1
|
Niu X, Lin L, Zhang T, An X, Li Y, Yu Y, Hong M, Shi H, Ding L. Research on antibiotic resistance genes in wild and artificially bred green turtles (Chelonia mydas). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176716. [PMID: 39368512 DOI: 10.1016/j.scitotenv.2024.176716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/11/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Sea turtles, vital to marine ecosystems, face population decline. Artificial breeding is a recovery strategy, yet it risks introducing antibiotic resistance genes (ARGs) to wild populations and ecosystems. This study employed metagenomic techniques to compare the distribution characteristics of ARGs in the guts of wild and artificially bred green turtles (Chelonia mydas). The findings revealed that the total abundance of ARGs in C. mydas that have been artificially bred was significantly higher than that in wild individuals. Additionally, the abundance of mobile genetic elements (MGEs) co-occurring with ARGs in artificially bred C. mydas was significantly higher than in wild C. mydas. In the analysis of bacteria carrying ARGs, wild C. mydas exhibited greater bacterial diversity. Furthermore, in artificially bred C. mydas, we discovered 23 potential human pathogenic bacteria (HPB) that contain antibiotic resistance genes. In contrast, in wild C. mydas, only one type of HPB carrying an antibiotic resistance gene was found. The findings of this study not only enhance our understanding of the distribution and dissemination of ARGs within the gut microbial communities of C. mydas, but also provide vital information for assessing the potential impact of releasing artificially bred C. mydas on the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Xin Niu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha 573199, China
| | - Liu Lin
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha 573199, China
| | - Ting Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha 573199, China
| | - Xiaoyu An
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha 573199, China
| | - Yupei Li
- Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha 573199, China; Marine Protected Area Administration of Sansha City, Sansha 573199, China
| | - Yangfei Yu
- Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha 573199, China; Marine Protected Area Administration of Sansha City, Sansha 573199, China
| | - Meiling Hong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha 573199, China
| | - Haitao Shi
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha 573199, China
| | - Li Ding
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha 573199, China.
| |
Collapse
|
2
|
Yew WC, Adlard S, Dunn MJ, Alias SA, Pearce DA, Abu Samah A, Convey P. Seasonal variation in the stomach microbiota of two sympatrically breeding Pygoscelis penguin species at Signy Island, South Orkney Islands. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001503. [PMID: 39324257 PMCID: PMC11541225 DOI: 10.1099/mic.0.001503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
The gut microbiomes of Antarctic penguins are important for the fitness of the host birds and their chicks. The compositions of microbial communities in Antarctic penguin guts are strongly associated with the birds' diet, physiological adaptation and phylogeny. Whilst seasonal changes in food resources, distribution and population parameters of Antarctic penguins have been well addressed, little research is available on the stability or variability of penguin stomach microbiomes over time. Here, we focused on two Pygoscelis penguin species breeding sympatrically in the maritime Antarctic and analysed their stomach contents to assess whether penguin gut microbiota differed over three austral summer breeding seasons. We used a high-throughput DNA sequencing approach to study bacterial diversity in stomach regurgitates of Adélie (Pygoscelis adeliae) and chinstrap (Pygoscelis antarctica) penguins that have a similar foraging regime on Signy Island (South Orkney Islands). Our data revealed significant differences in bacterial alpha and beta diversity between the study seasons. We also identified bacterial genera that were significantly associated with specific breeding seasons, diet compositions, chick-rearing stages and sampling events. This study provides a baseline for establishing future monitoring of penguin gut microbiomes in a rapidly changing environment.
Collapse
Affiliation(s)
- Wen Chyin Yew
- Department of Applied Sciences, Faculty of Health and Life Sciences, University of Northumbria, Newcastle upon Tyne, UK
- National Antarctic Research Center, University of Malaya, Kuala Lumpur, Malaysia
- Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Stacey Adlard
- British Antarctic Survey, Natural Environmental Research Council, Cambridge, UK
| | - Michael James Dunn
- British Antarctic Survey, Natural Environmental Research Council, Cambridge, UK
| | - Siti Aisyah Alias
- National Antarctic Research Center, University of Malaya, Kuala Lumpur, Malaysia
- Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - David Anthony Pearce
- Department of Applied Sciences, Faculty of Health and Life Sciences, University of Northumbria, Newcastle upon Tyne, UK
- British Antarctic Survey, Natural Environmental Research Council, Cambridge, UK
| | - Azizan Abu Samah
- National Antarctic Research Center, University of Malaya, Kuala Lumpur, Malaysia
- Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Peter Convey
- British Antarctic Survey, Natural Environmental Research Council, Cambridge, UK
- Department of Zoology, University of Johannesburg, Auckland Park, South Africa
- Millennium Institute – Biodiversity of Antarctic and Sub-Antarctic Ecosystems (BASE), Santiago, Chile
| |
Collapse
|
3
|
Kaczvinsky C, Levy H, Preston S, Youngflesh C, Clucas G, Lynch HJ, Hart T, Smith AL. The influence of biotic and abiotic factors on the bacterial microbiome of gentoo penguins (Pygoscelis papua) in their natural environment. Sci Rep 2024; 14:17933. [PMID: 39095393 PMCID: PMC11297207 DOI: 10.1038/s41598-024-66460-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
The microbiome is a key factor in the health, well-being, and success of vertebrates, contributing to the adaptive capacity of the host. However, the impact of geographic and biotic factors that may affect the microbiome of wild birds in polar environments is not well defined. To address this, we determined the bacterial 16S rRNA gene sequence profiles in faecal samples from pygoscelid penguin populations in the Scotia Arc, focusing on gentoo penguins. This mesopredatory group breeds in defined colonies across a wide geographic range. Since diet could influence microbiome structure, we extracted dietary profiles from a eukaryotic 18S rRNA gene sequence profile. The bacterial microbiome profiles were considered in the context of a diverse set of environmental and ecological measures. Integrating wide geographic sampling with bacterial 16S and eukaryotic 18S rRNA gene sequencing of over 350 faecal samples identified associations between the microbiome profile and a suite of geographic and ecological factors. Microbiome profiles differed according to host species, colony identity, distance between colonies, and diet. Interestingly there was also a relationship between the proportion of host DNA (in relation to total 18S rRNA gene signal) and the microbiome, which may reflect gut passage time. Colony identity provided the strongest association with differences in microbiome profiles indicating that local factors play a key role in the microbiome structure of these polar seabirds. This may reflect the influence of local transfer of microbes either via faecal-oral routes, during chick feeding or other close contact events. Other factors including diet and host species also associate with variation in microbiome profile, and in at least some locations, the microbiome composition varies considerably between individuals. Given the variation in penguin microbiomes associated with diverse factors there is potential for disruption of microbiome associations at a local scale that could influence host health, productivity, and immunological competence. The microbiome represents a sensitive indicator of changing conditions, and the implications of any changes need to be considered in the wider context of environmental change and other stressors.
Collapse
Affiliation(s)
- Chloe Kaczvinsky
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Hila Levy
- Office of Science and Technology Policy, Executive Office of the President, 1650 Pennsylvania Avenue, Washington, DC, 20504, USA
| | - Stephen Preston
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Casey Youngflesh
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Gemma Clucas
- Cornell Lab of Ornithology, 159 Sapsucker Woods Rd., Ithaca, NY, 14850, USA
| | - Heather J Lynch
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, 11794, USA
- Institute for Advanced Computational Sciences, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Tom Hart
- Oxford Brookes University, Gypsy Lane, Headington, Oxford, OX3 0BP, UK.
| | - Adrian L Smith
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK.
| |
Collapse
|
4
|
Niu X, Lin L, Zhang T, An X, Li Y, Yu Y, Hong M, Shi H, Ding L. Comparison of the intestinal flora of wild and artificial breeding green turtles ( Chelonia mydas). Front Microbiol 2024; 15:1412015. [PMID: 38873159 PMCID: PMC11170157 DOI: 10.3389/fmicb.2024.1412015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
Gut microbes are pivotal reference indicators for assessing the health status of animals. Before introducing artificially bred species into the wild, examining their gut microbe composition is crucial to help mitigate potential threats posed to wild populations. However, gut microbiological trait similarities between wild and artificially bred green turtles remain unexplored. Therefore, this study compared the gut microbiological characteristics of wild and artificially bred green turtles (Chelonia mydas) through high-throughput Illumina sequencing technology. The α-diversity of intestinal bacteria in wild green turtles, as determined by Shannon and Chao indices, significantly surpasses that of artificial breeding green turtles (p < 0.01). However, no significant differences were detected in the fungal α-diversity between wild and artificially bred green turtles. Meanwhile, the β-diversity analysis revealed significant differences between wild and artificially bred green turtles in bacterial and fungal compositions. The community of gut bacteria in artificially bred green turtles had a significantly higher abundance of Fusobacteriota including those belonging to the Paracoccus, Cetobacterium, and Fusobacterium genera than that of the wild green turtle. In contrast, the abundance of bacteria belonging to the phylum Actinobacteriota and genus Nautella significantly decreased. Regarding the fungal community, artificially bred green turtles had a significantly higher abundance of Fusarium, Sterigmatomyces, and Acremonium and a lower abundance of Candida and Rhodotorula than the wild green turtle. The PICRUSt2 analyses demonstrated significant differences in the functions of the gut bacterial flora between groups, particularly in carbohydrate and energy metabolism. Fungal functional guild analysis further revealed that the functions of the intestinal fungal flora of wild and artificially bred green turtles differed significantly in terms of animal pathogens-endophytes-lichen parasites-plant pathogens-soil saprotrophs-wood saprotrophs. BugBase analysis revealed significant potential pathogenicity and stress tolerance variations between wild and artificially bred green turtles. Collectively, this study elucidates the distinctive characteristics of gut microbiota in wild and artificially bred green turtles while evaluating their health status. These findings offer valuable scientific insights for releasing artificially bred green turtles and other artificially bred wildlife into natural habitats.
Collapse
Affiliation(s)
- Xin Niu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
- Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha, China
| | - Liu Lin
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
- Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha, China
| | - Ting Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
- Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha, China
| | - Xiaoyu An
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
- Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha, China
| | - Yupei Li
- Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha, China
- Marine Protected Area Administration of Sansha City, Sansha, China
| | - Yangfei Yu
- Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha, China
- Marine Protected Area Administration of Sansha City, Sansha, China
| | - Meiling Hong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
- Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha, China
| | - Haitao Shi
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
- Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha, China
| | - Li Ding
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
- Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha, China
| |
Collapse
|
5
|
Włodarczyk R, Drzewińska-Chańko J, Kamiński M, Meissner W, Rapczyński J, Janik-Superson K, Krawczyk D, Strapagiel D, Ożarowska A, Stępniewska K, Minias P. Stopover habitat selection drives variation in the gut microbiome composition and pathogen acquisition by migrating shorebirds. FEMS Microbiol Ecol 2024; 100:fiae040. [PMID: 38515294 PMCID: PMC11008731 DOI: 10.1093/femsec/fiae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/28/2024] [Accepted: 03/20/2024] [Indexed: 03/23/2024] Open
Abstract
Long-distance host movements play a major regulatory role in shaping microbial communities of their digestive tract. Here, we studied gut microbiota composition during seasonal migration in five shorebird species (Charadrii) that use different migratory (stopover) habitats. Our analyses revealed significant interspecific variation in both composition and diversity of gut microbiome, but the effect of host identity was weak. A strong variation in gut microbiota was observed between coastal and inland (dam reservoir and river valley) stopover habitats within species. Comparisons between host age classes provided support for an increasing alpha diversity of gut microbiota during ontogeny and an age-related remodeling of microbiome composition. There was, however, no correlation between microbiome and diet composition across study species. Finally, we detected high prevalence of avian pathogens, which may cause zoonotic diseases in humans (e.g. Vibrio cholerae) and we identified stopover habitat as one of the major axes of variation in the bacterial pathogen exposure risk in shorebirds. Our study not only sheds new light on ecological processes that shape avian gut microbiota, but also has implications for our better understanding of host-pathogen interface and the role of birds in long-distance transmission of pathogens.
Collapse
Affiliation(s)
- Radosław Włodarczyk
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biodiversity Studies and Bioeducation,, Banacha 1/3, 90-237 Łódź, Poland
| | - Joanna Drzewińska-Chańko
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biodiversity Studies and Bioeducation,, Banacha 1/3, 90-237 Łódź, Poland
| | - Maciej Kamiński
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biodiversity Studies and Bioeducation,, Banacha 1/3, 90-237 Łódź, Poland
| | - Włodzimierz Meissner
- Ornithology Unit, Department of Vertebrate Ecology and Zoology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Jan Rapczyński
- Forestry Student Scientific Association, Ornithological Section, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warszawa, Poland
| | - Katarzyna Janik-Superson
- University of Lodz, Faculty of Biology and Environmental Protection, Biobank Lab, Department of Oncobiology and Epigenetics, Pomorska 139, 90-235 Łódź, Poland
| | - Dawid Krawczyk
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Invertebrate Zoology and Hydrobiology, Banacha 12/16, 90-237 Łódź, Poland
| | - Dominik Strapagiel
- University of Lodz, Faculty of Biology and Environmental Protection, Biobank Lab, Department of Oncobiology and Epigenetics, Pomorska 139, 90-235 Łódź, Poland
| | - Agnieszka Ożarowska
- Ornithology Unit, Department of Vertebrate Ecology and Zoology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Katarzyna Stępniewska
- Ornithology Unit, Department of Vertebrate Ecology and Zoology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Piotr Minias
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Biodiversity Studies and Bioeducation,, Banacha 1/3, 90-237 Łódź, Poland
| |
Collapse
|
6
|
Jiang J, Hu D, Pei E. Integrated omics analysis reveals a correlation between gut microbiota and egg production in captive African penguins (Spheniscus demersus). Anim Reprod Sci 2024; 263:107448. [PMID: 38428346 DOI: 10.1016/j.anireprosci.2024.107448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/24/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
The egg production of captive African penguins differs considerably between individuals. An understanding of the physiological differences in African penguins with relatively greater and lesser egg production is meaningful for the captive breeding program of this endangered species. The objective of this study was to investigate differential microbial composition and metabolites in captive African penguins with different egg production. Fecal samples were collected from captive female African penguins during the breeding season. The results of 16 S rRNA gene sequencing showed that African penguins with different egg production had similar microbial diversities, whereas a significant difference was observed between their microbial community structure. African penguins with relatively greater egg production exhibited a higher relative abundance of Alphaproteobacteria, Rhizobiales, Bradyrhizobiaceae, Bradyrhizobium and Bosea. Meanwhile, penguins with relatively lesser egg production had an increased proportion of Klebsiella and Plesiomonas. We further identified a total of 1858 metabolites in female African penguins by liquid chromatography-mass spectrometry analysis. Among these metabolites, 13 kinds of metabolites were found to be significantly differential between African penguins with different egg production. In addition, the correlation analysis revealed that the egg production had significant correlations with most of the differential microbial bacteria and metabolites. Our findings might aid in understanding the potential mechanism underlying the phenomenon of abnormal egg production in captive African penguins, and provide novel insights into the relationship between gut microbiota and reproduction in penguins.
Collapse
Affiliation(s)
- Jingle Jiang
- Shanghai Endangered Species Conservation and Research Centre, Shanghai Zoo, Shanghai 200335, China
| | - Di Hu
- Shanghai Endangered Species Conservation and Research Centre, Shanghai Zoo, Shanghai 200335, China
| | - Enle Pei
- Shanghai Endangered Species Conservation and Research Centre, Shanghai Zoo, Shanghai 200335, China.
| |
Collapse
|
7
|
Graciette AGC, Hoopes LA, Clauss T, Stewart FJ, Pratte ZA. The microbiome of African penguins (Spheniscus demersus) under managed care resembles that of wild marine mammals and birds. Sci Rep 2023; 13:16679. [PMID: 37794122 PMCID: PMC10551019 DOI: 10.1038/s41598-023-43899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/29/2023] [Indexed: 10/06/2023] Open
Abstract
Animals under managed care in zoos and aquariums are ideal surrogate study subjects for endangered species that are difficult to obtain in the wild. We compared the fecal and oral microbiomes of healthy, managed African penguins (Spheniscus demersus) to those of other domestic and wild vertebrate hosts to determine how host identity, diet, and environment shape the penguin microbiome. The African penguin oral microbiome was more similar to that of piscivorous marine mammals, suggesting that diet and a marine environment together play a strong role in shaping the oral microbiome. Conversely, the penguin cloaca/fecal microbiome was more similar to that of other birds, suggesting that host phylogeny plays a significant role in shaping the gut microbiome. Although the penguins were born under managed care, they had a gut microbiome more similar to that of wild bird species compared to domesticated (factory-farmed) birds, suggesting that the managed care environment and diet resemble those experienced by wild birds. Finally, the microbiome composition at external body sites was broadly similar to that of the habitat, suggesting sharing of microbes between animals and their environment. Future studies should link these results to microbial functional capacity and host health, which will help inform conservation efforts.
Collapse
Affiliation(s)
- Ana G Clavere Graciette
- School of Biological Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | - Frank J Stewart
- School of Biological Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT, USA
| | - Zoe A Pratte
- School of Biological Sciences, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA.
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
8
|
Ochoa-Sánchez M, Acuña Gomez EP, Ramírez-Fenández L, Eguiarte LE, Souza V. Current knowledge of the Southern Hemisphere marine microbiome in eukaryotic hosts and the Strait of Magellan surface microbiome project. PeerJ 2023; 11:e15978. [PMID: 37810788 PMCID: PMC10557944 DOI: 10.7717/peerj.15978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/07/2023] [Indexed: 10/10/2023] Open
Abstract
Host-microbe interactions are ubiquitous and play important roles in host biology, ecology, and evolution. Yet, host-microbe research has focused on inland species, whereas marine hosts and their associated microbes remain largely unexplored, especially in developing countries in the Southern Hemisphere. Here, we review the current knowledge of marine host microbiomes in the Southern Hemisphere. Our results revealed important biases in marine host species sampling for studies conducted in the Southern Hemisphere, where sponges and marine mammals have received the greatest attention. Sponge-associated microbes vary greatly across geographic regions and species. Nevertheless, besides taxonomic heterogeneity, sponge microbiomes have functional consistency, whereas geography and aging are important drivers of marine mammal microbiomes. Seabird and macroalgal microbiomes in the Southern Hemisphere were also common. Most seabird microbiome has focused on feces, whereas macroalgal microbiome has focused on the epibiotic community. Important drivers of seabird fecal microbiome are aging, sex, and species-specific factors. In contrast, host-derived deterministic factors drive the macroalgal epibiotic microbiome, in a process known as "microbial gardening". In turn, marine invertebrates (especially crustaceans) and fish microbiomes have received less attention in the Southern Hemisphere. In general, the predominant approach to study host marine microbiomes has been the sequencing of the 16S rRNA gene. Interestingly, there are some marine holobiont studies (i.e., studies that simultaneously analyze host (e.g., genomics, transcriptomics) and microbiome (e.g., 16S rRNA gene, metagenome) traits), but only in some marine invertebrates and macroalgae from Africa and Australia. Finally, we introduce an ongoing project on the surface microbiome of key species in the Strait of Magellan. This is an international project that will provide novel microbiome information of several species in the Strait of Magellan. In the short-term, the project will improve our knowledge about microbial diversity in the region, while long-term potential benefits include the use of these data to assess host-microbial responses to the Anthropocene derived climate change.
Collapse
Affiliation(s)
- Manuel Ochoa-Sánchez
- Centro de Estudios del Cuaternario de Fuego, Patagonia y Antártica (CEQUA), Punta Arenas, Chile
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | - Lia Ramírez-Fenández
- Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique, Chile
- Centro de Desarrollo de Biotecnología Industrial y Bioproductos, Antofagasta, Chile
| | - Luis E. Eguiarte
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Valeria Souza
- Centro de Estudios del Cuaternario de Fuego, Patagonia y Antártica (CEQUA), Punta Arenas, Chile
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
9
|
Mi JX, Liu KL, Ding WL, Zhang MH, Wang XF, Shaukat A, Rehman MU, Jiao XL, Huang SC. Comparative analysis of the gut microbiota of wild wintering whooper swans (Cygnus Cygnus), captive black swans (Cygnus Atratus), and mute swans (Cygnus Olor) in Sanmenxia Swan National Wetland Park of China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93731-93743. [PMID: 37515622 DOI: 10.1007/s11356-023-28876-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/15/2023] [Indexed: 07/31/2023]
Abstract
The gastrointestinal microbiota, a complex ecosystem, is involved in the physiological activities of hosts and the development of diseases. Birds occupy a critical ecological niche in the ecosystem, performing a variety of ecological functions and possessing a complex gut microbiota composition. However, the gut microbiota of wild and captive birds has received less attention in the same region. We profiled the fecal gut microbiome of wild wintering whooper swans (Cygnus Cygnus; Cyg group, n = 25), captive black swans (Cygnus Atratus; Atr group, n = 20), and mute swans (Cygnus Olor; Olor group, n = 30) using 16S rRNA gene sequencing to reveal differences in the gut microbial ecology. The results revealed that the three species of swans differed significantly in terms of the alpha and beta diversity of their gut microbiota, as measured by ACE, Chao1, Simpson and Shannon indices, principal coordinates analysis (PCoA) and non-metricmulti-dimensional scaling (NMDS) respectively. Based on the results of the linear discriminant analysis effect size (LEfSe) and random forest analysis, we found that there were substantial differences in the relative abundance of Gottschalkia, Trichococcus, Enterococcus, and Kurthia among the three groups. Furthermore, an advantageous pattern of interactions between microorganisms was shown by the association network analysis. Among these, Gottschalkia had the higher area under curve (AUC), which was 0.939 (CI = 0.879-0.999), indicating that it might be used as a biomarker to distinguish between wild and captive black swans. Additionally, PICRUSt2 predictions indicated significant differences in gut microbiota functions between wild and captive trumpeter swans, with the gut microbiota functions of Cyg group focusing on carbohydrate metabolism, membrane transport, cofactor, and vitamin metabolism pathways, the Atr group on lipid metabolism, and the Olor group on cell motility, amino acid metabolism, and replication and repair pathways. These findings showed that the gut microbiota of wild and captive swans differed, which is beneficial to understand the gut microecology of swans and to improve regional wildlife conservation strategies.
Collapse
Affiliation(s)
- Jun-Xian Mi
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450000, China
| | - Kai-Li Liu
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, China
| | - Wen-Li Ding
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, China
| | - Ming-Hui Zhang
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, China
| | - Xue-Fei Wang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, 450000, China
| | - Aftab Shaukat
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, 430070, China
| | - Mujeeb Ur Rehman
- Directorate Planning & Development, Livestock & Dairy Development Department, Quetta, Balochistan, 87500, Pakistan
| | - Xi-Lan Jiao
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, China
| | - Shu-Cheng Huang
- College of Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, China.
| |
Collapse
|
10
|
Jiang J. Composition, Diversity and Sex-Related Differences in Intestinal Microbiota in Captive African Penguins ( Spheniscus demersus). Animals (Basel) 2023; 13:2106. [PMID: 37443905 DOI: 10.3390/ani13132106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
An understanding of the microbial communities in African penguins (Spheniscus demersus) could provide valuable information for saving this endangered species. The objective of this study was to investigate the composition, diversity and sex-related differences in the intestinal microbiota of captive African penguins. Fecal samples were collected from 21 captive adult African penguins reared in the same conditions at Shanghai Zoo. The results show that Proteobacteria, Actinobacteria and Firmicutes were the predominant bacteria in the intestinal microbiota of the captive African penguins. No difference was found in microbial diversity between female and male African penguins, as shown by their similar alpha and beta diversities. However, a notable sex-related difference was found between their microbial compositions. Female African penguins have a higher abundance of Pseudomonas and a lower abundance of Kocuria than males. A functional prediction indicates that the "mRNA surveillance pathway", "Polyketide sugar unit biosynthesis", "Wnt signaling pathway", "Lysosome" and "Cell cycle" pathways were significantly enriched in the microbiota of female African penguins. In conclusion, the present study indicates that the compositions and predicted functions of the intestinal microbiota are significantly different between the sexes. Our data suggest that the intestinal microbiota of female African penguins are more unstable than the intestinal microbiota of males in captivity.
Collapse
Affiliation(s)
- Jingle Jiang
- Shanghai Endangered Species Conservation and Research Centre, Shanghai Zoo, Shanghai 200335, China
| |
Collapse
|
11
|
West AG, Digby A, Taylor MW. The mycobiota of faeces from the critically endangered kākāpō and associated nest litter. NEW ZEALAND JOURNAL OF ZOOLOGY 2023. [DOI: 10.1080/03014223.2023.2170428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Annie G. West
- Te Kura Mātauranga Koiora School of Biological Sciences, Waipapa Taumata Rau University of Auckland, Auckland, New Zealand
| | - Andrew Digby
- Te Papa Atawhai Department of Conservation, Kākāpō Recovery Programme, Invercargill, New Zealand
| | - Michael W. Taylor
- Te Kura Mātauranga Koiora School of Biological Sciences, Waipapa Taumata Rau University of Auckland, Auckland, New Zealand
| | | | | |
Collapse
|
12
|
Liu G, Xu N, Feng J. Metagenomic analysis of gut microbiota and antibiotic-resistant genes in Anser erythropus wintering at Shengjin and Caizi Lakes in China. Front Microbiol 2023; 13:1081468. [PMID: 36699586 PMCID: PMC9868308 DOI: 10.3389/fmicb.2022.1081468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023] Open
Abstract
Migratory birds are the primary source and reservoir of antibiotic-resistant genes (ARGs) related to their gut microbes. In this study, we performed metagenomics analysis to study the gut microbial communities and ARGs of Anser erythropus wintering at Shengjin (SJ) and Caizi (CZ) Lakes. The results showed that bacteria, fungi, viruses, and archaea were the dominant gut microbes. Principal component analysis (PCA) indicated that the microbiota compositions significantly differed between the two populations. Diet may be the most crucial driver of the gut microbial communities for A. erythropus. This species fed exclusively on Poaceae spp. at Shengjin Lake and primarily on Carex spp. at Caizi Lake. Tetracycline, macrolide, fluoroquinolone, phenicol, and peptide antibiotics were the dominant resistant types. ARGs had a significantly higher abundance of operational taxonomic units (OTUs) in the Shengjin Lake samples than in Caizi Lake samples. PCA indicated that most Shengjin Lake samples significantly differed in gut microbiota composition from those obtained at Caizi Lake. This difference in gut microbiota composition between the two lakes' samples is attributed to more extensive aquaculture operations and poultry farms surrounding Shengjin Lake than Caizi Lake. ARGs-microbes associations indicated that 24 bacterial species, commonly used as indicators of antibiotic resistance in surveillance efforts, were abundant in wintering A. erythropus. The results revealed the composition and structural characteristics of the gut microbiota and ARGs of A. erythropus, pointing to their high sensitivities to diet habits at both lakes. This study also provides primary data for risk prevention and control of potential harmful pathogens that could endanger public health and therefore are of major significance to epidemiological and public health.
Collapse
|
13
|
Maraci Ö, Antonatou-Papaioannou A, Jünemann S, Engel K, Castillo-Gutiérrez O, Busche T, Kalinowski J, Caspers BA. Timing matters: age-dependent impacts of the social environment and host selection on the avian gut microbiota. MICROBIOME 2022; 10:202. [PMID: 36434663 PMCID: PMC9700942 DOI: 10.1186/s40168-022-01401-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The establishment of the gut microbiota in early life is a critical process that influences the development and fitness of vertebrates. However, the relative influence of transmission from the early social environment and host selection throughout host ontogeny remains understudied, particularly in avian species. We conducted conspecific and heterospecific cross-fostering experiments in zebra finches (Taeniopygia guttata) and Bengalese finches (Lonchura striata domestica) under controlled conditions and repeatedly sampled the faecal microbiota of these birds over the first 3 months of life. We thus documented the development of the gut microbiota and characterised the relative impacts of the early social environment and host selection due to species-specific characteristics and individual genetic backgrounds across ontogeny by using 16S ribosomal RNA gene sequencing. RESULTS The taxonomic composition and community structure of the gut microbiota changed across ontogenetic stages; juvenile zebra finches exhibited higher alpha diversity than adults at the post-breeding stage. Furthermore, in early development, the microbial communities of juveniles raised by conspecific and heterospecific foster parents resembled those of their foster family, emphasising the importance of the social environment. In later stages, the social environment continued to influence the gut microbiota, but host selection increased in importance. CONCLUSIONS We provided a baseline description of the developmental succession of gut microbiota in zebra finches and Bengalese finches, which is a necessary first step for understanding the impact of the early gut microbiota on host fitness. Furthermore, for the first time in avian species, we showed that the relative strengths of the two forces that shape the establishment and maintenance of the gut microbiota (i.e. host selection and dispersal from the social environment) change during development, with host selection increasing in importance. This finding should be considered when experimentally manipulating the early-life gut microbiota. Our findings also provide new insights into the mechanisms of host selection. Video Abstract.
Collapse
Affiliation(s)
- Öncü Maraci
- Department of Behavioural Ecology, Bielefeld University, Bielefeld, Germany.
| | - Anna Antonatou-Papaioannou
- Evolutionary Biology, Bielefeld University, Bielefeld, Germany
- Institute of Biology-Zoology, Freie Universität Berlin, Berlin, Germany
| | - Sebastian Jünemann
- Institute for Bio- and Geosciences, Research Center Jülich, Jülich, Germany
- Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | - Kathrin Engel
- Department of Behavioural Ecology, Bielefeld University, Bielefeld, Germany
| | - Omar Castillo-Gutiérrez
- Faculty of Technology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Barbara A Caspers
- Department of Behavioural Ecology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
14
|
Sun F, Chen J, Liu K, Tang M, Yang Y. The avian gut microbiota: Diversity, influencing factors, and future directions. Front Microbiol 2022; 13:934272. [PMID: 35992664 PMCID: PMC9389168 DOI: 10.3389/fmicb.2022.934272] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
The gut microbiota is viewed as the “second genome” of animals, sharing intricate relationships with their respective hosts. Because the gut microbial community and its diversity are affected by many intrinsic and extrinsic factors, studying intestinal microbes has become an important research topic. However, publications are dominated by studies on domestic or captive birds, while research on the composition and response mechanism of environmental changes in the gut microbiota of wild birds remains scarce. Therefore, it is important to understand the co-evolution of host and intestinal bacteria under natural conditions to elucidate the diversity, maintenance mechanisms, and functions of gut microbes in wild birds. Here, the existing knowledge of gut microbiota in captive and wild birds is summarized, along with previous studies on the composition and function, research methods employed, and factors influencing the avian gut microbial communities. Furthermore, research hotspots and directions were also discussed to identify the dynamics of the avian gut microbiota, aiming to contribute to studies of avian microbiology in the future.
Collapse
|
15
|
Almela P, Velázquez D, Rico E, Justel A, Quesada A. Marine Vertebrates Impact the Bacterial Community Composition and Food Webs of Antarctic Microbial Mats. Front Microbiol 2022; 13:841175. [PMID: 35464973 PMCID: PMC9023888 DOI: 10.3389/fmicb.2022.841175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/28/2022] [Indexed: 01/04/2023] Open
Abstract
The biological activity of marine vertebrates represents an input of nutrients for Antarctic terrestrial biota, with relevant consequences for the entire ecosystem. Even though microbial mats assemble most of the biological diversity of the non-marine Antarctica, the effects of the local macrofauna on these microecosystems remain understudied. Using 16S rRNA gene sequencing, 13C and 15N stable isotopes, and by characterizing the P and N-derived nutrient levels, we evaluated the effects of penguins and other marine vertebrates on four microbial mats located along the Antarctic Peninsula. Our results show that P concentrations, C/N and N/P ratios, and δ15N values of "penguin-impacted" microbial mats were significantly higher than values obtained for "macrofauna-free" sample. Nutrients derived from penguin colonies and other marine vertebrates altered the trophic interactions of communities within microbial mats, as well as the relative abundance and trophic position of meiofaunal groups. Twenty-nine bacterial families from eight different phyla significantly changed with the presence of penguins, with inorganic nitrogen (NH4 + and NO3 -) and δ15N appearing as key factors in driving bacterial community composition. An apparent change in richness, diversity, and dominance of prokaryotes was also related to penguin-derived nutrients, affecting N utilization strategies of microbial mats and relating oligotrophic systems to communities with a higher metabolic versatility. The interdisciplinary approach of this study makes these results advance our understanding of interactions and composition of communities inhabiting microbial mats from Antarctica, revealing how they are deeply associated with marine animals.
Collapse
Affiliation(s)
- Pablo Almela
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - David Velázquez
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Eugenio Rico
- Department of Ecology, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Ana Justel
- UC3M-Santander Big Data Institute (IBiDat), Universidad Carlos III de Madrid, Madrid, Spain
- Department of Mathematics, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio Quesada
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
16
|
Mutungwazi A, Ijoma GN, Ogola HJO, Matambo TS. Physico-Chemical and Metagenomic Profile Analyses of Animal Manures Routinely Used as Inocula in Anaerobic Digestion for Biogas Production. Microorganisms 2022; 10:671. [PMID: 35456722 PMCID: PMC9033126 DOI: 10.3390/microorganisms10040671] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/04/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023] Open
Abstract
Anaerobic digestion (AD) of organic waste is considered a sustainable solution to energy shortage and waste management challenges. The process is facilitated by complex communities of micro-organisms, yet most wastes do not have these and thus need microbial inoculation using animal manures to initiate the process. However, the degradation efficiency and methane yield achieved in using different inocula vary due to their different microbial diversities. This study used metagenomics tools to compare the autochthonous microbial composition of cow, pig, chicken, and horse manures commonly used for biogas production. Cows exhibited the highest carbon utilisation (>30%) and showed a carbon to nitrogen ratio (C/N) favourable for microbial growth. Pigs showed the least nitrogen utilisation (<3%) which explains their low C/N whilst horses showed the highest nitrogen utilisation (>40%), which explains its high C/N above the optimal range of 20−30 for efficient AD. Manures from animals with similar gastrointestinal tract (GIT) physiologies were observed to largely harbour similar microbial communities. Conversely, some samples from animals with different GITs also shared common microbial communities plausibly because of similar diets and rearing conditions. Insights from this study will lay a foundation upon which in-depth studies of AD metabolic pathways and strategies to boost methane production through efficient catalysis can be derived.
Collapse
Affiliation(s)
- Asheal Mutungwazi
- Institute for the Development of Energy for African Sustainability (IDEAS), College of Science, Engineering and Technology, University of South Africa (UNISA), 28 Pioneer Ave, Cnr Christiaan De Wet & Pioneer Rds., Florida Park, Roodepoort, Johannesburg 1709, South Africa; (A.M.); (G.N.I.)
| | - Grace N. Ijoma
- Institute for the Development of Energy for African Sustainability (IDEAS), College of Science, Engineering and Technology, University of South Africa (UNISA), 28 Pioneer Ave, Cnr Christiaan De Wet & Pioneer Rds., Florida Park, Roodepoort, Johannesburg 1709, South Africa; (A.M.); (G.N.I.)
| | - Henry J. O. Ogola
- Centre for Research, Innovation and Technology, Jaramogi Oginga Odinga University of Science and Technology, Bondo P.O. Box 210-40601, Kenya;
| | - Tonderayi S. Matambo
- Institute for the Development of Energy for African Sustainability (IDEAS), College of Science, Engineering and Technology, University of South Africa (UNISA), 28 Pioneer Ave, Cnr Christiaan De Wet & Pioneer Rds., Florida Park, Roodepoort, Johannesburg 1709, South Africa; (A.M.); (G.N.I.)
| |
Collapse
|
17
|
Kelly TR, Vinson AE, King GM, Lattin CR. No guts about it: captivity, but not neophobia phenotype, influences the cloacal microbiome of house sparrows ( Passer domesticus). Integr Org Biol 2022; 4:obac010. [PMID: 35505795 PMCID: PMC9053947 DOI: 10.1093/iob/obac010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 02/11/2022] [Accepted: 03/08/2022] [Indexed: 11/24/2022] Open
Abstract
Behavioral traits such as anxiety and depression have been linked to diversity of the gut microbiome in humans, domesticated animals, and lab-bred model species, but the extent to which this link exists in wild animals, and thus its ecological relevance, is poorly understood. We examined the relationship between a behavioral trait (neophobia) and the cloacal microbiome in wild house sparrows (Passer domesticus,n = 22) to determine whether gut microbial diversity is related to personality in a wild animal. We swabbed the cloaca immediately upon capture, assessed neophobia phenotypes in the lab, and then swabbed the cloaca again after several weeks in captivity to additionally test whether the microbiome of different personality types is affected disparately by captivity, and characterized gut microbiomes using 16S rRNA gene amplicon sequencing. We did not detect differences in cloacal alpha or beta microbial diversity between neophobic and non-neophobic house sparrows, and diversity for both phenotypes was negatively impacted by captivity. Although our results suggest that the adult cloacal microbiome and neophobia are not strongly linked in wild sparrows, we did detect specific OTUs that appeared more frequently and at higher abundances in neophobic sparrows, suggesting that links between the gut microbiome and behavior may occur at the level of specific taxa. Further investigations of personality and the gut microbiome are needed in more wild species to reveal how the microbiome-gut-brain axis and behavior interact in an ecological context.
Collapse
Affiliation(s)
- T R Kelly
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - A E Vinson
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - G M King
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - C R Lattin
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
18
|
Comparison of Gut Microbiota between Gentoo and Adélie Penguins Breeding Sympatrically on Antarctic Ardley Island as Revealed by Fecal DNA Sequencing. DIVERSITY 2021. [DOI: 10.3390/d13100500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There are two pygoscelid penguins, the Gentoo (Pygoscelis papua Forster, 1781) and Adélie (P. adeliae Hombron and Jacquinot, 1841) penguins, breeding sympatrically on Ardley Island, Fildes Peninsula region, South Shetlands, Antarctica. Whether the two closely related penguin species with similar dietary habits possess compositional similarity in gut microbiota remains unknown. DNA barcoding of feces is an emerging approach for gut microbiota analysis of protected animals. In the present study, the 16S rRNA gene from penguin feces was sequenced using the Illumina MiSeq platform to investigate the gut microbiota of the two pygoscelid penguin species. The fecal community of Gentoo penguins has higher diversity indices and OTU (operational taxonomic unit) richness compared to Adélie penguins. Besides unclassified bacteria, sequences fell into 22 major lineages of the domain Bacteria: Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Chlamydiae, Chloroflexi, Cloacimonetes, Cyanobacteria, Deinococcus-Thermus, Fibrobacteres, Firmicutes, Fusobacteria, Gemmatimonadetes, Ignavibacteriae, Planctomycetes, Proteobacteria, Tenericutes, Verrucomicrobia, and candidate divisions BRC1, SR1, WPS-2, and Saccharibacteria. Among these, Firmicutes (37.7%), Proteobacteria (23.1%, mainly Gamma- and Betaproteobacteria), Fusobacteria (14.3%), Bacteroidetes (7.9%), and Actinobacteria (6.6%) were dominant in the fecal microbiota of the two penguin species. At the same time, significantly higher abundances of Actinobacteria and Cyanobacteria were detected in Gentoo penguins than in Adélie penguins (p < 0.05). Overall, there was a clear difference in the composition of gut microbiota between the Adélie and Gentoo penguins. The results suggested that both the phylogeny of penguin species and the diet could be responsible for the differences in the gut microbiota of the two pygoscelid penguins breeding in the same area.
Collapse
|
19
|
Zhu Y, Li Y, Yang H, He K, Tang K. Establishment of Gut Microbiome During Early Life and Its Relationship With Growth in Endangered Crested Ibis ( Nipponia nippon). Front Microbiol 2021; 12:723682. [PMID: 34434183 PMCID: PMC8382091 DOI: 10.3389/fmicb.2021.723682] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Gut microbiota during early life could influence host fitness in vertebrates. Studies on how gut microbiota colonize the gut in birds using frequent sampling during early developmental stages and how shifts in microbiota diversity influence host growth are lacking. Here, we examine the microbiome profiles of 151 fecal samples from 14 young crested ibis (Nipponia nippon), an endangered bird species, collected longitudinally across 13 time points during the early stages of development and investigated their correlation with host growth. Gut diversity showed a non-linear change during development, which involved multiple colonization and extinction events, mainly associated with Proteobacteria and Firmicutes. Gut microbiota in young crested ibis became more similar with increasing age. In addition, gut microbiota exhibited a strong temporal structure and two specific developmental stages; the beginning of the latter stage coincided with the introduction of fresh loach, with a considerable increase in the relative abundance of Fusobacteria and several Firmicutes, which may be involved in lipid metabolism. Crested ibis chick growth rate was negatively correlated with gut microbiota diversity and negatively associated with the abundance of Halomonadaceae, Streptococci, Corynebacteriaceae, and Dietziaceae. Our findings highlight the importance of frequent sampling when studying microbiome development during early stages of development of vertebrates. The role of microbial diversity in host growth during the early stages of development of birds warrants further investigations.
Collapse
Affiliation(s)
- Ying Zhu
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Yudong Li
- Sichuan Province Laboratory for Natural Resources Protection and Sustainable Utilization, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
| | - Haiqiong Yang
- Emei Breeding Center for Crested Ibis, Emei, Chengdu, China
| | - Ke He
- College of Animal Sciences and Technology, Zhejiang A&F University, Hangzhou, China
| | - Keyi Tang
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| |
Collapse
|
20
|
Abstract
Opportunistic feeding and multiple other environment factors can modulate the gut microbiome, and bias conclusions, when wild animals are used for studying the influence of phylogeny and diet on their gut microbiomes. Here, we controlled for these other confounding factors in our investigation of the magnitude of the effect of diet on the gut microbiome assemblies of nonpasserine birds. We collected fecal samples, at one point in time, from 35 species of birds in a single zoo as well as 6 species of domestic poultry from farms in Guangzhou city to minimize the influences from interfering factors. Specifically, we describe 16S rRNA amplicon data from 129 fecal samples obtained from 41 species of birds, with additional shotgun metagenomic sequencing data generated from 16 of these individuals. Our data show that diets containing native starch increase the abundance of Lactobacillus in the gut microbiome, while those containing plant-derived fiber mainly enrich the level of Clostridium Greater numbers of Fusobacteria and Proteobacteria are detected in carnivorous birds, while in birds fed a commercial corn-soybean basal diet, a stronger inner-connected microbial community containing Clostridia and Bacteroidia was enriched. Furthermore, the metagenome functions of the microbes (such as lipid metabolism and amino acid synthesis) were adapted to the different food types to achieve a beneficial state for the host. In conclusion, the covariation of diet and gut microbiome identified in our study demonstrates a modulation of the gut microbiome by dietary diversity and helps us better understand how birds live based on diet-microbiome-host interactions.IMPORTANCE Our study identified food source, rather than host phylogeny, as the main factor modulating the gut microbiome diversity of nonpasserine birds, after minimizing the effects of other complex interfering factors such as weather, season, and geography. Adaptive evolution of microbes to food types formed a dietary-microbiome-host interaction reciprocal state. The covariation of diet and gut microbiome, including the response of microbiota assembly to diet in structure and function, is important for health and nutrition in animals. Our findings help resolve the major modulators of gut microbiome diversity in nonpasserine birds, which had not previously been well studied. The diet-microbe interactions and cooccurrence patterns identified in our study may be of special interest for future health assessment and conservation in birds.
Collapse
|
21
|
Wu H, Wu FT, Zhou QH, Zhao DP. Comparative Analysis of Gut Microbiota in Captive and Wild Oriental White Storks: Implications for Conservation Biology. Front Microbiol 2021; 12:649466. [PMID: 33841373 PMCID: PMC8027120 DOI: 10.3389/fmicb.2021.649466] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
The oriental white stork (Ciconia boyciana) is considered an endangered species based on the International Union for Conservation of Nature (IUCN) Red List. This study presents the first evidence on comparative analysis of gut microbial diversity of C. boyciana from various breeding conditions. To determine the species composition and community structure of the gut microbiota, 24 fecal samples from Tianjin Zoo and Tianjin Qilihai Wetland were characterized by sequencing 16S rRNA gene amplicons using the Illumina MiSeq platform. Firmicutes was found to be the predominant phylum. Analysis of community structure revealed significant differences in the species diversity and richness between the populations of the two breeding conditions. The greatest α-diversity was found in wild C. boyciana, while artificial breeding storks from Tianjin Zoo had the least α-diversity. Principal coordinates analysis showed that the microbial communities were different between the two studied groups. In conclusion, this study reveals the species composition and structure of the gut microbiota of oriental white storks under two breeding conditions, and our findings could contribute to the integrative conservation of this endangered bird.
Collapse
Affiliation(s)
- Hong Wu
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin, China.,Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
| | - Fang-Ting Wu
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Qi-Hai Zhou
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
| | - Da-Peng Zhao
- Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Sciences, Tianjin Normal University, Tianjin, China.,Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, China
| |
Collapse
|
22
|
Tian J, Du J, Zhang S, Li Y, Gao X, Han J, Lu Z. Age-associated variation in the gut microbiota of chinstrap penguins (Pygoscelis antarctica) reveals differences in food metabolism. Microbiologyopen 2021; 10:e1190. [PMID: 33970544 PMCID: PMC8103090 DOI: 10.1002/mbo3.1190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
Age is known to affect the gut microbiota in various animals; however, this relationship is poorly understood in seabirds. We investigated the temporal succession of gut microbiota in captive chinstrap penguins of different ages using high-throughput sequencing. The gut microbiota exhibited a significant age succession pattern, reaching maturity in adults and then declining with increasing age. Only 15 amplicon sequence variants were shared among the gut microbiota in chinstrap penguins at all studied ages, and these contributed to most of the age-related variations in total gut microbiota. Co-occurrence networks found that these key bacteria belonged to the genera Acinetobacter, Clostridium sensu stricto, and Fusobacterium, and more species interactions were found within the same taxonomy. Functional prediction indicated that most of the metabolic functions were more abundant in the gut microbiota in adult chinstrap penguins, except for carbohydrate metabolism, which was significantly more abundant in older individuals.
Collapse
Affiliation(s)
- Jiashen Tian
- Dalian Key Laboratory of Conservation Biology for Endangered Marine mammalsLiaoning Ocean and Fisheries Science Research InstituteDalianChina
| | - Jing Du
- Dalian Key Laboratory of Conservation Biology for Endangered Marine mammalsLiaoning Ocean and Fisheries Science Research InstituteDalianChina
| | | | - Yanqiu Li
- Dalian Sun Asia Tourism Holding Co., Ltd.DalianChina
| | - Xianggang Gao
- Dalian Key Laboratory of Conservation Biology for Endangered Marine mammalsLiaoning Ocean and Fisheries Science Research InstituteDalianChina
| | - Jiabo Han
- Dalian Key Laboratory of Conservation Biology for Endangered Marine mammalsLiaoning Ocean and Fisheries Science Research InstituteDalianChina
| | - Zhichuang Lu
- Dalian Key Laboratory of Conservation Biology for Endangered Marine mammalsLiaoning Ocean and Fisheries Science Research InstituteDalianChina
| |
Collapse
|
23
|
García-Lopez E, Serrano S, Calvo MA, Peña Perez S, Sanchez-Casanova S, García-Descalzo L, Cid C. Microbial Community Structure Driven by a Volcanic Gradient in Glaciers of the Antarctic Archipelago South Shetland. Microorganisms 2021; 9:microorganisms9020392. [PMID: 33672948 PMCID: PMC7917679 DOI: 10.3390/microorganisms9020392] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 11/26/2022] Open
Abstract
It has been demonstrated that the englacial ecosystem in volcanic environments is inhabited by active bacteria. To know whether this result could be extrapolated to other Antarctic glaciers and to study the populations of microeukaryotes in addition to those of bacteria, a study was performed using ice samples from eight glaciers in the South Shetland archipelago. The identification of microbial communities of bacteria and microeukaryotes using 16S rRNA and 18S rRNA high throughput sequencing showed a great diversity when compared with microbiomes of other Antarctic glaciers or frozen deserts. Even the composition of the microbial communities identified in the glaciers from the same island was different, which may be due to the isolation of microbial clusters within the ice. A gradient in the abundance and diversity of the microbial communities from the volcano (west to the east) was observed. Additionally, a significant correlation was found between the chemical conditions of the ice samples and the composition of the prokaryotic populations inhabiting them along the volcanic gradient. The bacteria that participate in the sulfur cycle were those that best fit this trend. Furthermore, on the eastern island, a clear influence of human contamination was observed on the glacier microbiome.
Collapse
|
24
|
Differences in the fecal microbiota due to the sexual niche segregation of captive Gentoo penguins Pygoscelis papua. Polar Biol 2021. [DOI: 10.1007/s00300-021-02812-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
25
|
Zhang N, Zhou L, Yang Z, Gu J. Effects of Food Changes on Intestinal Bacterial Diversity of Wintering Hooded Cranes ( Grus monacha). Animals (Basel) 2021; 11:ani11020433. [PMID: 33562375 PMCID: PMC7915383 DOI: 10.3390/ani11020433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The intestinal microbiota plays a vital role in the health of animals, and food is an important factor that influences the intestinal microbial community. During the winter months, waterbirds require certain foods to supply them with energy through the cold winter. Due to changes in the plant resources available to waterbirds, their intestinal bacteria will vary accordingly. In this study, we analysed the relationship between food composition and intestinal bacteria in hooded cranes (Grus monacha). We found that food resources from similar habitats were more similar, and the corresponding hooded crane intestinal bacteria were also more similar. The results show that the intestinal bacteria of hooded cranes had a certain adaptability to the type of food being consumed. This study contributes novel insights into the diet of hooded cranes in the winter months, allowing for improved protection and management strategies. Abstract As food is recognised as an important factor affecting the intestinal microbiota, seasonal changes in diet can influence the community composition. The hooded crane (Grus monacha) is an endangered migratory waterbird species, with some of the population wintering in the sallow lakes in the middle and lower Yangtze River floodplain. Their food resources have changed seasonally, with a reduction resulting from wetland degradation. To cope with seasonal changes in food availability, hooded cranes must constantly adjust their foraging strategies to survive. We studied the effect of changes in diet on the intestinal bacterial diversity of hooded cranes at Shengjin Lake, using faecal microanalysis and high-throughput sequencing. The results show that the main foods of hooded cranes were Polygonum criopolitanum, Oryza sativa, and Carex spp., which were significantly related to the composition of the intestinal bacterial community. In addition, foods available from the similar habitats were more similar, and the corresponding hooded crane intestinal bacteria were also more similar. The relative abundance of Lactobacillus acidipiscis in January and March was significantly higher than in November. Our research shows that the intestinal bacteria of hooded cranes actively adapt to diet changes to overcome the negative impact of the reduction in food resources, which is vital to the survival of hooded cranes.
Collapse
Affiliation(s)
- Nazhong Zhang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
| | - Lizhi Zhou
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
| | - Zhuqing Yang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
| | - Jingjing Gu
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
| |
Collapse
|
26
|
Zhou L, Huo X, Liu B, Wu H, Feng J. Comparative Analysis of the Gut Microbial Communities of the Eurasian Kestrel ( Falco tinnunculus) at Different Developmental Stages. Front Microbiol 2020; 11:592539. [PMID: 33391209 PMCID: PMC7775371 DOI: 10.3389/fmicb.2020.592539] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/18/2020] [Indexed: 12/21/2022] Open
Abstract
The gut microflora play a very important role in the life of animals. Although an increasing number of studies have investigated the gut microbiota of birds in recent years, there is a lack of research work on the gut microbiota of wild birds, especially carnivorous raptors, which are thought to be pathogen vectors. There are also a lack of studies focused on the dynamics of the gut microbiota during development in raptors. In this study, 16S rRNA gene amplicon high-throughput sequencing was used to analyze the gut microbiota community composition of a medium-sized raptor, the Eurasian Kestrel (Falco tinnunculus), and to reveal stage-specific signatures in the gut microbiota of nestlings during the pre-fledging period. Moreover, differences in the gut microbiota between adults and nestlings in the same habitat were explored. The results indicated that the Eurasian Kestrel hosts a diverse assemblage of gut microbiota. Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes were the primary phyla shared within the guts of adults and chicks. However, adults harbored higher abundances of Proteobacteria while nestlings exhibited higher abundances of Firmicutes and Actinobacteria, and consequently the majority of dominant genera observed in chicks differed from those in adults. Although no significant differences in diversity were observed across the age groups during nestling ontogeny, chicks from all growth stages harbored richer and more diverse bacterial communities than adults. In contrast, the differences in gut microbial communities between adults and younger nestlings were more pronounced. The gut microbes of the nestlings in the last growth stage were converged with those of the adults. This study provides basic reference data for investigations of the gut microbiota community structure of wild birds and deepens our understanding of the dynamics of the gut microflora during raptor development.
Collapse
Affiliation(s)
- Lei Zhou
- College of Animal Science and Technology, College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Xiaona Huo
- School of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Boyu Liu
- College of Animal Science and Technology, College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
| | - Hui Wu
- School of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Jiang Feng
- School of Life Sciences, Jilin Agricultural University, Changchun, China
| |
Collapse
|
27
|
Jiang D, He X, Valitutto M, Chen L, Xu Q, Yao Y, Hou R, Wang H. Gut microbiota composition and metabolomic profiles of wild and captive Chinese monals (Lophophorus lhuysii). Front Zool 2020; 17:36. [PMID: 33292307 PMCID: PMC7713318 DOI: 10.1186/s12983-020-00381-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The Chinese monal (Lophophorus lhuysii) is an endangered bird species, with a wild population restricted to the mountains in southwest China, and only one known captive population in the world. We investigated the fecal microbiota and metabolome of wild and captive Chinese monals to explore differences and similarities in nutritional status and digestive characteristics. An integrated approach combining 16S ribosomal RNA (16S rRNA) gene sequencing and ultra-high performance liquid chromatography (UHPLC) based metabolomics were used to examine the fecal microbiota composition and the metabolomic profile of Chinese monals. RESULTS The results showed that the alpha diversity of gut microbes in the wild group were significantly higher than that in the captive group and the core bacterial taxa in the two groups showed remarkable differences at phylum, class, order, and family levels. Metabolomic profiling also revealed differences, mainly related to galactose, starch and sucrose metabolism, fatty acid, bile acid biosynthesis and bile secretion. Furthermore, strong correlations between metabolite types and bacterial genus were detected. CONCLUSIONS There were remarkable differences in the gut microbiota composition and metabolomic profile between wild and captive Chinese monals. This study has established a baseline for a normal gut microbiota and metabolomic profile for wild Chinese monals, thus allowing us to evaluate if differences seen in captive organisms have an impact on their overall health and reproduction.
Collapse
Affiliation(s)
- Dandan Jiang
- Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China
- Sichuan Academy of Giant Panda, Chengdu, 610081, China
| | - Xin He
- Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China
- Sichuan Academy of Giant Panda, Chengdu, 610081, China
| | - Marc Valitutto
- Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China
- Sichuan Academy of Giant Panda, Chengdu, 610081, China
- EcoHealth Alliance, New York, NY, 10012, USA
| | - Li Chen
- Sichuan Fengtongzhai National Nature reserve administration, Yaan, 625700, China
| | - Qin Xu
- Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China
- Sichuan Academy of Giant Panda, Chengdu, 610081, China
| | - Ying Yao
- Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China
- Sichuan Academy of Giant Panda, Chengdu, 610081, China
| | - Rong Hou
- Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China
- Sichuan Academy of Giant Panda, Chengdu, 610081, China
| | - Hairui Wang
- Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081, China.
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu, 610081, China.
- Sichuan Academy of Giant Panda, Chengdu, 610081, China.
| |
Collapse
|
28
|
Engel K, Pankoke H, Jünemann S, Brandl HB, Sauer J, Griffith SC, Kalinowski J, Caspers BA. Family matters: skin microbiome reflects the social group and spatial proximity in wild zebra finches. BMC Ecol 2020; 20:58. [PMID: 33187490 PMCID: PMC7664024 DOI: 10.1186/s12898-020-00326-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 11/02/2020] [Indexed: 01/04/2023] Open
Abstract
Background So far, large numbers of studies investigating the microbiome have focused on gut microbiota and less have addressed the microbiome of the skin. Especially in avian taxa our understanding of the ecology and function of these bacteria remains incomplete. The involvement of skin bacteria in intra-specific communication has recently received attention, and has highlighted the need to understand what information is potentially being encoded in bacterial communities. Using next generation sequencing techniques, we characterised the skin microbiome of wild zebra finches, aiming to understand the impact of sex, age and group composition on skin bacteria communities. For this purpose, we sampled skin swabs from both sexes and two age classes (adults and nestlings) of 12 different zebra finch families and analysed the bacterial communities. Results Using 16S rRNA sequencing we found no effect of age, sex and family on bacterial diversity (alpha diversity). However, when comparing the composition (beta diversity), we found that animals of social groups (families) harbour highly similar bacterial communities on their skin with respect to community composition. Within families, closely related individuals shared significantly more bacterial taxa than non-related animals. In addition, we found that age (adults vs. nestlings) affected bacterial composition. Finally, we found that spatial proximity of nest sites, and therefore individuals, correlated with the skin microbiota similarity. Conclusions Birds harbour very diverse and complex bacterial assemblages on their skin. These bacterial communities are distinguishable and characteristic for intraspecific social groups. Our findings are indicative for a family-specific skin microbiome in wild zebra finches. Genetics and the (social) environment seem to be the influential factors shaping the complex bacterial communities. Bacterial communities associated with the skin have a potential to emit volatiles and therefore these communities may play a role in intraspecific social communication, e.g. via signalling social group membership.
Collapse
Affiliation(s)
- Kathrin Engel
- Department of Behavioural Ecology, Bielefeld University, Konsequenz 45, 33615, Bielefeld, Germany.
| | - Helga Pankoke
- Evonik Nutrition & Care GmbH, Kantstr. 2, 33790, Halle, Germany
| | - Sebastian Jünemann
- Center for Biotechnology (CeBiTec), Bielefeld University, Sequenz 1, 33615, Bielefeld, Germany.,Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Hanja B Brandl
- Institute of Zoology, Behavioural Biology, University of Hamburg, Martin-Luther-King Platz 3, 20146, Hamburg, Germany.,Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Jan Sauer
- Department of Behavioural Ecology, Bielefeld University, Konsequenz 45, 33615, Bielefeld, Germany
| | - Simon C Griffith
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, Sequenz 1, 33615, Bielefeld, Germany
| | - Barbara A Caspers
- Department of Behavioural Ecology, Bielefeld University, Konsequenz 45, 33615, Bielefeld, Germany.
| |
Collapse
|
29
|
Andreani NA, Donaldson CJ, Goddard M. A reasonable correlation between cloacal and cecal microbiomes in broiler chickens. Poult Sci 2020; 99:6062-6070. [PMID: 33142525 PMCID: PMC7647853 DOI: 10.1016/j.psj.2020.08.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 08/04/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
Gut microbiota play an important role in animal health. For livestock, an understanding of the effect of husbandry interventions on gut microbiota helps develop methods that increase sustainable productivity, animal welfare, and food safety. Poultry microbiota of the mid-gut and hind-gut can only be investigated postmortem; however, samples from the terminal cloaca may be collected from live animals. This study tests whether cloacal microbiota reflect cecal microbiota in European broiler poultry by evaluating total and paired cecal and cloacal microbiomes from 47 animals. 16S amplicon libraries were constructed and sequenced with a MiSeq 250 bp PE read metric. The composition of cloacal and cecal microbiomes were significantly affected by the age and location of animals, but the effect was very small. Bacilli were relatively more abundant in ceca and Clostridia in cloaca. There was an overlap of 99.5% for the abundances and 59% for the types of taxa between cloacal and cecal communities, but the small fraction of rare nonshared taxa were sufficient to produce a signal for differentiation between cecal and cloacal communities. There was a significant positive correlation between specific taxa abundances in cloacal and cecal communities (Rho = 0.66, P = 2 × 10-16). Paired analyses revealed that cloacal communities were more closely related to cecal communities from the same individual than expected by chance. This study is in line with the only other study to evaluate the relationship between cecal and cloacal microbiomes in broiler poultry, but it extends previous findings by analyzing paired cecal-cloacal samples from the same birds and reveals that abundant bacterial taxa in ceca may be reasonably inferred by sampling cloaca. Together, the findings from Europe and Australasia demonstrate that sampling cloaca shows promise as a method to estimate cecal microbiota, and especially abundant taxa, from live broiler poultry in a manner which reduces cost and increases welfare for husbandry and research purposes.
Collapse
Affiliation(s)
| | | | - Matthew Goddard
- School of Life Sciences, University of Lincoln, Lincoln, UK; School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
30
|
Chen CY, Chen CK, Chen YY, Fang A, Shaw GTW, Hung CM, Wang D. Maternal gut microbes shape the early-life assembly of gut microbiota in passerine chicks via nests. MICROBIOME 2020; 8:129. [PMID: 32917256 PMCID: PMC7488855 DOI: 10.1186/s40168-020-00896-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/21/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND Knowledge is growing on how gut microbiota are established, but the effects of maternal symbiotic microbes throughout early microbial successions in birds remain elusive. In this study, we examined the contributions and transmission modes of maternal microbes into the neonatal microbiota of a passerine, the zebra finch (Taeniopygia guttata), based on fostering experiments. RESULTS Using 16S rRNA amplicon sequencing, we found that zebra finch chicks raised by their biological or foster parents (the society finch Lonchura striata domestica) had gut microbial communities converging with those of the parents that reared them. Moreover, source-tracking models revealed high contribution of zebra finches' oral cavity/crop microbiota to their chicks' early gut microbiota, which were largely replaced by the parental gut microbiota at later stages. The results suggest that oral feeding only affects the early stage of hatchling gut microbial development. CONCLUSIONS Our study indicates that passerine chicks mainly acquire symbionts through indirect maternal transmission-passive environmental uptake from nests that were smeared with the intestinal and cloacal microbes of parents that raised them. Gut microbial diversity was low in hand-reared chicks, emphasizing the importance of parental care in shaping the gut microbiota. In addition, several probiotics were found in chicks fostered by society finches, which are excellent foster parents for other finches in bird farms and hosts of brood parasitism by zebra finches in aviaries; this finding implies that avian species that can transfer probiotics to chicks may become selectively preferred hosts of brood parasitism in nature. Video Abstract.
Collapse
Affiliation(s)
- Cheng-Yu Chen
- Biodiversity Research Center, Academia Sinica, Taipei, 115201 Taiwan
| | - Chih-Kuan Chen
- Biodiversity Research Center, Academia Sinica, Taipei, 115201 Taiwan
- Department of Pathology, University of Southern California, Los Angeles, CA 90033 USA
- The IEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, 402204 Taiwan
| | - Yi-Ying Chen
- Biodiversity Research Center, Academia Sinica, Taipei, 115201 Taiwan
| | - Andrew Fang
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, 970301 Taiwan
| | | | - Chih-Ming Hung
- Biodiversity Research Center, Academia Sinica, Taipei, 115201 Taiwan
| | - Daryi Wang
- Biodiversity Research Center, Academia Sinica, Taipei, 115201 Taiwan
| |
Collapse
|
31
|
Lee SJ, Cho S, La TM, Lee HJ, Lee JB, Park SY, Song CS, Choi IS, Lee SW. Comparison of microbiota in the cloaca, colon, and magnum of layer chicken. PLoS One 2020; 15:e0237108. [PMID: 32750076 PMCID: PMC7402502 DOI: 10.1371/journal.pone.0237108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022] Open
Abstract
Anatomically terminal parts of the urinary, reproductive, and digestive systems of birds all connect to the cloaca. As the feces drain through the cloaca in chickens, the cloacal bacteria were previously believed to represent those of the digestive system. To investigate similarities between the cloacal microbiota and the microbiota of the digestive and reproductive systems, microbiota inhabiting the colon, cloaca, and magnum, which is a portion of the chicken oviduct of 34-week-old, specific-pathogen-free hens were analyzed using a 16S rRNA metagenomic approach using the Ion torrent sequencer and the Qiime2 bioinformatics platform. Beta diversity via unweighted and weighted unifrac analyses revealed that the cloacal microbiota was significantly different from those in the colon and the magnum. Unweighted unifrac revealed that the cloacal microbiota was distal from the microbiota in the colon than from the microbiota in the magnum, whereas weighted unifrac revealed that the cloacal microbiota was located further away from the microbiota in the magnum than from the microbiota inhabiting the colon. Pseudomonas spp. were the most abundant in the cloaca, whereas Lactobacillus spp. and Flavobacterium spp. were the most abundant species in the colon and the magnum. The present results indicate that the cloaca contains a mixed population of bacteria, derived from the reproductive, urinary, and digestive systems, particularly in egg-laying hens. Therefore, sampling cloaca to study bacterial populations that inhabit the digestive system of chickens requires caution especially when applied to egg-laying hens. To further understand the physiological role of the microbiota in chicken cloaca, exploratory studies of the chicken’s cloacal microbiota should be performed using chickens of different ages and types.
Collapse
Affiliation(s)
- Seo-Jin Lee
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Seongwoo Cho
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Tae-Min La
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Hong-Jae Lee
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Joong-Bok Lee
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Seung-Yong Park
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Chang-Seon Song
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - In-Soo Choi
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Sang-Won Lee
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
32
|
Grzesiak J, Kaczyńska A, Gawor J, Żuchniewicz K, Aleksandrzak-Piekarczyk T, Gromadka R, Zdanowski MK. A smelly business: Microbiology of Adélie penguin guano (Point Thomas rookery, Antarctica). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136714. [PMID: 31978775 DOI: 10.1016/j.scitotenv.2020.136714] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/03/2020] [Accepted: 01/13/2020] [Indexed: 05/25/2023]
Abstract
Adélie penguins (Pygoscelis adeliae) are the most numerous flightless bird group breeding in coastal areas of Maritime and Continental Antarctica. Their activity leaves a mark on the land in the form of large guano deposits. This guano is an important nutrient source for terrestrial habitats of ice-free Antarctic areas, most notably by being the source of ammonia vapors which feed the surrounding grass, lichen and algae communities. Although investigated by researchers, the fate of the guano-associated microbial community and its role in decomposition processes remain vague. Therefore, by employing several direct community assessment methods combined with a broad culture-based approach we provide data on bacterial numbers, their activity and taxonomic affiliation in recently deposited and decayed Adélie penguin guano sampled at the Point Thomas rookery in Maritime Antarctica (King George Island). Our research indicates that recently deposited guano harbored mostly bacteria of penguin gut origin, presumably inactive in cold rookery settings. This material was rich in mesophilic enzymes active also at low temperatures, likely mediating early stage decomposition. Fresh guano colonization by environmental bacteria was minor, accomplished mostly by ammonia scavenging Jeotgalibaca sp. cells. Decayed guano contained 10-fold higher bacterial numbers with cold-active enzymes dominating the samples. Guano was colonized by uric-acid degrading and lipolytic Psychrobacter spp. and proteolytic Chryseobacterium sp. among others. Several spore-forming bacteria of penguin gut origin persisted in highly decomposed material, most notably uric-acid fermenting members of the Gottschalkiaceae family.
Collapse
Affiliation(s)
- Jakub Grzesiak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warszawa, Poland.
| | - Agata Kaczyńska
- Pomeranian University in Słupsk, Arciszewskiego 22A, 76-200 Słupsk, Poland
| | - Jan Gawor
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warszawa, Poland
| | - Karolina Żuchniewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warszawa, Poland
| | | | - Robert Gromadka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warszawa, Poland
| | - Marek K Zdanowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warszawa, Poland
| |
Collapse
|
33
|
Bodawatta KH, Puzejova K, Sam K, Poulsen M, Jønsson KA. Cloacal swabs and alcohol bird specimens are good proxies for compositional analyses of gut microbial communities of Great tits (Parus major). Anim Microbiome 2020; 2:9. [PMID: 33499943 PMCID: PMC7807456 DOI: 10.1186/s42523-020-00026-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/25/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Comprehensive studies of wild bird microbiomes are often limited by difficulties of sample acquisition. However, widely used non-invasive cloacal swab methods and under-explored museum specimens preserved in alcohol provide promising avenues to increase our understanding of wild bird microbiomes, provided that they accurately portray natural microbial community compositions. To investigate this assertion, we used 16S rRNA amplicon sequencing of Great tit (Parus major) gut microbiomes to compare 1) microbial communities obtained from dissected digestive tract regions and cloacal swabs, and 2) microbial communities obtained from freshly dissected gut regions and from samples preserved in alcohol for 2 weeks or 2 months, respectively. RESULTS We found no significant differences in alpha diversities in communities of different gut regions and cloacal swabs (except in OTU richness between the dissected cloacal region and the cloacal swabs), or between fresh and alcohol preserved samples. However, we did find significant differences in beta diversity and community composition of cloacal swab samples compared to different gut regions. Despite these community-level differences, swab samples qualitatively captured the majority of the bacterial diversity throughout the gut better than any single compartment. Bacterial community compositions of alcohol-preserved specimens did not differ significantly from freshly dissected samples, although some low-abundant taxa were lost in the alcohol preserved specimens. CONCLUSIONS Our findings suggest that cloacal swabs, similar to non-invasive fecal sampling, qualitatively depict the gut microbiota composition without having to collect birds to extract the full digestive tract. The satisfactory depiction of gut microbial communities in alcohol preserved samples opens up for the possibility of using an enormous resource readily available through museum collections to characterize bird gut microbiomes. The use of extensive museum specimen collections of birds for microbial gut analyses would allow for investigations of temporal patterns of wild bird gut microbiomes, including the potential effects of climate change and anthropogenic impacts. Overall, the utilization of cloacal swabs and museum alcohol specimens can positively impact bird gut microbiome research to help increase our understanding of the role and evolution of wild bird hosts and gut microbial communities.
Collapse
Affiliation(s)
- Kasun H. Bodawatta
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Katerina Puzejova
- Biology Centre of Czech Academy of Sciences, Institute of Entomology, Branisovska 31, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branisovska 1760, Ceske Budejovice, Czech Republic
| | - Katerina Sam
- Biology Centre of Czech Academy of Sciences, Institute of Entomology, Branisovska 31, Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branisovska 1760, Ceske Budejovice, Czech Republic
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Knud A. Jønsson
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
34
|
Characterization of the gut microbiome of black-necked cranes (Grus nigricollis) in six wintering areas in China. Arch Microbiol 2020; 202:983-993. [PMID: 31901964 DOI: 10.1007/s00203-019-01802-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/12/2019] [Accepted: 12/21/2019] [Indexed: 12/18/2022]
Abstract
The black-necked crane (Grus nigricollis) is a vulnerable species, breeding exclusively on the high-altitude wetlands of the Qinghai-Tibet Plateau. Bird species harbor diverse communities of microorganisms within their gastrointestinal tracts, which have important roles in the health, nutrition, and physiology of birds. Hitherto, virtually nothing was known about the gut microbial communities associated with wild black-necked cranes. For the first time, this study characterized the gut microbial community compositions, diversity, and functions of black-necked cranes from six wintering areas in China using the Illumina Miseq platform. The taxonomic results revealed that Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes were the four most abundant phyla in the gut of black-necked cranes. At the genus level, 11 genera including Lactobacillus, Pseudomonas, Carnobacterium, Pantoea, Enterococcus, Erwinia, Turicibacter, Bacillus, Phenylobacterium, Sanguibacter, and Psychrobacter were dominant. The differences in the gut microbial community alpha and the beta diversities of black-necked cranes among the six wintering areas were investigated. Furthermore, the representative microbial taxa and their predicted functions in each wintering location were also determined. These data represent the first analysis of the gut microbiome of black-necked cranes, providing a baseline for further microbiological studies and a foundation for the conservation of this bird.
Collapse
|
35
|
Yan J, Zhou B, Xi Y, Huan H, Li M, Yu J, Zhu H, Dai Z, Ying S, Zhou W, Shi Z. Fermented feed regulates growth performance and the cecal microbiota community in geese. Poult Sci 2019; 98:4673-4684. [PMID: 30993344 DOI: 10.3382/ps/pez169] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 03/15/2019] [Indexed: 12/20/2022] Open
Abstract
This study was designed to investigate the effects of fermented feed diets on the growth performance and cecal microbial community in geese, and to examine associations between the gut microbiota and growth performance. A total of 720 healthy, 1-day-old male SanHua geese were used for the 55-D experiment. Geese were randomly divided into 4 groups, each with 6 replicates of 30 geese. Groups were fed a basal diet supplemented with 0.0, 2.5, 5.0, or 7.5% fermented feed. The results showed that 7.5% fermented feed had an increasing trend in the body weight and average daily gain of the geese; however, there was no significant response to increasing dietary fermented feed level with regards to ADFI and FCR. In addition, compared with the control group, there was a higher abundance of bacteria in the phylum Bacteroidetes in the cecal samples of geese in the 7.5% fermented feed group (53.18% vs. 41.77%, P < 0.05), whereas the abundance of Firmicutes was lower in the 7.5% fermented feed group (36.30% vs. 44.13%, P > 0.05). At the genus level, the abundance of Bacteroides was increased by adding fermented feed to geese diets, whereas the abundances of Desulfovibrio, Phascolarctobacterium, Lachnospiraceae_uncultured, Ruminiclostridium, and Oscillospira were decreased. These results indicate that fermented feeds have an important effect on the cecal microflora composition of geese, and may affect host growth, nutritional status, and intestinal health.
Collapse
Affiliation(s)
- Junshu Yan
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bo Zhou
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yumeng Xi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Hailin Huan
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Mingyang Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jianning Yu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Huanxi Zhu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zichun Dai
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shijia Ying
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Weiren Zhou
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhendan Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
36
|
Loo WT, Dudaniec RY, Kleindorfer S, Cavanaugh CM. An inter-island comparison of Darwin's finches reveals the impact of habitat, host phylogeny, and island on the gut microbiome. PLoS One 2019; 14:e0226432. [PMID: 31834908 PMCID: PMC6910665 DOI: 10.1371/journal.pone.0226432] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023] Open
Abstract
Darwin's finch species in the Galapagos Archipelago are an iconic adaptive radiation that offer a natural experiment to test for the various factors that influence gut microbiome composition. The island of Floreana has the longest history of human settlement within the archipelago and offers an opportunity to compare island and habitat effects on Darwin's finch microbiomes. In this study, we compare gut microbiomes in Darwin's finch species on Floreana Island to test for effects of host phylogeny, habitat (lowlands, highlands), and island (Floreana, Santa Cruz). We used 16S rRNA Illumina sequencing of fecal samples to assess the gut microbiome composition of Darwin's finches, complemented by analyses of stable isotope values and foraging data to provide ecological context to the patterns observed. Overall bacterial composition of the gut microbiome demonstrated co-phylogeny with Floreana hosts, recapitulated the effect of habitat and diet, and showed differences across islands. The finch phylogeny uniquely explained more variation in the microbiome than did foraging data. Finally, there were interaction effects for island × habitat, whereby the same Darwin's finch species sampled on two islands differed in microbiome for highland samples (highland finches also had different diets across islands) but not lowland samples (lowland finches across islands had comparable diet). Together, these results corroborate the influence of phylogeny, age, diet, and sampling location on microbiome composition and emphasize the necessity for comprehensive sampling given the multiple factors that influence the gut microbiome in Darwin's finches, and by extension, in animals broadly.
Collapse
Affiliation(s)
- Wesley T. Loo
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Rachael Y. Dudaniec
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Sonia Kleindorfer
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
- Konrad Lorenz Research Center for Behaviour and Cognition and Department of Behavioural Biology, University of Vienna, Vienna, Austria
- * E-mail: (SK); (CC)
| | - Colleen M. Cavanaugh
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail: (SK); (CC)
| |
Collapse
|
37
|
Jacobs L, McMahon BH, Berendzen J, Longmire J, Gleasner C, Hengartner NW, Vuyisich M, Cohn JR, Jenkins M, Bartlow AW, Fair JM. California condor microbiomes: Bacterial variety and functional properties in captive-bred individuals. PLoS One 2019; 14:e0225858. [PMID: 31825977 PMCID: PMC6905524 DOI: 10.1371/journal.pone.0225858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/13/2019] [Indexed: 12/02/2022] Open
Abstract
Around the world, scavenging birds such as vultures and condors have been experiencing drastic population declines. Scavenging birds have a distinct digestive process to deal with higher amounts of bacteria in their primary diet of carcasses in varying levels of decay. These observations motivate us to present an analysis of captive and healthy California condor (Gymnogyps californianus) microbiomes to characterize a population raised together under similar conditions. Shotgun metagenomic DNA sequences were analyzed from fecal and cloacal samples of captive birds. Classification of shotgun DNA sequence data with peptide signatures using the Sequedex package provided both phylogenetic and functional profiles, as well as individually annotated reads for targeted confirmatory analysis. We observed bacterial species previously associated with birds and gut microbiomes, including both virulent and opportunistic pathogens such as Clostridium perfringens, Propionibacterium acnes, Shigella flexneri, and Fusobacterium mortiferum, common flora such as Lactobacillus johnsonii, Lactobacillus ruminus, and Bacteroides vulgatus, and mucosal microbes such as Delftia acidovorans, Stenotrophomonas maltophilia, and Corynebacterium falsnii. Classification using shotgun metagenomic reads from phylogenetic marker genes was consistent with, and more specific than, analysis based on 16S rDNA data. Classification of samples based on either phylogenetic or functional profiles of genomic fragments differentiated three types of samples: fecal, mature cloacal and immature cloacal, with immature birds having approximately 40% higher diversity of microbes.
Collapse
Affiliation(s)
- Lindsey Jacobs
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Benjamin H. McMahon
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Joel Berendzen
- GenerisBio, Santa Fe, New Mexico, United States of America
| | - Jonathan Longmire
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Cheryl Gleasner
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | | | | | - Judith R. Cohn
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Marti Jenkins
- The Peregrine Fund, Boise, Idaho, United States of America
| | - Andrew W. Bartlow
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Jeanne M. Fair
- Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
38
|
Characterization of the microbiome along the gastrointestinal tracts of semi-artificially reared bar-headed geese (Anser indicus). Folia Microbiol (Praha) 2019; 65:533-543. [PMID: 31768913 DOI: 10.1007/s12223-019-00758-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 11/01/2019] [Indexed: 10/25/2022]
Abstract
As one of the dominant waterfowl species of wetland areas in the Qinghai-Tibet Plateau, since 2003, artificial rearing of bar-headed geese (Anser indicus) has increased in several provinces of China for the purpose of conservation and economic development. In this study, we systematically characterized the microbial community diversity, compositions and predicted functions of semi-artificially reared bar-headed geese by sampling five different gut locations (the oropharynxs, crops, gizzards, ceca, and cloacae) along the gastrointestinal tracts of three individuals. Alpha diversity analyses showed that the gizzards had the richest species diversity and that the ceca had the least. Beta diversity analyses showed that the cecal samples formed their own cluster, while samples from the oropharynxs, crops, gizzards, and cloacae overlapped with each other. At the phylum level, Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, and Fusobacteria constituted the top five dominant phyla among all five gastrointestinal sections. At the genus level, a total of 10 genera with proportions above 2.5% were found to be significantly different among the gastrointestinal sections. Furthermore, 53 genera were detected in all gastrointestinal sections of bar-headed geese. PICRUSt data also predicted a group of microbial functions overrepresented in the different segments of the gastrointestinal tracts. Understanding the microbiota along the bar-headed geese gastrointestinal tracts is essential for future microbiological study of this bird and may contribute to the development of geese husbandry.
Collapse
|
39
|
Grond K, Santo Domingo JW, Lanctot RB, Jumpponen A, Bentzen RL, Boldenow ML, Brown SC, Casler B, Cunningham JA, Doll AC, Freeman S, Hill BL, Kendall SJ, Kwon E, Liebezeit JR, Pirie-Dominix L, Rausch J, Sandercock BK. Composition and Drivers of Gut Microbial Communities in Arctic-Breeding Shorebirds. Front Microbiol 2019; 10:2258. [PMID: 31649627 PMCID: PMC6795060 DOI: 10.3389/fmicb.2019.02258] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/17/2019] [Indexed: 01/02/2023] Open
Abstract
Gut microbiota can have important effects on host health, but explanatory factors and pathways that determine gut microbial composition can differ among host lineages. In mammals, host phylogeny is one of the main drivers of gut microbiota, a result of vertical transfer of microbiota during birth. In birds, it is less clear what the drivers might be, but both phylogeny and environmental factors may play a role. We investigated host and environmental factors that underlie variation in gut microbiota composition in eight species of migratory shorebirds. We characterized bacterial communities from 375 fecal samples collected from adults of eight shorebird species captured at a network of nine breeding sites in the Arctic and sub-Arctic ecoregions of North America, by sequencing the V4 region of the bacterial 16S ribosomal RNA gene. Firmicutes (55.4%), Proteobacteria (13.8%), Fusobacteria (10.2%), and Bacteroidetes (8.1%) dominated the gut microbiota of adult shorebirds. Breeding location was the main driver of variation in gut microbiota of breeding shorebirds (R2 = 11.6%), followed by shorebird host species (R2 = 1.8%), and sampling year (R2 = 0.9%), but most variation remained unexplained. Site variation resulted from differences in the core bacterial taxa, whereas rare, low-abundance bacteria drove host species variation. Our study is the first to highlight a greater importance of local environment than phylogeny as a driver of gut microbiota composition in wild, migratory birds under natural conditions.
Collapse
Affiliation(s)
- Kirsten Grond
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | | | - Richard B Lanctot
- Migratory Bird Management, U.S. Fish & Wildlife Service, Anchorage, AK, United States
| | - Ari Jumpponen
- Division of Biology, Kansas State University, Manhattan, KS, United States
| | | | - Megan L Boldenow
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, United States
| | | | - Bruce Casler
- Independent Researcher, Nehalem, OR, United States
| | - Jenny A Cunningham
- Department of Fisheries and Wildlife Sciences, University of Missouri, Columbia, MO, United States
| | - Andrew C Doll
- Denver Museum of Nature & Science, Denver, CO, United States
| | - Scott Freeman
- Arctic National Wildlife Refuge, U.S. Fish & Wildlife Service, Fairbanks, AK, United States
| | - Brooke L Hill
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Steven J Kendall
- Arctic National Wildlife Refuge, U.S. Fish & Wildlife Service, Fairbanks, AK, United States
| | - Eunbi Kwon
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, United States
| | | | | | - Jennie Rausch
- Environment and Climate Change Canada, Yellowknife, NT, Canada
| | - Brett K Sandercock
- Department of Terrestrial Ecology, Norwegian Institute for Nature Research, Trondheim, Norway
| |
Collapse
|
40
|
Vargas-Pellicer P, Watrobska C, Knowles S, Schroeder J, Banks-Leite C. How should we store avian faecal samples for microbiota analyses? Comparing efficacy and cost-effectiveness. J Microbiol Methods 2019; 165:105689. [PMID: 31425715 DOI: 10.1016/j.mimet.2019.105689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 10/26/2022]
Abstract
Analyses of bacterial DNA in faecal samples are becoming ever more common, yet we still do not know much about bird microbiomes. These challenges partly lie in the unique chemical nature of their faeces, and in the choice of sample storage method, which affects DNA preservation and the resulting microbiome composition. However, there is little information available on how best to preserve avian faeces for microbial analyses. This study evaluates five widely used methods for preserving nucleic acids and inferring microbiota profiles, for their relative efficacy, cost, and practicality. We tested the five methods (in-situ bead-beating with a TerraLyzer instrument, silica-bead desiccation, ethanol, refrigeration and RNAlater buffer) on 50 fresh faecal samples collected from captive House sparrows (Passer domesticus). In line with other studies, we find that different storage methods lead to distinct bacterial profiles. Storage method had a large effect on community composition and the relative abundance of dominant phyla such as Firmicutes and Proteobacteria, with the most significant changes observed for refrigerated samples. Furthermore, differences in the abundance of aerobic or facultatively aerobic taxa, particularly in refrigerated samples and those stored in ethanol, puts limits on comparisons of bacterial communities across different storage methods. Finally, the methods that did not include in-situ bead-beating did not recover comparable levels of microbiota to the samples that were immediately processed and preserved using a TerraLyzer device. However, this method is also less practical and more expensive under field work circumstances. Our study is the most comprehensive analysis to date on how storage conditions affect subsequent molecular assays applied to avian faeces and provides guidance on cost and practicality of methods under field conditions.
Collapse
Affiliation(s)
- Paula Vargas-Pellicer
- Department of Life Sciences, Silwood Park Campus, Imperial College London, SL5 7PY, UK.
| | - Cecylia Watrobska
- Department of Life Sciences, Silwood Park Campus, Imperial College London, SL5 7PY, UK; School of Biological Sciences, Royal Holloway University of London, TW20 0EY, UK
| | - Sarah Knowles
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, Hatfield, Herfordshire AL9 7TA, UK; Department of Zoology, University of Oxford, OX1 3SZ, UK
| | - Julia Schroeder
- Department of Life Sciences, Silwood Park Campus, Imperial College London, SL5 7PY, UK
| | - Cristina Banks-Leite
- Department of Life Sciences, Silwood Park Campus, Imperial College London, SL5 7PY, UK
| |
Collapse
|
41
|
Nagai K, Tokita KI, Ono H, Uchida K, Sakamoto F, Higuchi H. Hindgut Bacterial Flora Analysis in Oriental Honey Buzzard ( Pernis ptilorhynchus). Zoolog Sci 2019; 36:77-81. [PMID: 31116541 DOI: 10.2108/zs180121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/23/2018] [Indexed: 11/17/2022]
Abstract
The intestinal microbiome is known to affect host health through various effects on nutrition and immunity. The oriental honey buzzard (OHB) is a raptor that feeds on bees and wasps. Due to its restricted diet, we reasoned that the OHB may have a unique microbiome. The aim of this study was to characterize the structure of the intestinal flora of oriental honey buzzards and to investigate the difference of intestinal bacterial flora between individuals in the wild and those reared in captivity. We investigated the intestinal microbiome of seven wild buzzards (Wild), one zoo-reared (Zoo), and one individual reared in captivity for one month (Rearing). Average operational taxonomic units in Wild and Rearing were 69.4 and 113, respectively. Diversity indices such as ACE, Chao 1, Shannon, and Alpha were significantly lower in the Wild than in the Rearing samples. These results suggest that the variety of Wild microbiome is remarkably low. At the phylum level, the composition of the microbiome was similar in all three groups, with firmicutes and bacteroidetes predominating. The third most abundant bacterium in Wild was Proteobacteria, whereas it was Actinobacteria in Rearing and unclassified bacteria in Zoo. Thus, microbiome composition is affected even with just one month of human rearing.
Collapse
Affiliation(s)
- Kazuya Nagai
- Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan.,Research and Education Center for Natural Sciences, Keio University, Yokohama, Kanagawa 223-8521, Japan,
| | - Ken-Ichi Tokita
- Research and Education Center for Natural Sciences, Keio University, Yokohama, Kanagawa 223-8521, Japan
| | - Hirotake Ono
- Department of Biology, Keio University, Yokohama, Kanagawa 223-8521, Japan
| | - Kiyoshi Uchida
- Satoyama Natural History Study Group, Abiko, Chiba 270-1153, Japan
| | - Fumio Sakamoto
- Faculty of Bioenvironmental Science, Kyoto sangyo University, Kyoto, Kyoto 603-8555, Japan
| | - Hiroyoshi Higuchi
- Research and Education Center for Natural Sciences, Keio University, Yokohama, Kanagawa 223-8521, Japan
| |
Collapse
|
42
|
Xi Y, Shuling N, Kunyuan T, Qiuyang Z, Hewen D, ChenCheng G, Tianhe Y, Liancheng L, Xin F. Characteristics of the intestinal flora of specific pathogen free chickens with age. Microb Pathog 2019; 132:325-334. [PMID: 31082529 DOI: 10.1016/j.micpath.2019.05.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/08/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023]
Abstract
Specific pathogen-free (SPF) experimental animals are recognized as standard laboratory animals in the fields of biomedical, animal husbandry and veterinary research and production. Intestinal flora plays a critical role in nutrient absorption, improving health and protecting the host from pathogens. We therefore explored the variation and maintenance of intestinal flora in SPF chicks in order to better understand the composition of intestinal microflorain SPF chickens, and provide reference for the study of intestinal flora of SPF experimental animals. Five chicks were randomly selected at each of 14, 28, and 42 days, and ceca were removed for DNA extraction. The Illumina Miseq platform was used for microbiome analysis of the V3-V4 region of the 16S rRNA gene. During the course of chick gut microbiome development, we observed major changes in diversity, especially between day 14 and day 28. Firmicutes, Proteobacteria, and Bacteroidetes were the main bacterial taxa, and Firmicutes increased significantly with age. The genus with the highest relative abundance was Lactobacillus, followed by Faecalibacterium. In addition, while abundance of Ruminococcaceae spp., Ruminococcus, and Blautia increased with age, Lactobacillus, Enterobacteriaceae spp., and Oscillospira decreased with age. Interestingly, the abundance of Faecalibacterium first increased and then decreased over time. The characteristics of SPF chicken gut flora at different ages establish a basis for the regulation of intestinal flora in the early stage of brooding, and also provide a theoretical foundation for controlling and preventing infections and poultry diseases in newborn chickens.
Collapse
Affiliation(s)
- Yu Xi
- College of Veterinary Medicine and College of Animal Science, Jilin University, Changchun, 130062, China
| | - Niu Shuling
- College of Animal Science and Technology, Changchun Sci-Tech University, Shuangyang, Jilin Province, 130600, China
| | - Tie Kunyuan
- College of Veterinary Medicine and College of Animal Science, Jilin University, Changchun, 130062, China
| | - Zhang Qiuyang
- College of Veterinary Medicine and College of Animal Science, Jilin University, Changchun, 130062, China
| | - Deng Hewen
- College of Veterinary Medicine and College of Animal Science, Jilin University, Changchun, 130062, China
| | - Gao ChenCheng
- College of Veterinary Medicine and College of Animal Science, Jilin University, Changchun, 130062, China
| | - Yu Tianhe
- College of Veterinary Medicine and College of Animal Science, Jilin University, Changchun, 130062, China
| | - Lei Liancheng
- College of Veterinary Medicine and College of Animal Science, Jilin University, Changchun, 130062, China
| | - Feng Xin
- College of Veterinary Medicine and College of Animal Science, Jilin University, Changchun, 130062, China.
| |
Collapse
|
43
|
Ricaud K, Even M, Lavigne F, Davail S, Arroyo J. Evolution of intestinal microbiota and body compartments during spontaneous hyperphagia in the Greylag goose. Poult Sci 2019; 98:1390-1402. [PMID: 30285149 DOI: 10.3382/ps/pey476] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/13/2018] [Indexed: 01/15/2023] Open
Abstract
The aim of this work was to study the effects of spontaneous hyperphagia on the evolution of intestinal microbiota and body compartments in old goose. From October 25th to November 26th, 5-yr-old breeding Greylag Landaise geese (106 males and 106 females) were fed with grass during 1 mo (G period). From November 26th (0 d) the birds had ad libitum access to pellets (AMEn: 10.5 MJ/kg, CP: 18.9 g/kg; spontaneous fattening (SF) period). Some birds were killed at -31 d (n = 24; 50/50 sex ratio), 0 d (n = 48), 14 (n = 46), 22 d (n = 46), and 70 d (n = 48) after the start of G period to measure body traits. For microbial analysis, 10 of the samples per sex at 0 d, 14 d, and 70 d were selected to be representative of body traits. Between 0 and 22 d, liver weight increased from 98 g to 194 g in males and from 89 g to 199 g in females (P < 0.001). Liver weight decreased between 22 and 70 d from 194 to 174 g in males and from 199 to 163 g in females (P < 0.001). Irrespective of the diet (G or SF period) and the sex of the bird, the two major phyla were Proteobacteria (49%) and Firmicutes (48%). Bacteroidetes represented around 3.0% of the sequences. At order level, Firmicutes were dominated by Clostridiales (33% of total sequences) and Lactobacillales (13% of total sequences) and Proteobacteria were dominated by Campylobacteriales (34% of total sequences). Finally, Bacteroidetes were dominated by Bacteroidales. SF and sex did not change the microbial diversity but sparse partial least squares discriminant analysis allowed us to highlight discriminant operational taxonomic unit between experimental groups. In conclusion, our result showed that changes in the body compartments of old geese during spontaneous hyperphagia depend on the sex of the birds, but not so much in gut microbial composition. Further investigations are necessary to understand the functional microbiota and highlight the role of gut microbiota in hepatic steatosis induced with hyperphagia in geese.
Collapse
Affiliation(s)
- K Ricaud
- INRA, Univ Pau and Pays Adour, E2S UPPA, UMR 1419 Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle F-64310, France
| | - M Even
- INRA, Univ Pau and Pays Adour, E2S UPPA, UMR 1419 Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle F-64310, France.,ASSELDOR, Station d'expérimentation appliquée et de démonstration sur l'oie et le canard, La Tour de Glane, F-24420 Coulaures, France
| | - F Lavigne
- ASSELDOR, Station d'expérimentation appliquée et de démonstration sur l'oie et le canard, La Tour de Glane, F-24420 Coulaures, France
| | - S Davail
- INRA, Univ Pau and Pays Adour, E2S UPPA, UMR 1419 Nutrition, Métabolisme, Aquaculture, Saint Pée sur Nivelle F-64310, France
| | - J Arroyo
- ASSELDOR, Station d'expérimentation appliquée et de démonstration sur l'oie et le canard, La Tour de Glane, F-24420 Coulaures, France
| |
Collapse
|
44
|
Gillingham MAF, Béchet A, Cézilly F, Wilhelm K, Rendón-Martos M, Borghesi F, Nissardi S, Baccetti N, Azafzaf H, Menke S, Kayser Y, Sommer S. Offspring Microbiomes Differ Across Breeding Sites in a Panmictic Species. Front Microbiol 2019; 10:35. [PMID: 30787910 PMCID: PMC6372503 DOI: 10.3389/fmicb.2019.00035] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 01/10/2019] [Indexed: 01/20/2023] Open
Abstract
High dispersal rates are known to homogenize host’s population genetic structure in panmictic species and to disrupt host local adaptation to the environment. Long-distance dispersal might also spread micro-organisms across large geographical areas. However, so far, to which extent selection mechanisms that shape host’s population genetics are mirrored in the population structure of the enteric microbiome remains unclear. High dispersal rates and horizontal parental transfer may homogenize bacterial communities between breeding sites (homogeneous hypothesis). Alternatively, strong selection from the local environment may differentiate bacterial communities between breeding sites (heterogeneous hypothesis). Furthermore, selection from age-specific environmental or physiological factors may differentiate the microbiome between juveniles and adults. Here, we analyzed the cloacal bacterial 16S rRNA gene of fledgling greater flamingos, Phoenicopterus roseus, across nine western Mediterranean breeding sites and four breeding seasons (n = 731) and adult birds (n = 27) from a single site. We found that fledgling cloacal microbiome, as measured by alpha diversity, beta diversity, the relative abundance of assigned sequence variants (ASVs) belonging to a phylum and genus composition within phylum, varied significantly between sampling sites and across time within site despite high adult dispersal rates. The spatio-temporal effects were stronger on individual ASV absence/presence than on ASV abundance (i.e., than on core microbiome composition). Spatial effects had a stronger effect than temporal effects, particularly on ASV abundance. Our study supports the heterogeneous hypothesis whereby local environmental conditions select and differentiate bacterial communities, thus countering the homogenizing effects of high-dispersing host species. In addition, differences in core microbiome between adult vs. fledgling samples suggests that differences in age-specific environmental and/or physiological factors result in differential selection pressure of core enteric microbiome between age classes, even within the same environment. In particular, the genus Corynebacterium, associated with both seasonal fat uptake and migration in previous studies, was much more abundant in high-dispersing fledglings than in more resident adults. To conclude, selection mechanisms that shape the host’s genetic structure cannot be extended to the genetic structure of the enteric microbiome, which has important implications regarding our understanding of both host local adaptation mechanisms and enteric microbiome population genetics.
Collapse
Affiliation(s)
| | - Arnaud Béchet
- Institut de Recherche de la Tour du Valat, Arles, France
| | - Frank Cézilly
- Université de Bourgogne, Equipe Ecologie Evolutive, UMR CNRS 6282 Biogéosciences, Dijon, France
| | - Kerstin Wilhelm
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Manuel Rendón-Martos
- Consejería de Medio Ambiente y Ordenación del Territorio, R.N. Laguna de Fuente de Piedra, Fuente de Piedra, Spain
| | - Fabrizio Borghesi
- Department of Biological Sciences, Geological and Environmental, University of Bologna, Ravenna, Italy
| | | | - Nicola Baccetti
- Istituto Superiore per la Protezione e Ricerca Ambientale, Rome, Italy
| | - Hichem Azafzaf
- Association "Les Amis des Oiseaux" (AAO/BirdLife Tunisie), Ariana Center, Ariana, Tunisia
| | - Sebastian Menke
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Yves Kayser
- Institut de Recherche de la Tour du Valat, Arles, France
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| |
Collapse
|
45
|
Escallón C, Belden LK, Moore IT. The Cloacal Microbiome Changes with the Breeding Season in a Wild Bird. Integr Org Biol 2019; 1:oby009. [PMID: 33791516 PMCID: PMC7671126 DOI: 10.1093/iob/oby009] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The symbiotic microbial communities, or “microbiomes,” that reside on animals are dynamic, and can be affected by the behavior and physiology of the host. These communities provide many critical beneficial functions for their hosts, but they can also include potential pathogens. In birds, bacteria residing in the cloaca form a complex community, including both gut and sexually-transmitted bacteria. Transmission of cloacal bacteria among individuals is likely during the breeding season, when there is direct cloacal contact between individuals. In addition, the major energetic investment in reproduction can draw resources away from immune responses that might otherwise prevent the successful establishment of microbes. We assessed dynamic variation in the cloacal microbiome of free-living rufous-collared sparrows (Zonotrichia capensis) through sequential breeding and non-breeding seasons. We found that the cloacal bacterial communities differed between the sexes when they were in breeding condition. Further, in males, but not in females, the bacterial community became more diverse with the onset of reproduction, and then decreased in diversity as males transitioned to non-breeding condition. Individuals sampled across sequential breeding seasons did not accumulate more bacterial taxa over seasons, but bacterial community composition did change. Our results suggest that the cloacal microbiome in birds is dynamic and, especially in males, responsive to breeding condition.
Collapse
Affiliation(s)
- C Escallón
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA.,Departamento de Ciencias Básicas, Universidad de La Salle, Cra 2 No. 10-70, Bogotá, Colombia
| | - L K Belden
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - I T Moore
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
46
|
Ramírez-Fernández L, Trefault N, Carú M, Orlando J. Seabird and pinniped shape soil bacterial communities of their settlements in Cape Shirreff, Antarctica. PLoS One 2019; 14:e0209887. [PMID: 30625192 PMCID: PMC6326729 DOI: 10.1371/journal.pone.0209887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/13/2018] [Indexed: 01/24/2023] Open
Abstract
Seabirds and pinnipeds play an important role in biogeochemical cycling by transferring nutrients from aquatic to terrestrial environments. Indeed, soils rich in animal depositions have generally high organic carbon, nitrogen and phosphorus contents. Several studies have assessed bacterial diversity in Antarctic soils influenced by marine animals; however most have been conducted in areas with significant human impact. Thus, we chose Cape Shirreff, Livingston Island, an Antarctic Specially Protected Area designated mainly to protect the diversity of marine vertebrate fauna, and selected sampling sites with different types of animals coexisting in a relatively small space, and where human presence and impact are negligible. Using 16S rRNA gene analyses through massive sequencing, we assessed the influence of animal concentrations, via their modification of edaphic characteristics, on soil bacterial diversity and composition. The nutrient composition of soils impacted by Antarctic fur seals and kelp gulls was more similar to that of control soils (i.e. soils without visible presence of plants or animals), which may be due to the more active behaviour of these marine animals compared to other species. Conversely, the soils from concentrations of southern elephant seals and penguins showed greater differences in soil nutrients compared to the control. In agreement with this, the bacterial communities of the soils associated with these animals were most different from those of the control soils, with the soils of penguin colonies also possessing the lowest bacterial diversity. However, all the soils influenced by the presence of marine animals were dominated by bacteria belonging to Gammaproteobacteria, particularly those of the genus Rhodanobacter. Therefore, we conclude that the modification of soil nutrient composition by marine vertebrates promotes specific groups of bacteria, which could play an important role in the recycling of nutrients in terrestrial Antarctic ecosystems.
Collapse
Affiliation(s)
- Lía Ramírez-Fernández
- Laboratory of Microbial Ecology, Department of Ecological Sciences, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Nicole Trefault
- Centre for Genomics, Ecology and Environment (GEMA), Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Margarita Carú
- Laboratory of Microbial Ecology, Department of Ecological Sciences, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Julieta Orlando
- Laboratory of Microbial Ecology, Department of Ecological Sciences, Faculty of Sciences, Universidad de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
47
|
Teyssier A, Lens L, Matthysen E, White J. Dynamics of Gut Microbiota Diversity During the Early Development of an Avian Host: Evidence From a Cross-Foster Experiment. Front Microbiol 2018; 9:1524. [PMID: 30038608 PMCID: PMC6046450 DOI: 10.3389/fmicb.2018.01524] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/19/2018] [Indexed: 11/18/2022] Open
Abstract
Despite the increasing knowledge on the processes involved in the acquisition and development of the gut microbiota in model organisms, the factors influencing early microbiota successions in natural populations remain poorly understood. In particular, little is known on the role of the rearing environment in the establishment of the gut microbiota in wild birds. Here, we examined the influence of the nesting environment on the gut microbiota of Great tits (Parus major) by performing a partial cross-fostering experiment during the intermediate stage of nestling development. We found that the cloacal microbiota of great tit nestlings underwent substantial changes between 8 and 15 days of age, with a strong decrease in diversity, an increase in the relative abundance of Firmicutes and a shift in the functional features of the community. Second, the nesting environment significantly influenced community composition, with a divergence among separated true siblings and a convergence among foster siblings. Third, larger shifts in both microbiota diversity and composition correlated with lower nestling body condition. Our results shed new light on the dynamics of microbial diversity during the ontogeny of avian hosts, indicating that the nest environment continues to shape the gut microbiota during the later stages of nestling development and that the increase in gut diversity between hatching and adulthood may not be as linear as previously suspected. Lastly, the microbiota changes incurred during this period may have implications for nestling body condition which can lead to long-term consequences for host fitness.
Collapse
Affiliation(s)
- Aimeric Teyssier
- Terrestrial Ecology Unit, Department of Biology, Ghent University, Ghent, Belgium
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
- Laboratoire Evolution et Diversité Biologique, UMR 5174 Centre National de la Recherche Scientifique–Université Paul Sabatier–Institut de Recherche pour le Développement, Toulouse, France
| | - Luc Lens
- Terrestrial Ecology Unit, Department of Biology, Ghent University, Ghent, Belgium
| | - Erik Matthysen
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Joël White
- Laboratoire Evolution et Diversité Biologique, UMR 5174 Centre National de la Recherche Scientifique–Université Paul Sabatier–Institut de Recherche pour le Développement, Toulouse, France
| |
Collapse
|
48
|
Guo Y, Wang N, Li G, Rosas G, Zang J, Ma Y, Liu J, Han W, Cao H. Direct and Indirect Effects of Penguin Feces on Microbiomes in Antarctic Ornithogenic Soils. Front Microbiol 2018; 9:552. [PMID: 29666609 PMCID: PMC5891643 DOI: 10.3389/fmicb.2018.00552] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/12/2018] [Indexed: 11/15/2022] Open
Abstract
Expansion of penguin activity in maritime Antarctica, under ice thaw, increases the chances of penguin feces affecting soil microbiomes. The detail of such effects begins to be revealed. By comparing soil geochemistry and microbiome composition inside (one site) and outside (three sites) of the rookery, we found significant effects of penguin feces on both. First, penguin feces change soil geochemistry, causing increased moisture content (MC) of ornithogenic soils and nutrients C, N, P, and Si in the rookery compared to non-rookery sites, but not pH. Second, penguin feces directly affect microbiome composition in the rookery, not those outside. Specifically, we found 4,364 operational taxonomical units (OTUs) in 404 genera in six main phyla: Proteobacteria, Actinobacteria, Gemmatimonadetes, Acidobacteria, Chloroflexi, and Bacteroidetes. Although the diversity is similar among the four sites, the composition is different. For example, penguin rookery has a lower abundance of Acidobacteria, Chloroflexi, and Nitrospirae but a higher abundance of Bacteroidetes, Firmicutes, and Thermomicrobia. Strikingly, the family Clostridiaceae of Firmicutes of penguin-feces origin is most abundant in the rookery than non-rookery sites with two most abundant genera, Tissierella and Proteiniclasticum. Redundancy analysis showed all measured geochemical factors are significant in structuring microbiomes, with MC showing the highest correlation. We further extracted 21 subnetworks of microbes which contain 4,318 of the 4,364 OTUs using network analysis and are closely correlated with all geochemical factors except pH. Our finding f penguin feces, directly and indirectly, affects soil microbiome suggests an important role of penguins in soil geochemistry and microbiome structure of maritime Antarctica.
Collapse
Affiliation(s)
- Yudong Guo
- Department of Bioengineering, College of Marine Sciences and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Nengfei Wang
- Key Lab of Marine Bioactive Substances, First Institute of Oceanography, State Oceanic Administration, Qingdao, China
| | - Gaoyang Li
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Gabriela Rosas
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| | - Jiaye Zang
- Key Lab of Marine Bioactive Substances, First Institute of Oceanography, State Oceanic Administration, Qingdao, China
| | - Yue Ma
- Department of Bioengineering, College of Marine Sciences and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Jie Liu
- Department of Bioengineering, College of Marine Sciences and Biological Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Wenbing Han
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, China
| | - Huansheng Cao
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
49
|
Kenzaka T, Kataoka K, Fujimitsu T, Tani K. [Intestinal Microbiota in Migrating Barn Swallows around Osaka]. YAKUGAKU ZASSHI 2018; 138:117-122. [PMID: 29311457 DOI: 10.1248/yakushi.17-00148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Migratory birds are considered as vectors of infectious diseases, owing to their potential for transmitting pathogens over large distances. The populations of barn swallow (Hirundo rustica) migrate from Southeast Asia to the Japanese mainland during spring and migrate back to Southeast Asia during autumn. This migratory population is estimated to comprise approximately hundreds to thousands of individuals per year. However, to date, not much is known about the gastrointestinal microbiota of the barn swallow. In this study, we characterized the fecal bacterial community in barn swallow. Using 16S rRNA gene metagenomic sequencing analysis, we examined the presence and composition of potentially pathogenic bacteria in the fecal samples, which were collected during spring season from Osaka. The number (±S.D.) of total bacteria was approximately 2.1(±3.4)×108 per gram of feces. In most samples, the bacterial community composition was dominated by families, such as Enterobacteriaceae, Pseudomonadaceae, Mycoplasmataceae, Enterococcaceae, Streptococcaceae, and Alcaligenaceae. However, no relationship was found between the bacterial community composition and geographical area in the fecal samples. Potentially pathogenic bacteria were detected at the rate of >0.1%, which included Pseudomonas spp., Escherichia/Shigella spp., Enterobacter spp., Yersinia spp., Mycoplasma spp., Enterococcus spp., Achromobacter spp., and Serratia spp. Our results suggested that barn swallow is instrumental in the transmission of these genera over large distances.
Collapse
Affiliation(s)
- Takehiko Kenzaka
- Environmental Science and Microbiology, Faculty of Pharmacy, Osaka Ohtani University
| | - Kenji Kataoka
- Environmental Science and Microbiology, Faculty of Pharmacy, Osaka Ohtani University
| | - Takashi Fujimitsu
- Environmental Science and Microbiology, Faculty of Pharmacy, Osaka Ohtani University
| | - Katsuji Tani
- Environmental Science and Microbiology, Faculty of Pharmacy, Osaka Ohtani University
| |
Collapse
|
50
|
Videvall E, Strandh M, Engelbrecht A, Cloete S, Cornwallis CK. Measuring the gut microbiome in birds: Comparison of faecal and cloacal sampling. Mol Ecol Resour 2017; 18:424-434. [PMID: 29205893 DOI: 10.1111/1755-0998.12744] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 12/22/2022]
Abstract
The gut microbiomes of birds and other animals are increasingly being studied in ecological and evolutionary contexts. Numerous studies on birds and reptiles have made inferences about gut microbiota using cloacal sampling; however, it is not known whether the bacterial community of the cloaca provides an accurate representation of the gut microbiome. We examined the accuracy with which cloacal swabs and faecal samples measure the microbiota in three different parts of the gastrointestinal tract (ileum, caecum, and colon) using a case study on juvenile ostriches, Struthio camelus, and high-throughput 16S rRNA sequencing. We found that faeces were significantly better than cloacal swabs in representing the bacterial community of the colon. Cloacal samples had a higher abundance of Gammaproteobacteria and fewer Clostridia relative to the gut and faecal samples. However, both faecal and cloacal samples were poor representatives of the microbial communities in the caecum and ileum. Furthermore, the accuracy of each sampling method in measuring the abundance of different bacterial taxa was highly variable: Bacteroidetes was the most highly correlated phylum between all three gut sections and both methods, whereas Actinobacteria, for example, was only strongly correlated between faecal and colon samples. Based on our results, we recommend sampling faeces, whenever possible, as this sample type provides the most accurate assessment of the colon microbiome. The fact that neither sampling technique accurately portrayed the bacterial community of the ileum nor the caecum illustrates the difficulty in noninvasively monitoring gut bacteria located further up in the gastrointestinal tract. These results have important implications for the interpretation of avian gut microbiome studies.
Collapse
Affiliation(s)
- Elin Videvall
- Department of Biology, Lund University, Lund, Sweden
| | - Maria Strandh
- Department of Biology, Lund University, Lund, Sweden
| | - Anel Engelbrecht
- Directorate Animal Sciences, Western Cape Department of Agriculture, Elsenburg, South Africa
| | - Schalk Cloete
- Directorate Animal Sciences, Western Cape Department of Agriculture, Elsenburg, South Africa.,Department of Animal Sciences, Stellenbosch University, Matieland, South Africa
| | | |
Collapse
|