnitine palmitoyltransferase 1A and acyl CoA oxidase, returned to control levels with leucrose supplementation. Taken together, these results demonstrated the therapeutic potential of leucrose to prevent metabolic abnormalities by mediating regulation of plasma glucose level and hepatic triglyceride accumulation.
Collapse
Affiliation(s)
- Jihye Lee
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Korea
| | - Eunju Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Korea
| | - Yuri Kim
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul, Korea
| | - Sang-Ho Yoo
- Department of Food Science and Biotechnology, and Carbohydrate Bioproduct Research Center, Sejong University, Seoul, Korea
| |
Collapse
|
12
|
Yang C, Li L, Yang L, Lǚ H, Wang S, Sun G. Anti-obesity and Hypolipidemic effects of garlic oil and onion oil in rats fed a high-fat diet. Nutr Metab (Lond) 2018; 15:43. [PMID: 29951108 PMCID: PMC6011244 DOI: 10.1186/s12986-018-0275-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/07/2018] [Indexed: 01/08/2023] Open
Abstract
Background Until now, little research concerning the lipid-lowering and anti-obesity functions of garlic oil and onion oil has been performed. The objective of this study was to explore the effects of garlic oil and onion oil on serum lipid levels in hyperlipidemia model rats, to provide a scientific basis for the prevention of hyperlipidemia through a dietary approach, and to explore the potential health benefits of garlic and onion. Method Ninety-six male Sprague-Dawley rats were randomly allocated into eight groups based on their body weight and serum levels of triglycerides (TG) and total cholesterol (TC). The rats received repeated oral administration of volatile oils extracted from garlic and onion for 60 days. Serum lipids and parameters of obesity were examined. Results The volatile oils suppressed the HFD-induced body weight gain and tended to decrease adipose tissue weight. The oils decreased the levels of TG, TC and LDL-C and increased the serum level of HDL-C compared with the rats in the hyperlipidemia model groups (P < 0.05). The oils were also effective at improving the lipid profile and alleviating hepatic steatosis. Conclusion Our results implied that garlic oil and onion oil have anti-obesity properties that can counteract the effects of an HFD on body weight, adipose tissue weight, and serum lipid profiles. Electronic supplementary material The online version of this article (10.1186/s12986-018-0275-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chao Yang
- 1Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, No. 87 Ding Jia Qiao Road, Nanjing, 210009 China
| | - Lihua Li
- 1Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, No. 87 Ding Jia Qiao Road, Nanjing, 210009 China
| | - Ligang Yang
- 1Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, No. 87 Ding Jia Qiao Road, Nanjing, 210009 China
| | - Hui Lǚ
- 1Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, No. 87 Ding Jia Qiao Road, Nanjing, 210009 China.,2Second Clinical Medical College, Nanjing University of Traditional Chinese Medicine, Nanjing, 210046 China
| | - Shaokang Wang
- 1Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, No. 87 Ding Jia Qiao Road, Nanjing, 210009 China
| | - Guiju Sun
- 1Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, No. 87 Ding Jia Qiao Road, Nanjing, 210009 China
| |
Collapse
|
13
|
Hashimoto H, Yamamoto M, Sugiura E, Abe H, Kagawa T, Goto M, Takahashi RI, Akimoto T, Suemizu H. Adiponectin deficiency-induced diabetes increases TNFα and FFA via downregulation of PPARα. J Vet Med Sci 2018; 80:662-666. [PMID: 29445073 PMCID: PMC5938197 DOI: 10.1292/jvms.17-0641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Expression of peroxisome proliferator-activated receptor (PPAR) α was investigated in
adiponectin knockout mice to elucidate the relationship between PPARα and adiponectin
deficiency-induced diabetes. Adiponectin knockout (Adp−/−) mice were generated
by gene targeting. Glucose tolerance test (GTT), insulin tolerance test (ITT), and organ
sampling were performed in Adp−/− mice at the age of 10 weeks. PPARα, insulin,
triglyceride, free fatty acid (FFA), and tumor necrosis factor α (TNFα) were analyzed from
the sampled organs. Adp−/− mice showed impaired glucose tolerance and insulin
resistance. Additionally, PPARα levels were decreased and plasma concentration of
triglyceride, FFA and TNFα were increased. These data may indicate that insulin resistance
in Adp−/− mice is likely caused by an increase in concentrations of TNFα and
FFA via downregulation of PPARα.
Collapse
Affiliation(s)
- Haruo Hashimoto
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Masafumi Yamamoto
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Emika Sugiura
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Hayato Abe
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Takahiro Kagawa
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Motohito Goto
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Ri-Ichi Takahashi
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Toshio Akimoto
- Division of Laboratory Animal Science, Nippon Medical School, 115 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Hiroshi Suemizu
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| |
Collapse
|
14
|
Liu H, Zhong H, Leng L, Jiang Z. Effects of soy isoflavone on hepatic steatosis in high fat-induced rats. J Clin Biochem Nutr 2017; 61:85-90. [PMID: 28955124 PMCID: PMC5612816 DOI: 10.3164/jcbn.16-98] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/28/2016] [Indexed: 12/17/2022] Open
Abstract
Soy isoflavone has benefits for metabolic syndrome but the mechanism is not completely understood. This study was designed to determine the effects of soy isoflavone on hepatic fat accumulation in non-alcoholic fatty liver disease (NAFLD) rats induced by high fat diet (HFD). Sprague-Dawley rats were administrated with a normal fat diet (control), HFD (NAFLD model), HFD with 10 or 20 mg/kg soy isoflavone daily for 12 weeks. Hepatic and serum lipid contents, liver histopathological examination, serum alanine transaminase (ALT), protein and mRNA expression of sterol regulatory element binding protein (SREBP)-1c, fatty acid synthase (FAS), peroxisome proliferator-activated receptor (PPAR) α were assayed respectively. Our study found that soy isoflavone reduced HFD-induced lipid accumulation in liver, serum ALT and improved liver lobule structure. In addition, the expression of SREBP-1c and FAS was lower, whereas protein level of PPARα was higher in two soy isoflavone groups than that of the HFD group. Collectively, these results demonstrate that soy isoflavone is capable of alleviating hepatic steatosis and delaying the progression of NAFLD via inhibiting lipogenesis and promoting fatty acid oxidation in liver.
Collapse
Affiliation(s)
- Huanhuan Liu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Huijia Zhong
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Liang Leng
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhuoqin Jiang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| |
Collapse
|
15
|
Wang XX, Ye T, Li M, Li X, Qiang O, Tang CW, Liu R. Effects of octreotide on hepatic glycogenesis in rats with high fat diet‑induced obesity. Mol Med Rep 2017; 16:109-118. [PMID: 28534956 PMCID: PMC5482138 DOI: 10.3892/mmr.2017.6586] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 02/27/2017] [Indexed: 02/05/2023] Open
Abstract
Reduced hepatic glycogenesis is one of the most important causes of metabolic abnormalities in non‑alcoholic fatty liver disease. Octreotide, a somatostatin analogue, has been demonstrated to promote weight loss and improve metabolic disorders in mice with high fat diet (HFD)‑induced obesity. However, whether octreotide affects hepatic glycogenesis is unknown. The aim of the present study was to verify the effects of octreotide on hepatic glycogenesis in rats with HFD‑induced obesity. Male Sprague‑Dawley rats were fed a standard diet or a HFD for 24 weeks. Obese rats from the HFD group were further divided into a HFD‑control group and an octreotide‑administered group. Rats in the latter group were injected with octreotide for 8 days. Glucose and insulin tolerance tests were performed, and the area under the curve (AUC) was calculated. Following sacrifice, their body weights and lengths, fasting plasma glucose (FPG), fasting insulin (FINS), serum triglyceride (TG), total cholesterol (TC), free fatty acid (FFA), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were measured. In addition, Lee's index and the homeostatic model assessment index were calculated. Hepatic TG, FFA levels and glycogen content were first determined. Hepatic steatosis in the obese rats was assessed based on hematoxylin and eosin and Oil Red O staining. Human hepatoblastoma HepG2 cells were divided into a control group, a palmitate (PA)‑treated group and a PA + octreotide‑treated group. Establishment of the in vitro fatty liver model using HepG2 cells was confirmed by Oil Red O staining. The expression of phosphorylated Akt and glycogen synthase kinase 3β (GSK3β) was detected by western blotting, and glycogen synthase (GS) mRNA levels were detected by reverse transcription‑quantitative polymerase chain reaction. Compared with the control group, the body weight, Lee's index, AUC of the intraperitoneal glucose tolerance test and intraperitoneal insulin tolerance test, levels of FPG, FINS, TG, TC, FFA, ALT and AST, and HOMA index values were significantly increased in the obese rats. The body weight, levels of FPG and FINS, and the HOMA index were significantly reduced following octreotide treatment, whereas the decrease in Lee's index, the blood levels of ALT, AST, TC, TG and FFA, and the AUC did not reach statistical significance. Hepatic TG and FFA levels were significantly increased and hepatic glycogen content was significantly decreased in rats with HFD‑induced obesity when compared with those in the control group. Octreotide intervention restored these alterations. The expression levels of phosphorylated Akt and GSK3β protein expression, as well as GS mRNA levels in the HFD group were lower when compared with those in the control group, whereas octreotide treatment reversed these reductions. The in vitro experiments demonstrated that the reduced levels of phosphorylated Akt and GSK3β protein, and GS mRNA in the PA‑treated group were significantly reversed by octreotide treatment. In conclusion, the results indicate that octreotide improved hepatic glycogenesis and decreased FPG concentration in rats with HFD‑induced obesity. These mechanisms may be associated with increased GS activity via the promotion of GSK3β phosphorylation. Therefore, octreotide may be regarded as a novel therapeutic strategy for HFD‑induced obesity and obesity‑associated metabolic disorders.
Collapse
Affiliation(s)
- Xiao-Xia Wang
- Division of Peptides Related to Human Disease, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ting Ye
- Division of Peptides Related to Human Disease, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Mao Li
- Division of Peptides Related to Human Disease, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xian Li
- Division of Peptides Related to Human Disease, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ou Qiang
- Division of Peptides Related to Human Disease, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Cheng-Wei Tang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Rui Liu
- Division of Peptides Related to Human Disease, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
16
|
姚 笑, 夏 凡, 唐 外, 周 本. [Effect of Hugan Qingzhi tablets on AMPK pathway activation and NF-κB-p65 protein expression in the liver of rats with nonalcoholic fatty liver disease]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2017; 37:56-62. [PMID: 28109099 PMCID: PMC6765763 DOI: 10.3969/j.issn.1673-4254.2017.01.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVE To investigate the effect of Hugan Qingzhi tablets on lipid metabolism and inflammation in rats fed on high-fat diet and explore the underlying mechanisms. METHODS Sixty male Sprague-Dawley rats were randomly divided into 6 groups, namely HFD group (with high-fat diet and distilled water), control group (with normal diet and distilled water), fenofibrate group (with high-fat diet and treatment with 0.1 g<kg fenofibrate suspension), and low-, moderate- and high-dose Hugan Qingzhi tablet groups (with high-fat diet and treatment with 0.54, 1.08, and 2.16 g<kg Hugan Qingzhi suspension). After daily corresponding treatments for 12 weeks, the histological changes in the liver were observed with HE staining. The serum levels of triglyceride (TG), cholesterol (CHOL), alanine transaminase (ALT), and aspartate aminotransferase (AST), and the levels of TG and CHOL in the hepatic tissue were assayed. The proinflammatory cytokines TNF-α, IL-6 and CRP were detected with enzyme-linked immunoassay, and p-AMPK, SREBP-1c, FASN and NF-αB-p65 expression levels in the liver were determined with qRT-PCR or Western blotting. RESULTS At high and moderate doses, Hugan Qingzhi effectively decreased the levels of ALT, AST, TG and CHOL levels in the serum, lowered the hepatic levels of TNF-α, IL-6 and CRP, enhanced p-AMPK, and reduced the expression of SREBP-1c, FASN and Ac-NF-αB-p65 in the liver of rats fed on high-fat diet. CONCLUSION Hugan Qingzhi tablets alleviates hyperlipidemia and inflammation in rats fed with high-fat diet possibly by activating AMPK pathway and suppress NF-αB activity to arrest the progression of nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- 笑睿 姚
- />南方医科大学珠江医院药学部,广东 广州 510282Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - 凡 夏
- />南方医科大学珠江医院药学部,广东 广州 510282Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - 外姣 唐
- />南方医科大学珠江医院药学部,广东 广州 510282Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - 本杰 周
- />南方医科大学珠江医院药学部,广东 广州 510282Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| |
Collapse
|
17
|
Zhang L, Wu X, Liao S, Li Y, Zhang Z, Chang Q, Xiao R, Liang B. Tree shrew (Tupaia belangeri chinensis), a novel non-obese animal model of non-alcoholic fatty liver disease. Biol Open 2016; 5:1545-1552. [PMID: 27659689 PMCID: PMC5087676 DOI: 10.1242/bio.020875] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/16/2016] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is becoming a severe public health problem that is affecting a large proportion of the world population. Generally, NAFLD in patients is usually accompanied by obesity, hyperglycemia, insulin resistance (IR) and type 2 diabetes (T2D), for which numerous animal models have been generated in order to explore the pathogenesis and therapies of NAFLD. On the contrary, quite a number of NAFLD subjects, especially in Asian regions, are non-obese and non-diabetic; however, few animal models are available for the research of non-obese NAFLD. Here, four approaches (here called approach 1 to 4) corresponding to the variable compositions of diets were used to treat tree shrews (Tupaia belangeri chinensis), which have a closer evolutionary relationship to primates than rodents. Analysis of plasma biochemical parameters, hepatic histology, and the expression of hepatic lipid metabolic genes revealed that all four approaches led to hepatic lipid accumulation, liver injury and hypercholesterolemia, but had no effect on body weight and adipose tissue generation, or glycemia. Hepatic gene expression in tree shrews treated by approach 4 might suggest a different or non-canonical pathway leading to hepatic steatosis. In conclusion, the tree shrew displays hepatic steatosis and dyslipidemia, but remains non-obese and non-diabetic under high energy diets, which suggests that the tree shrew may be useful as a novel animal model for the research of human non-obese NAFLD.
Collapse
Affiliation(s)
- Linqiang Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Science & Yunnan province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Xiaoyun Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Science & Yunnan province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China Key Laboratory of Puer Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Shasha Liao
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Science & Yunnan province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Yunhai Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Science & Yunnan province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Zhiguo Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Science & Yunnan province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Qing Chang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Science & Yunnan province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Ruyue Xiao
- Pharmaceutical College, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Bin Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Science & Yunnan province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|