1
|
McKenna K, Prasad S, Cooper J, King AM, Shahzeidi S, Mittal J, Zalta M, Mittal R, Eshraghi AA. Incidence of Otolaryngological Manifestations in Individuals with Autism Spectrum Disorder: A Special Focus on Auditory Disorders. Audiol Res 2024; 14:35-61. [PMID: 38247561 PMCID: PMC10801499 DOI: 10.3390/audiolres14010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/14/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by stereotyped and repetitive behavior patterns. In addition to neurological and behavioral problems, individuals with ASD commonly experience otolaryngological comorbidities. Individuals with ASD often have auditory disorders including hearing loss and auditory processing disorders such as central auditory processing disorder (CAPD), as well as both chronic and recurrent otitis media. These challenges negatively impact a person's ability to effectively communicate and may further impact their neurological functioning, particularly when not appropriately treated. Individuals diagnosed with ASD also have difficulty sleeping which contributes to increased irritability and may further aggravate the core behavioral symptoms of autism. The individuals with ASD also have a higher rate of sinusitis which contributes to the worsening of the autism behavior phenotype. The high prevalence of otolaryngological comorbidities in individuals with ASD warrants a better collaboration between their various healthcare providers and otolaryngologists with expertise in auditory, sleep, and sinus disorders in pursuit of improving the quality of life of affected individuals and their families/caregivers.
Collapse
Affiliation(s)
- Keelin McKenna
- Hearing Research and Cochlear Implant Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (K.M.); (S.P.); (J.C.); (A.M.K.); (J.M.); (R.M.)
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Soumil Prasad
- Hearing Research and Cochlear Implant Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (K.M.); (S.P.); (J.C.); (A.M.K.); (J.M.); (R.M.)
| | - Jaimee Cooper
- Hearing Research and Cochlear Implant Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (K.M.); (S.P.); (J.C.); (A.M.K.); (J.M.); (R.M.)
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA
| | - Ava M. King
- Hearing Research and Cochlear Implant Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (K.M.); (S.P.); (J.C.); (A.M.K.); (J.M.); (R.M.)
| | | | - Jeenu Mittal
- Hearing Research and Cochlear Implant Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (K.M.); (S.P.); (J.C.); (A.M.K.); (J.M.); (R.M.)
| | - Max Zalta
- Hearing Research and Cochlear Implant Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (K.M.); (S.P.); (J.C.); (A.M.K.); (J.M.); (R.M.)
| | - Rahul Mittal
- Hearing Research and Cochlear Implant Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (K.M.); (S.P.); (J.C.); (A.M.K.); (J.M.); (R.M.)
| | - Adrien A. Eshraghi
- Hearing Research and Cochlear Implant Laboratory, Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (K.M.); (S.P.); (J.C.); (A.M.K.); (J.M.); (R.M.)
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
2
|
Gonçalves AM, Monteiro P. Autism Spectrum Disorder and auditory sensory alterations: a systematic review on the integrity of cognitive and neuronal functions related to auditory processing. J Neural Transm (Vienna) 2023; 130:325-408. [PMID: 36914900 PMCID: PMC10033482 DOI: 10.1007/s00702-023-02595-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/17/2023] [Indexed: 03/15/2023]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition with a wide spectrum of symptoms, mainly characterized by social, communication, and cognitive impairments. Latest diagnostic criteria according to DSM-5 (Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, 2013) now include sensory issues among the four restricted/repetitive behavior features defined as "hyper- or hypo-reactivity to sensory input or unusual interest in sensory aspects of environment". Here, we review auditory sensory alterations in patients with ASD. Considering the updated diagnostic criteria for ASD, we examined research evidence (2015-2022) of the integrity of the cognitive function in auditory-related tasks, the integrity of the peripheral auditory system, and the integrity of the central nervous system in patients diagnosed with ASD. Taking into account the different approaches and experimental study designs, we reappraise the knowledge on auditory sensory alterations and reflect on how these might be linked with behavior symptomatology in ASD.
Collapse
Affiliation(s)
- Ana Margarida Gonçalves
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal
| | - Patricia Monteiro
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal.
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
3
|
Bharadwaj H, Mamashli F, Khan S, Singh R, Joseph RM, Losh A, Pawlyszyn S, McGuiggan NM, Graham S, Hämäläinen MS, Kenet T. Cortical signatures of auditory object binding in children with autism spectrum disorder are anomalous in concordance with behavior and diagnosis. PLoS Biol 2022; 20:e3001541. [PMID: 35167585 PMCID: PMC8884487 DOI: 10.1371/journal.pbio.3001541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 02/28/2022] [Accepted: 01/14/2022] [Indexed: 11/24/2022] Open
Abstract
Organizing sensory information into coherent perceptual objects is fundamental to everyday perception and communication. In the visual domain, indirect evidence from cortical responses suggests that children with autism spectrum disorder (ASD) have anomalous figure-ground segregation. While auditory processing abnormalities are common in ASD, especially in environments with multiple sound sources, to date, the question of scene segregation in ASD has not been directly investigated in audition. Using magnetoencephalography, we measured cortical responses to unattended (passively experienced) auditory stimuli while parametrically manipulating the degree of temporal coherence that facilitates auditory figure-ground segregation. Results from 21 children with ASD (aged 7-17 years) and 26 age- and IQ-matched typically developing children provide evidence that children with ASD show anomalous growth of cortical neural responses with increasing temporal coherence of the auditory figure. The documented neurophysiological abnormalities did not depend on age, and were reflected both in the response evoked by changes in temporal coherence of the auditory scene and in the associated induced gamma rhythms. Furthermore, the individual neural measures were predictive of diagnosis (83% accuracy) and also correlated with behavioral measures of ASD severity and auditory processing abnormalities. These findings offer new insight into the neural mechanisms underlying auditory perceptual deficits and sensory overload in ASD, and suggest that temporal-coherence-based auditory scene analysis and suprathreshold processing of coherent auditory objects may be atypical in ASD.
Collapse
Affiliation(s)
- Hari Bharadwaj
- Department of Speech, Language, & Hearing Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Fahimeh Mamashli
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Sheraz Khan
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Ravinderjit Singh
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Robert M. Joseph
- Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Ainsley Losh
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Stephanie Pawlyszyn
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Nicole M. McGuiggan
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Steven Graham
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Matti S. Hämäläinen
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Tal Kenet
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| |
Collapse
|
4
|
Dollion N, Toutain M, François N, Champagne N, Plusquellec P, Grandgeorge M. Visual Exploration and Observation of Real-Life Interactions Between Children with ASD and Service Dogs. J Autism Dev Disord 2021; 51:3785-3805. [PMID: 34595574 DOI: 10.1007/s10803-021-05293-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2021] [Indexed: 12/27/2022]
Abstract
Two original studies explored relationships between visual attention of children with ASD (candidates for receiving a service dog) and their behaviors during their first interaction with a service dog. The first study consisted in video behavioural analyses of 16 children with ASD interacting with a service dog. During the interaction with a service dog, the time children with ASD spent looking towards social items vs objects was associated with how they interacted with the service dog. The second study was exploratory (i.e. 6 children), using the same behavioural approach but coupled with eye-tracking data. The more children with ASD looked at both their parent and the evaluator, as opposed to inanimate items, the more they interacted with the service dog.
Collapse
Affiliation(s)
- Nicolas Dollion
- Univ Rennes, Normandie Univ, CNRS, EthoS (Éthologie Animale et Humaine) - UMR 6552, 35000, Rennes, France. .,Laboratoire d'Observation et d'Éthologie Humaine du Québec, Research Centre, Montral Mental Health University Institute, CIUSSS Est, Montreal, Canada. .,School of Psychoeducation, University of Montreal, Montreal, QC, Canada. .,Fondation Mira, 1820 Rang Nord-Ouest, Sainte-Madeleine,, QC, Canada. .,Laboratoire Ethos, UMR 6552, B008, Station Biologique de Paimpont, 35380, Paimpont, France.
| | - Manon Toutain
- Univ Rennes, Normandie Univ, CNRS, EthoS (Éthologie Animale et Humaine) - UMR 6552, 35000, Rennes, France
| | - Nathe François
- Fondation Mira, 1820 Rang Nord-Ouest, Sainte-Madeleine,, QC, Canada
| | - Noël Champagne
- Fondation Mira, 1820 Rang Nord-Ouest, Sainte-Madeleine,, QC, Canada
| | - Pierrich Plusquellec
- Laboratoire d'Observation et d'Éthologie Humaine du Québec, Research Centre, Montral Mental Health University Institute, CIUSSS Est, Montreal, Canada.,School of Psychoeducation, University of Montreal, Montreal, QC, Canada
| | - Marine Grandgeorge
- Univ Rennes, Normandie Univ, CNRS, EthoS (Éthologie Animale et Humaine) - UMR 6552, 35000, Rennes, France
| |
Collapse
|
5
|
Excitation/inhibition imbalance and impaired neurogenesis in neurodevelopmental and neurodegenerative disorders. Rev Neurosci 2019; 30:807-820. [DOI: 10.1515/revneuro-2019-0014] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/05/2019] [Indexed: 12/31/2022]
Abstract
AbstractThe excitation/inhibition (E/I) balance controls the synaptic inputs to prevent the inappropriate responses of neurons to input strength, and is required to restore the initial pattern of network activity. Various neurotransmitters affect synaptic plasticity within neural networks via the modulation of neuronal E/I balance in the developing and adult brain. Less is known about the role of E/I balance in the control of the development of the neural stem and progenitor cells in the course of neurogenesis and gliogenesis. Recent findings suggest that neural stem and progenitor cells appear to be the target for the action of GABA within the neurogenic or oligovascular niches. The same might be true for the role of neuropeptides (i.e. oxytocin) in neurogenic niches. This review covers current understanding of the role of E/I balance in the regulation of neuroplasticity associated with social behavior in normal brain, and in neurodevelopmental and neurodegenerative diseases. Further studies are required to decipher the GABA-mediated regulation of postnatal neurogenesis and synaptic integration of newly-born neurons as a potential target for the treatment of brain diseases.
Collapse
|
6
|
MEG revealed new functional hub of atypical brain network in autism spectrum disorders. Clin Neurophysiol 2018; 129:2022-2023. [PMID: 29958767 DOI: 10.1016/j.clinph.2018.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 11/22/2022]
|
7
|
Tanigawa J, Kagitani-Shimono K, Matsuzaki J, Ogawa R, Hanaie R, Yamamoto T, Tominaga K, Nabatame S, Mohri I, Taniike M, Ozono K. Atypical auditory language processing in adolescents with autism spectrum disorder. Clin Neurophysiol 2018; 129:2029-2037. [PMID: 29934264 DOI: 10.1016/j.clinph.2018.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 05/01/2018] [Accepted: 05/08/2018] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Individuals with autism spectrum disorder (ASD) often show characteristic differences in auditory processing. To clarify the mechanisms underlying communication impairment in ASD, we examined auditory language processing with both anatomical and functional methods. METHODS We assessed the language abilities of adolescents with ASD and typically developing (TD) adolescents, and analyzed the surface-based morphometric structure between the groups using magnetic resonance imaging. Furthermore, we measured cortical responses to an auditory word comprehension task with magnetoencephalography and performed network-based statistics using the phase locking values. RESULTS We observed no structural differences between the groups. However, the volume of the left ventral central sulcus (vCS) showed a significant correlation with linguistic scores in ASD. Moreover, adolescents with ASD showed weaker cortical activation in the left vCS and superior temporal sulcus. Furthermore, these regions showed differential correlations with linguistic scores between the groups. Moreover, the ASD group had an atypical gamma band (25-40 Hz) network centered on the left vCS. CONCLUSIONS Adolescents with ASD showed atypical responses on the auditory word comprehension task and functional brain differences. SIGNIFICANCE Our results suggest that phonological processing and gamma band cortical activity play a critical role in auditory language processing-related pathophysiology in adolescents with ASD.
Collapse
Affiliation(s)
- Junpei Tanigawa
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Kuriko Kagitani-Shimono
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Division of Developmental Neuroscience, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Junko Matsuzaki
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Rei Ogawa
- Division of Developmental Neuroscience, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Ryuzo Hanaie
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Tomoka Yamamoto
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Koji Tominaga
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Division of Developmental Neuroscience, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Shin Nabatame
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Ikuko Mohri
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Division of Developmental Neuroscience, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Masako Taniike
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Division of Developmental Neuroscience, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|