1
|
Kimura H. Hydrogen Sulfide (H 2S)/Polysulfides (H 2S n) Signalling and TRPA1 Channels Modification on Sulfur Metabolism. Biomolecules 2024; 14:129. [PMID: 38275758 PMCID: PMC10813152 DOI: 10.3390/biom14010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Hydrogen sulfide (H2S) and polysulfides (H2Sn, n ≥ 2) produced by enzymes play a role as signalling molecules regulating neurotransmission, vascular tone, cytoprotection, inflammation, oxygen sensing, and energy formation. H2Sn, which have additional sulfur atoms to H2S, and other S-sulfurated molecules such as cysteine persulfide and S-sulfurated cysteine residues of proteins, are produced by enzymes including 3-mercaptopyruvate sulfurtransferase (3MST). H2Sn are also generated by the chemical interaction of H2S with NO, or to a lesser extent with H2O2. S-sulfuration (S-sulfhydration) has been proposed as a mode of action of H2S and H2Sn to regulate the activity of target molecules. Recently, we found that H2S/H2S2 regulate the release of neurotransmitters, such as GABA, glutamate, and D-serine, a co-agonist of N-methyl-D-aspartate (NMDA) receptors. H2S facilitates the induction of hippocampal long-term potentiation, a synaptic model of memory formation, by enhancing the activity of NMDA receptors, while H2S2 achieves this by activating transient receptor potential ankyrin 1 (TRPA1) channels in astrocytes, potentially leading to the activation of nearby neurons. The recent findings show the other aspects of TRPA1 channels-that is, the regulation of the levels of sulfur-containing molecules and their metabolizing enzymes. Disturbance of the signalling by H2S/H2Sn has been demonstrated to be involved in various diseases, including cognitive and psychiatric diseases. The physiological and pathophysiological roles of these molecules will be discussed.
Collapse
Affiliation(s)
- Hideo Kimura
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, 1-1-1 Daigaku-Dori, Sanyo-Onoda 756-0884, Yamaguchi, Japan
| |
Collapse
|
2
|
Furuie H, Kimura Y, Akaishi T, Yamada M, Miyasaka Y, Saitoh A, Shibuya N, Watanabe A, Kusunose N, Mashimo T, Yoshikawa T, Yamada M, Abe K, Kimura H. Hydrogen sulfide and polysulfides induce GABA/glutamate/D-serine release, facilitate hippocampal LTP, and regulate behavioral hyperactivity. Sci Rep 2023; 13:17663. [PMID: 37907526 PMCID: PMC10618189 DOI: 10.1038/s41598-023-44877-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023] Open
Abstract
Hydrogen sulfide (H2S) and polysulfides (H2Sn, n ≥ 2) are signaling molecules produced by 3-mercaptopyruvate sulfurtransferase (3MST) that play various physiological roles, including the induction of hippocampal long-term potentiation (LTP), a synaptic model of memory formation, by enhancing N-methyl-D-aspartate (NMDA) receptor activity. However, the presynaptic action of H2S/H2Sn on neurotransmitter release, regulation of LTP induction, and animal behavior are poorly understood. Here, we showed that H2S/H2S2 applied to the rat hippocampus by in vivo microdialysis induces the release of GABA, glutamate, and D-serine, a co-agonist of NMDA receptors. Animals with genetically knocked-out 3MST and the target of H2S2, transient receptor potential ankyrin 1 (TRPA1) channels, revealed that H2S/H2S2, 3MST, and TRPA1 activation play a critical role in LTP induction, and the lack of 3MST causes behavioral hypersensitivity to NMDA receptor antagonism, as in schizophrenia. H2S/H2Sn, 3MST, and TRPA1 channels have therapeutic potential for psychiatric diseases and cognitive deficits.
Collapse
Affiliation(s)
- Hiroki Furuie
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yuka Kimura
- Department of Pharmacology, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi, Japan
| | - Tatsuhiro Akaishi
- Laboratory of Pharmacology, Faculty of Pharmacy and Research Institute of Pharmaceutical Sciences, Musashino University, Nishi-Tokyo, Tokyo, Japan
| | - Misa Yamada
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yoshiki Miyasaka
- Departement of Medicine, Institute of Experimental Animal Sciences, Osaka University, Suita, Osaka, Japan
| | - Akiyoshi Saitoh
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Norihiro Shibuya
- Department of Pharmacology, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi, Japan
| | - Akiko Watanabe
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Naoki Kusunose
- School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, Nobeoka, Miyazaki, Japan
| | - Tomoji Mashimo
- Departement of Medicine, Institute of Experimental Animal Sciences, Osaka University, Suita, Osaka, Japan
- Division of Animal Genetics, Laboratiry Animal Research Center, Institute of Medical Science, The Universtiry of Tokyo, Tokyo, Japan
| | - Takeo Yoshikawa
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Mitsuhiko Yamada
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
- Department of Pathophysiology, Faculty of Human Nutrition, Tokyo Kasei Gakuin University, Chiyoda-ku, Tokyo, Japan
| | - Kazuho Abe
- Laboratory of Pharmacology, Faculty of Pharmacy and Research Institute of Pharmaceutical Sciences, Musashino University, Nishi-Tokyo, Tokyo, Japan
| | - Hideo Kimura
- Department of Pharmacology, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi, Japan.
| |
Collapse
|
3
|
Park H, Seo SI, Lim JH, Song J, Seo JH, Kim PI. Screening of Carbofuran-Degrading Bacteria Chryseobacterium sp. BSC2-3 and Unveiling the Change in Metabolome during Carbofuran Degradation. Metabolites 2022; 12:metabo12030219. [PMID: 35323662 PMCID: PMC8950912 DOI: 10.3390/metabo12030219] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 02/01/2023] Open
Abstract
Carbofuran is one of the most commonly used N-methylcarbamate-based pesticides and is excellent for controlling pests; however, carbofuran also causes soil and water pollution. Although various studies have been conducted on the bioremediation of pesticide-contaminated soil, the changes occurring in the metabolome during the bioremediation of carbofuran are not fully understood. In this study, the intracellular and extracellular metabolites of the Chryseobacterium sp. BSC2-3 strain were analysed during carbofuran degradation by using a liquid chromatography–mass spectrometry-based metabolomics approach. We found that the BSC2-3 strain extracellularly transformed carbofuran into 3-hydroxycarbofuran. Intracellular metabolite analysis revealed that carbofuran mainly affected aminobenzoate degradation, ubiquinone and terpenoid-quinone biosynthesis, and arginine and proline metabolism. Carbofuran especially affected the metabolic pathway for the degradation of naphthalene and aminobenzoate. Metabolomics additionally revealed that the strain produces disease resistance inducers and plant growth regulators. We also identified the genes involved in the production of indole-3-acetic acid, which is one of the most active auxins. Overall, we identified the metabolic changes induced in carbofuran-degrading bacteria and the genes predicted to be responsible for the degradation of carbofuran.
Collapse
Affiliation(s)
- Haeseong Park
- Center for Industrialization of Agricultural and Livestock Microorganisms, 241 Cheomdangwahak-ro, Jeongeup-si 56212, Korea; (H.P.); (S.I.S.); (J.-H.L.)
| | - Sun Il Seo
- Center for Industrialization of Agricultural and Livestock Microorganisms, 241 Cheomdangwahak-ro, Jeongeup-si 56212, Korea; (H.P.); (S.I.S.); (J.-H.L.)
| | - Ji-Hwan Lim
- Center for Industrialization of Agricultural and Livestock Microorganisms, 241 Cheomdangwahak-ro, Jeongeup-si 56212, Korea; (H.P.); (S.I.S.); (J.-H.L.)
| | - Jaekyeong Song
- Division of Agricultural Microbiology, National Academy of Agricultural Science, 166 Nongsaengmyeong-ro, Wanju-gun 55365, Korea;
| | - Joo-Hyun Seo
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Korea
- Correspondence: (J.-H.S.); (P.I.K.); Tel.: +82-63-536-6001 (P.I.K.)
| | - Pyoung Il Kim
- Center for Industrialization of Agricultural and Livestock Microorganisms, 241 Cheomdangwahak-ro, Jeongeup-si 56212, Korea; (H.P.); (S.I.S.); (J.-H.L.)
- Correspondence: (J.-H.S.); (P.I.K.); Tel.: +82-63-536-6001 (P.I.K.)
| |
Collapse
|
4
|
Dhakal S, Lee Y. Transient Receptor Potential Channels and Metabolism. Mol Cells 2019; 42:569-578. [PMID: 31446746 PMCID: PMC6715338 DOI: 10.14348/molcells.2019.0007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 07/27/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Transient receptor potential (TRP) channels are nonselective cationic channels, conserved among flies to humans. Most TRP channels have well known functions in chemosensation, thermosensation, and mechanosensation. In addition to being sensing environmental changes, many TRP channels are also internal sensors that help maintain homeostasis. Recent improvements to analytical methods for genomics and metabolomics allow us to investigate these channels in both mutant animals and humans. In this review, we discuss three aspects of TRP channels, which are their role in metabolism, their functional characteristics, and their role in metabolic syndrome. First, we introduce each TRP channel superfamily and their particular roles in metabolism. Second, we provide evidence for which metabolites TRP channels affect, such as lipids or glucose. Third, we discuss correlations between TRP channels and obesity, diabetes, and mucolipidosis. The cellular metabolism of TRP channels gives us possible therapeutic approaches for an effective prophylaxis of metabolic syndromes.
Collapse
Affiliation(s)
- Subash Dhakal
- Department of Bio and Fermentation Convergence Technology, Kookmin University, BK21 PLUS Project, Seoul 02707,
Korea
| | - Youngseok Lee
- Department of Bio and Fermentation Convergence Technology, Kookmin University, BK21 PLUS Project, Seoul 02707,
Korea
| |
Collapse
|
5
|
Ji DY, Park SH, Park SJ, Kim KH, Ku CR, Shin DY, Yoon JS, Lee DY, Lee EJ. Comparative assessment of Graves' disease and main extrathyroidal manifestation, Graves' ophthalmopathy, by non-targeted metabolite profiling of blood and orbital tissue. Sci Rep 2018; 8:9262. [PMID: 29915201 PMCID: PMC6006143 DOI: 10.1038/s41598-018-27600-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/05/2018] [Indexed: 01/19/2023] Open
Abstract
Graves' disease (GD) is an autoimmune disorder that causes the overproduction of thyroid hormones and consequent cascade of systemic metabolism dysfunction. Moreover, Graves' ophthalmopathy (GO) is the main extrathyroidal manifestation of Graves' disease (GD). The goal of the study was to identify metabolic signatures in association with diagnostic biomarkers of GD without GO and GO, respectively. Ninety metabolites were profiled and analyzed based on a non-targeted primary metabolite profiling from plasma samples of 21 GD patients without GO, 26 subjects with GO, and 32 healthy subjects. Multivariate statistics showed a clear discrimination between healthy controls and disease group (R2Y = 0.518, Q2 = 0.478) and suggested a biomarker panel consisting of 10 metabolites. Among them, most of metabolites showed the positive association with the levels of thyrotropin receptor antibodies. With combination of proline and 1,5-anhydroglucitol, which were identified as GO-specific modulators, the re-constructed biomarker model greatly improved the statistical power and also facilitated simultaneous discrimination among healthy control, GO, and GD without GO groups (AUC = 0.845-0.935). Finally, the comparative analysis of tissue metabolite profiles from GO patients proposed putative metabolic linkage between orbital adipose/connective tissues and the biofluidic consequences, in which fumarate, proline, phenylalanine, and glycerol were coordinately altered with the blood metabolites.
Collapse
Affiliation(s)
- Dong Yoon Ji
- The Department of Bio and Fermentation Convergence Technology, BK21 PLUS Program, Kookmin University, Seoul, Republic of Korea
| | - Se Hee Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Graduate School, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soo Jin Park
- The Department of Bio and Fermentation Convergence Technology, BK21 PLUS Program, Kookmin University, Seoul, Republic of Korea
| | - Kyoung Heon Kim
- The Department of Biotechnology, Graduate School, Korea University, Seoul, Republic of Korea
| | - Cheol Ryong Ku
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Dong Yeob Shin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin Sook Yoon
- Department of Ophthalmology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Do Yup Lee
- The Department of Bio and Fermentation Convergence Technology, BK21 PLUS Program, Kookmin University, Seoul, Republic of Korea.
| | - Eun Jig Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Moore C, Gupta R, Jordt SE, Chen Y, Liedtke WB. Regulation of Pain and Itch by TRP Channels. Neurosci Bull 2018; 34:120-142. [PMID: 29282613 PMCID: PMC5799130 DOI: 10.1007/s12264-017-0200-8] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/27/2017] [Indexed: 02/07/2023] Open
Abstract
Nociception is an important physiological process that detects harmful signals and results in pain perception. In this review, we discuss important experimental evidence involving some TRP ion channels as molecular sensors of chemical, thermal, and mechanical noxious stimuli to evoke the pain and itch sensations. Among them are the TRPA1 channel, members of the vanilloid subfamily (TRPV1, TRPV3, and TRPV4), and finally members of the melastatin group (TRPM2, TRPM3, and TRPM8). Given that pain and itch are pro-survival, evolutionarily-honed protective mechanisms, care has to be exercised when developing inhibitory/modulatory compounds targeting specific pain/itch-TRPs so that physiological protective mechanisms are not disabled to a degree that stimulus-mediated injury can occur. Such events have impeded the development of safe and effective TRPV1-modulating compounds and have diverted substantial resources. A beneficial outcome can be readily accomplished via simple dosing strategies, and also by incorporating medicinal chemistry design features during compound design and synthesis. Beyond clinical use, where compounds that target more than one channel might have a place and possibly have advantageous features, highly specific and high-potency compounds will be helpful in mechanistic discovery at the structure-function level.
Collapse
Affiliation(s)
- Carlene Moore
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Rupali Gupta
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Sven-Eric Jordt
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Yong Chen
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Wolfgang B Liedtke
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
7
|
Metabolomics: State-of-the-Art Technologies and Applications on Drosophila melanogaster. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:257-276. [PMID: 29951824 DOI: 10.1007/978-981-13-0529-0_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metabolomics is one of the latest "omics" technology concerned with the high-throughput identification and quantification of metabolites, the final products of cellular processes. The revealed data provide an instantaneous snapshot of an organism's metabolic pathways, which can be used to explain its phenotype or physiology. On the other hand, Drosophila has shown its power in studying metabolism and related diseases. At this stage, we have the state-of-the-art knowledge in place: a potential candidate to study cellular metabolism (Drosophila melanogaster) and a powerful methodology for metabolic network decipherer (metabolomics). Yet missing is advanced metabolomics technologies like isotope-assisted metabolomics optimized for Drosophila. In this chapter, we will discuss on the current status and future perspectives in technologies and applications of Drosophila metabolomics.
Collapse
|
8
|
Cox JE, Thummel CS, Tennessen JM. Metabolomic Studies in Drosophila. Genetics 2017; 206:1169-1185. [PMID: 28684601 PMCID: PMC5500124 DOI: 10.1534/genetics.117.200014] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/25/2017] [Indexed: 01/01/2023] Open
Abstract
Metabolomic analysis provides a powerful new tool for studies of Drosophila physiology. This approach allows investigators to detect thousands of chemical compounds in a single sample, representing the combined contributions of gene expression, enzyme activity, and environmental context. Metabolomics has been used for a wide range of studies in Drosophila, often providing new insights into gene function and metabolic state that could not be obtained using any other approach. In this review, we survey the uses of metabolomic analysis since its entry into the field. We also cover the major methods used for metabolomic studies in Drosophila and highlight new directions for future research.
Collapse
Affiliation(s)
- James E Cox
- Department of Biochemistry and
- The Metabolomics Core Research Facility, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Carl S Thummel
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
9
|
Cho YU, Lee D, Lee JE, Kim KH, Lee DY, Jung YC. Exploratory metabolomics of biomarker identification for the internet gaming disorder in young Korean males. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1057:24-31. [PMID: 28482325 DOI: 10.1016/j.jchromb.2017.04.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/19/2017] [Accepted: 04/28/2017] [Indexed: 01/22/2023]
Abstract
The main aim of the current research is to characterize the molecular dynamics related to internet gaming disorder (IGD) using non-targeted plasma metabolite profiling based on gas-chromatography time-of-flight mass spectrometry (GC-TOF MS). IGD is a psychiatric disorder instigated by excessive and prolonged internet gaming, which shared many pathological symptoms with attention deficit hyperactivity disorder (ADHD). The prevalence of the disorder has been rapidly increased particularly in East Asia countries (5.9% in South Korea) compared to Europe or North America (0.3-1.0% in United States and 1.16% in Germany). Thus we comparably explored the correlation between plasma metabolites and internet addiction severity in IGD patients, and potential biomarker composite in combination with clinical parameters. The systematic metabolite profiling of 54 blood samples (normal user, N=28 and IGD, N=24) identified a total of 104 metabolites out of 1212 metabolic feature, and revealed unique relation of co-linearly regressed set of plasma metabolites (arabitol, myo-inositol, methionine, pyrrole-2-carboxylic acid, and aspartic acid) with internet addiction severity scale (R=0.795). In addition, orthogonal partial least squared discriminant analysis (OPLS-DA) and receiver operating characteristic (ROC) analysis identified the potential biomarker cluster that simultaneously discriminated the different types of the psychiatric status. The potential biomarker re-composite was comprehensively evaluated by a receiver operating characteristic (ROC) analysis where the AUCs were 0.890, 0.880, 1.000, and 0.935 for control, IGD, AD and IGD+AD, respectively (N=18, 19, 5, and 10) against the others. This exploratory method may provide robustness of predictive diagnosis in population screening of IGD. The identified metabolic features, the relatedness with clinical parameters, and the putative biochemical linkage will hopefully aid future pathological studies in IGD.
Collapse
Affiliation(s)
- Yeo Ul Cho
- The Department of Bio and Fermentation Convergence Technology, BK21 PLUS Program, Kookmin University, Seoul 02707, Republic of Korea
| | - Deokjong Lee
- The Department of Psychiatry, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jung-Eun Lee
- The Department of Bio and Fermentation Convergence Technology, BK21 PLUS Program, Kookmin University, Seoul 02707, Republic of Korea
| | - Kyoung Heon Kim
- The Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Do Yup Lee
- The Department of Bio and Fermentation Convergence Technology, BK21 PLUS Program, Kookmin University, Seoul 02707, Republic of Korea.
| | - Young-Chul Jung
- The Department of Psychiatry, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| |
Collapse
|
10
|
Park SJ, Jeong IH, Kong BS, Lee JE, Kim KH, Lee DY, Kim HJ. Disease Type- and Status-Specific Alteration of CSF Metabolome Coordinated with Clinical Parameters in Inflammatory Demyelinating Diseases of CNS. PLoS One 2016; 11:e0166277. [PMID: 27855220 PMCID: PMC5113962 DOI: 10.1371/journal.pone.0166277] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/25/2016] [Indexed: 01/15/2023] Open
Abstract
Central nervous system (CNS) inflammatory demyelinating diseases (IDDs) are a group of disorders with different aetiologies, characterized by inflammatory lesions. These disorders include multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), and idiopathic transverse myelitis (ITM). Differential diagnosis of the CNS IDDs still remains challenging due to frequent overlap of clinical and radiological manifestation, leading to increased demands for new biomarker discovery. Since cerebrospinal fluid (CSF) metabolites may reflect the status of CNS tissues and provide an interfacial linkage between blood and CNS tissues, we explored multi-component biomarker for different IDDs from CSF samples using gas chromatography mass spectrometry-based metabolite profiling coupled to multiplex bioinformatics approach. We successfully constructed the single model with multiple metabolite variables in coordinated regression with clinical characteristics, expanded disability status scale, oligoclonal bands, and protein levels. The multi-composite biomarker simultaneously discriminated four different immune statuses (a total of 145 samples; 54 MS, 49 NMOSD, 30 ITM, and 12 normal controls). Furthermore, systematic characterization of transitional metabolic modulation identified relapse-associated metabolites and proposed insights into the disease network underlying type-specific metabolic dysfunctionality. The comparative analysis revealed the lipids, 1-monopalmitin and 1-monostearin were common indicative for MS, NMOSD, and ITM whereas fatty acids were specific for the relapse identified in all types of IDDs.
Collapse
Affiliation(s)
- Soo Jin Park
- The Department of Bio and Fermentation Convergence Technology, BK21 PLUS project, Kookmin University, Seoul, Korea
| | - In Hye Jeong
- The Department of Neurology, Research Institute and Hospital of the National Cancer Center, Goyang, Korea
| | - Byung Soo Kong
- The Department of Neurology, Research Institute and Hospital of the National Cancer Center, Goyang, Korea
| | - Jung-Eun Lee
- The Department of Bio and Fermentation Convergence Technology, BK21 PLUS project, Kookmin University, Seoul, Korea
| | - Kyoung Heon Kim
- The Department of Biotechnology, Graduate School, Korea University, Seoul, Korea
| | - Do Yup Lee
- The Department of Bio and Fermentation Convergence Technology, BK21 PLUS project, Kookmin University, Seoul, Korea
- * E-mail: (HJK); (DYL)
| | - Ho Jin Kim
- The Department of Neurology, Research Institute and Hospital of the National Cancer Center, Goyang, Korea
- * E-mail: (HJK); (DYL)
| |
Collapse
|