1
|
Vandeputte W, Coussens G, Aesaert S, Haeghebaert J, Impens L, Karimi M, Debernardi JM, Pauwels L. Use of GRF-GIF chimeras and a ternary vector system to improve maize (Zea mays L.) transformation frequency. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2116-2132. [PMID: 38923048 DOI: 10.1111/tpj.16880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Maize (Zea mays L.) is an important crop that has been widely studied for its agronomic and industrial applications and is one of the main classical model organisms for genetic research. Agrobacterium-mediated transformation of immature maize embryos is a commonly used method to introduce transgenes, but a low transformation frequency remains a bottleneck for many gene-editing applications. Previous approaches to enhance transformation included the improvement of tissue culture media and the use of morphogenic regulators such as BABY BOOM and WUSCHEL2. Here, we show that the frequency can be increased using a pVS1-VIR2 virulence helper plasmid to improve T-DNA delivery, and/or expressing a fusion protein between a GROWTH-REGULATING FACTOR (GRF) and GRF-INTERACTING FACTOR (GIF) protein to improve regeneration. Using hygromycin as a selection agent to avoid escapes, the transformation frequency in the maize inbred line B104 significantly improved from 2.3 to 8.1% when using the pVS1-VIR2 helper vector with no effect on event quality regarding T-DNA copy number. Combined with a novel fusion protein between ZmGRF1 and ZmGIF1, transformation frequencies further improved another 3.5- to 6.5-fold with no obvious impact on plant growth, while simultaneously allowing efficient CRISPR-/Cas9-mediated gene editing. Our results demonstrate how a GRF-GIF chimera in conjunction with a ternary vector system has the potential to further improve the efficiency of gene-editing applications and molecular biology studies in maize.
Collapse
Affiliation(s)
- Wout Vandeputte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Griet Coussens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Stijn Aesaert
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Jari Haeghebaert
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Lennert Impens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Mansour Karimi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Juan M Debernardi
- Plant Transformation Facility, University of California, Davis, Davis, California, USA
| | - Laurens Pauwels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| |
Collapse
|
2
|
Luo B, Ma P, Zhang C, Zhang X, Li J, Ma J, Han Z, Zhang S, Yu T, Zhang G, Zhang H, Zhang H, Li B, Guo J, Ge P, Lan Y, Liu D, Wu L, Gao D, Gao S, Su S, Gao S. Mining for QTL controlling maize low-phosphorus response genes combined with deep resequencing of RIL parental genomes and in silico GWAS analysis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:190. [PMID: 39043952 DOI: 10.1007/s00122-024-04696-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
KEY MESSAGE Extensive and comprehensive phenotypic data from a maize RIL population under both low- and normal-Pi treatments were used to conduct QTL mapping. Additionally, we integrated parental resequencing data from the RIL population, GWAS results, and transcriptome data to identify candidate genes associated with low-Pi stress in maize. Phosphorus (Pi) is one of the essential nutrients that greatly affect the maize yield. However, the genes underlying the QTL controlling maize low-Pi response remain largely unknown. In this study, a total of 38 traits at both seedling and maturity stages were evaluated under low- and normal-Pi conditions using a RIL population constructed from X178 (tolerant) and 9782 (sensitive), and most traits varied significantly between low- and normal-Pi treatments. Twenty-nine QTLs specific to low-Pi conditions were identified after excluding those with common intervals under both low- and normal-Pi conditions. Furthermore, 45 additional QTLs were identified based on the index value ((Trait_under_LowPi-Trait_under_NormalPi)/Trait_under_NormalPi) of each trait. These 74 QTLs collectively were classified as Pi-dependent QTLs. Additionally, 39 Pi-dependent QTLs were clustered in nine HotspotQTLs. The Pi-dependent QTL interval contained 19,613 unique genes, 6,999 of which exhibited sequence differences with non-synonymous mutation sites between X178 and 9782. Combined with in silico GWAS results, 277 consistent candidate genes were identified, with 124 genes located within the HotspotQTL intervals. The transcriptome analysis revealed that 21 genes, including the Pi transporter ZmPT7 and the strigolactones pathway-related gene ZmPDR1, exhibited consistent low-Pi stress response patterns across various maize inbred lines or tissues. It is noteworthy that ZmPDR1 in maize roots can be sharply up-regulated by low-Pi stress, suggesting its potential importance as a candidate gene for responding to low-Pi stress through the strigolactones pathway.
Collapse
Affiliation(s)
- Bowen Luo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Peng Ma
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
- Mianyang Academy of Agricultural Sciences, Mianyang, 621023, Sichuan, China
- Crop Characteristic Resources Creation and Utilization Key Laboratory of Sichuan Province, Chengdu, China
| | - Chong Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Xiao Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Jing Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Junchi Ma
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Zheng Han
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Shuhao Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Ting Yu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Guidi Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Hongkai Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Haiying Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Binyang Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Jia Guo
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ping Ge
- SaileGene Inc, Beijing, 100020, China
| | - Yuzhou Lan
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, P.O. Box 190, 23422, Lomma, Sweden
| | - Dan Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Ling Wu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Duojiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Shiqiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China
| | - Shunzong Su
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shibin Gao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, Sichuan, China.
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Ministry of Agriculture, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
3
|
Li P, Ren M, Chen J, Yue J, Liu S, Zhu Q, Wang Z. Transcriptomic Analysis of Green Leaf Plants and White-Green Leaf Mutants in Haworthia cooperi var. pilifera. Genes (Basel) 2024; 15:608. [PMID: 38790237 PMCID: PMC11121492 DOI: 10.3390/genes15050608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Haworthia cooperi var. pilifera is a succulent plant with ornamental value. The white-green leaf mutant (wl) showed a significant difference in leaf color from the wild-type plant (WT). In this study, we integrated the transcriptomes of wl and WT plants to screen differentially expressed genes related to leaf color variation. The results of transcriptome analysis showed that 84,163 unigenes were obtained after de novo assembly and the NR database annotated the largest number of unigenes, which accounted for 57.13%, followed by NT (43.02%), GO (39.84%), Swiss-Prot (39.25%), KEGG (36.06%), and COG (24.88%). Our finding showed that 2586 genes were differentially expressed in the two samples, including 1996 down-regulated genes and 590 up-regulated genes. GO analysis predicted that these differentially expressed genes (DEGs) participate in 12 cellular components, 20 biological processes, and 13 molecular function terms and KEGG analysis showed that metabolic pathways, plant-pathogen interaction, glycerophospholipid metabolism, endocytosis, plant hormone signal transduction, and ether lipid metabolism were enriched among all identified pathways. Through functional enrichment analysis of DEGs, we found that they were involved in chloroplast division and the biosynthesis of plant pigments, including chlorophyll, carotenoids, anthocyanin, and transcription factor families, which might be related to the formation mechanism of leaf color. Taken together, these results present insights into the difference in gene expression characteristics in leaves between WT and wl mutants and provide a new insight for breeding colorful leaf phenotypes in succulent plants.
Collapse
|
4
|
Li B, Zhang J, Tian P, Gao X, Song X, Pan X, Wu Y. Cytological, Physiological, and Transcriptomic Analyses of the Leaf Color Mutant Yellow Leaf 20 ( yl20) in Eggplant ( Solanum melongena L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:855. [PMID: 38592960 PMCID: PMC10974653 DOI: 10.3390/plants13060855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 04/11/2024]
Abstract
Leaf color mutants are ideal materials for studying chlorophyll metabolism, chloroplast development, and photosynthesis in plants. We discovered a novel eggplant (Solanum melongena L.) mutant yl20 (yellow leaf 20) that exhibits yellow leaves. In this study, we compared the leaves of the mutant yl20 and wild type (WT) plants for cytological, physiological, and transcriptomic analyses. The results showed that the mutant yl20 exhibits abnormal chloroplast ultrastructure, reduced chlorophyll and carotenoid contents, and lower photosynthetic efficiency compared to the WT. Transcriptome data indicated 3267 and 478 differentially expressed genes (DEGs) between WT and yl20 lines in the cotyledon and euphylla stages, respectively, where most DEGs were downregulated in the yl20. Gene Ontology (GO) analysis revealed the "plastid-encoded plastid RNA polymerase complex" and the "chloroplast-related" terms were significantly enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that the significantly enriched DEGs were involved in flavone and flavonol biosynthesis, porphyrin and chlorophyll metabolism, etc. We speculated that these DEGs involved in significant terms were closely related to the leaf color development of the mutant yl20. Our results provide a possible explanation for the altered phenotype of leaf color mutants in eggplant and lay a theoretical foundation for plant breeding.
Collapse
Affiliation(s)
- Bing Li
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (B.L.); (P.T.); (X.S.); (X.P.)
- Hebei Vegetable Technology Innovation Center, Shijiazhuang 050051, China
| | - Jingjing Zhang
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (B.L.); (P.T.); (X.S.); (X.P.)
| | - Peng Tian
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (B.L.); (P.T.); (X.S.); (X.P.)
| | - Xiurui Gao
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (B.L.); (P.T.); (X.S.); (X.P.)
| | - Xue Song
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (B.L.); (P.T.); (X.S.); (X.P.)
| | - Xiuqing Pan
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (B.L.); (P.T.); (X.S.); (X.P.)
- Hebei Vegetable Technology Innovation Center, Shijiazhuang 050051, China
| | - Yanrong Wu
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (B.L.); (P.T.); (X.S.); (X.P.)
- Hebei Vegetable Technology Innovation Center, Shijiazhuang 050051, China
| |
Collapse
|
5
|
Li Q, Du J, Qiao Z, Pan C, He W, Zhang L, Li X, Nie Y, Li X, Pan G, Zhang Z, Li G, Ding H. White and green striate leaves 1, predicted to encode a 16S rRNA processing protein, plays a critical role in the processing of chloroplast ribosomes in maize ( Zea mays L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:65. [PMID: 37538809 PMCID: PMC10393919 DOI: 10.1007/s11032-023-01407-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/11/2023] [Indexed: 08/05/2023]
Abstract
Ribosomes play a crucial role in protein biosynthesis and are linked to plant growth and development. The RimM protein has been shown to be involved in the maturation of 30S ribosomal subunits, but its exact function in plants is still unknown. In this study, we discovered a maize mutant with white and green striate leaves (wgsl1) and reduced chlorophyll content. Genetic analysis showed that the wgsl1 mutation was recessive and controlled by a single nuclear gene. Map-based cloning of ZmWGSL1 identified a base substitution (G to A) that generated a missense mutation within the Zm00001d039036 gene in the wgsl1 mutant. Zm00001d039036 encodes a 16S rRNA processing protein containing the RimM motif. Further analysis of transcriptomic data showed that the transcript levels of many ribosomal proteins involved in the small and big ribosomal subunits were dramatically up-regulated in the wgsl1 mutant. Moreover, the level of ribosomal multimers was decreased. This suggests that ZmWGSL1 plays a crucial role in the maturation of the ribosome, leading to abnormal plant growth and development. In addition, subcellular localization results indicate that WGSL1 is localized in chloroplasts. Therefore, we suggest that WGSL1 is a nuclear-encoded protein, is transported to the chloroplast to drive functions, and affects the processing of ribosomes in the chloroplast. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01407-y.
Collapse
Affiliation(s)
- Qigui Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018 Shangdong Province China
| | - Jiyuan Du
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018 Shangdong Province China
| | - Zhenghao Qiao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018 Shangdong Province China
| | - Chao Pan
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Weiqiang He
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Li Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Xiaohu Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yongxin Nie
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018 Shangdong Province China
| | - Xinzheng Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018 Shangdong Province China
| | - Guangtang Pan
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130 China
| | - Zhiming Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018 Shangdong Province China
| | - Gaoke Li
- Crops Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Guangzhou, 510640 Guangdong Province China
| | - Haiping Ding
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018 Shangdong Province China
| |
Collapse
|
6
|
Yao G, Zhang H, Leng B, Cao B, Shan J, Yan Z, Guan H, Cheng W, Liu X, Mu C. A large deletion conferring pale green leaves of maize. BMC PLANT BIOLOGY 2023; 23:360. [PMID: 37452313 PMCID: PMC10347855 DOI: 10.1186/s12870-023-04360-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND The structural basis of chloroplast and the regulation of chloroplast biogenesis remain largely unknown in maize. Gene mutations in these pathways have been linked to the abnormal leaf color phenotype observed in some mutants. Large scale structure variants (SVs) are crucial for genome evolution, but few validated SVs have been reported in maize and little is known about their functions though they are abundant in maize genomes. RESULTS In this research, a spontaneous maize mutant, pale green leaf-shandong (pgl-sd), was studied. Genetic analysis showed that the phenotype of pale green leaf was controlled by a recessive Mendel factor mapped to a 156.8-kb interval on the chromosome 1 delineated by molecular markers gy546 and gy548. There were 7 annotated genes in this interval. Reverse transcription quantitative PCR analysis, SV prediction, and de novo assembly of pgl-sd genome revealed that a 137.8-kb deletion, which was verified by Sanger sequencing, might cause the pgl-sd phenotype. This deletion contained 5 annotated genes, three of which, including Zm00001eb031870, Zm00001eb031890 and Zm00001eb031900, were possibly related to the chloroplast development. Zm00001eb031870, encoding a Degradation of Periplasmic Proteins (Deg) homolog, and Zm00001eb031900, putatively encoding a plastid pyruvate dehydrogenase complex E1 component subunit beta (ptPDC-E1-β), might be the major causative genes for the pgl-sd mutant phenotype. Plastid Degs play roles in protecting the vital photosynthetic machinery and ptPDCs provide acetyl-CoA and NADH for fatty acid biosynthesis in plastids, which were different from functions of other isolated maize leaf color associated genes. The other two genes in the deletion were possibly associated with DNA repair and disease resistance, respectively. The pgl-sd mutation decreased contents of chlorophyll a, chlorophyll b, carotenoids by 37.2%, 22.1%, and 59.8%, respectively, and led to abnormal chloroplast. RNA-seq revealed that the transcription of several other genes involved in the structure and function of chloroplast was affected in the mutant. CONCLUSIONS It was identified that a 137.8-kb deletion causes the pgl-sd phenotype. Three genes in this deletion were possibly related to the chloroplast development, which may play roles different from that of other isolated maize leaf color associated genes.
Collapse
Affiliation(s)
- Guoqi Yao
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai River Plain, Ministry of Agriculture, Jinan, 250100, China
- National Engineering Laboratory of Wheat and Maize, Jinan, 250100, China
- National Maize Improvement Sub-Center, Jinan, 250100, China
| | - Hua Zhang
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai River Plain, Ministry of Agriculture, Jinan, 250100, China
- National Engineering Laboratory of Wheat and Maize, Jinan, 250100, China
- National Maize Improvement Sub-Center, Jinan, 250100, China
| | - Bingying Leng
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai River Plain, Ministry of Agriculture, Jinan, 250100, China
- National Engineering Laboratory of Wheat and Maize, Jinan, 250100, China
- National Maize Improvement Sub-Center, Jinan, 250100, China
| | - Bing Cao
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai River Plain, Ministry of Agriculture, Jinan, 250100, China
- National Engineering Laboratory of Wheat and Maize, Jinan, 250100, China
- National Maize Improvement Sub-Center, Jinan, 250100, China
| | - Juan Shan
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai River Plain, Ministry of Agriculture, Jinan, 250100, China
- National Engineering Laboratory of Wheat and Maize, Jinan, 250100, China
- National Maize Improvement Sub-Center, Jinan, 250100, China
| | - Zhenwei Yan
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai River Plain, Ministry of Agriculture, Jinan, 250100, China
- National Engineering Laboratory of Wheat and Maize, Jinan, 250100, China
- National Maize Improvement Sub-Center, Jinan, 250100, China
| | - Haiying Guan
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai River Plain, Ministry of Agriculture, Jinan, 250100, China
- National Engineering Laboratory of Wheat and Maize, Jinan, 250100, China
- National Maize Improvement Sub-Center, Jinan, 250100, China
| | - Wen Cheng
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai River Plain, Ministry of Agriculture, Jinan, 250100, China
- National Engineering Laboratory of Wheat and Maize, Jinan, 250100, China
- National Maize Improvement Sub-Center, Jinan, 250100, China
| | - Xia Liu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
- Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai River Plain, Ministry of Agriculture, Jinan, 250100, China.
- National Engineering Laboratory of Wheat and Maize, Jinan, 250100, China.
- National Maize Improvement Sub-Center, Jinan, 250100, China.
- College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
| | - Chunhua Mu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
- Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai River Plain, Ministry of Agriculture, Jinan, 250100, China.
- National Engineering Laboratory of Wheat and Maize, Jinan, 250100, China.
- National Maize Improvement Sub-Center, Jinan, 250100, China.
| |
Collapse
|
7
|
Zhang P, Ni Y, Jiao Z, Li J, Wang T, Yao Z, Jiang Y, Yang X, Sun Y, Li H, He D, Niu J. The wheat leaf delayed virescence of mutant dv4 is associated with the abnormal photosynthetic and antioxidant systems. Gene X 2023; 856:147134. [PMID: 36586497 DOI: 10.1016/j.gene.2022.147134] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
Chlorophyll (Chl) is a key pigment for wheat (Triticum aestivum L.) photosynthesis, consequently impacts grain yield. A wheat mutant named as delayed virescence 4 (dv4) was obtained from cultivar Guomai 301 (wild type, WT) treated with ethyl methane sulfonate (EMS). The seedling leaves of dv4 were shallow yellow, apparently were chlorophyll deficient. They started to turn green at the jointing stage and returned to almost ordinary green at the heading stage. Leaf transcriptome comparison of Guomai 301 and dv4 at the jointing stage showed that most differentially expressed genes (DEGs) of transcription and translation were highly expressed in dv4, one key gene nicotianamine aminotransferase A (NAAT-A) involved in the synthesis and metabolism pathways of tyrosine, methionine and phenylalanine was significantly lowly expressed. The expression levels of the most photosynthesis related genes, such as photosystem I (PS I), ATPase and light-harvesting chlorophyll protein complex-related homeotypic genes, and protochlorophyllide reductase A (PORA) were lower; but macromolecule degradation and hypersensitivity response (HR) related gene heat shock protein 82 (HSP82) was highly expressed. Compared to WT, the contents of macromolecules such as proteins and sugars were reduced; the contents of Chl a, Chl b, total Chl, and carotenoids in leaves of dv4 were significantly less at the jointing stage, while the ratio of Chl a / Chl b was the same as that of WT. The net photosynthetic rate, stomatal conductance and transpiration rate of dv4 were significantly lower. The H2O2 content were higher, while the contents of total phenol and malondialdehyde (MDA), antioxidant enzyme activities were lower in leaves of dv4. In conclusion, the reduced contents of macromolecules and photosynthetic pigments, the abnormal photosynthetic and antioxidant systems were closely related to the phenotype of dv4.
Collapse
Affiliation(s)
- Peipei Zhang
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Yongjing Ni
- Shangqiu Academy of Agricultural and Forestry Sciences, Shangqiu 476000, Henan, China
| | - Zhixin Jiao
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Junchang Li
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Ting Wang
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Ziping Yao
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Yumei Jiang
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Xiwen Yang
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Yulong Sun
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Huijuan Li
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Dexian He
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Jishan Niu
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| |
Collapse
|
8
|
Xue Y, Dong H, Huang H, Li S, Shan X, Li H, Liu H, Xia D, Su S, Yuan Y. Mutation in Mg-Protoporphyrin IX Monomethyl Ester (Oxidative) Cyclase Gene ZmCRD1 Causes Chlorophyll-Deficiency in Maize. FRONTIERS IN PLANT SCIENCE 2022; 13:912215. [PMID: 35873969 PMCID: PMC9301084 DOI: 10.3389/fpls.2022.912215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/23/2022] [Indexed: 06/01/2023]
Abstract
Chlorophyll molecules are non-covalently associated with chlorophyll-binding proteins to harvest light and perform charge separation vital for energy conservation during photosynthetic electron transfer in photosynthesis for photosynthetic organisms. The present study characterized a pale-green leaf (pgl) maize mutant controlled by a single recessive gene causing chlorophyll reduction throughout the whole life cycle. Through positional mapping and complementation allelic test, Zm00001d008230 (ZmCRD1) with two missense mutations (p.A44T and p.T326M) was identified as the causal gene encoding magnesium-protoporphyrin IX monomethyl ester cyclase (MgPEC). Phylogenetic analysis of ZmCRD1 within and among species revealed that the p.T326M mutation was more likely to be causal. Subcellular localization showed that ZmCRD1 was targeted to chloroplasts. The pgl mutant showed a malformed chloroplast morphology and reduced number of starch grains in bundle sheath cells. The ZmCRD1 gene was mainly expressed in WT and mutant leaves, but the expression was reduced in the mutant. Most of the genes involved in chlorophyll biosynthesis, chlorophyll degradation, chloroplast development and photosynthesis were down-regulated in pgl. The photosynthetic capacity was limited along with developmental retardation and production reduction in pgl. These results confirmed the crucial role of ZmCRD1 in chlorophyll biosynthesis, chloroplast development and photosynthesis in maize.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shengzhong Su
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
| | - Yaping Yuan
- Jilin Engineering Research Center for Crop Biotechnology Breeding, College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
9
|
Lu J, Sun L, Jin X, Islam MA, Guo F, Tang X, Zhao K, Hao H, Li N, Zhang W, Shi Y, Wang S, Sun D. Analysis of Physiological and Transcriptomic Differences between a Premature Senescence Mutant (GSm) and Its Wild-Type in Common Wheat (Triticum aestivum L.). BIOLOGY 2022; 11:biology11060904. [PMID: 35741425 PMCID: PMC9219967 DOI: 10.3390/biology11060904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Early leaf senescence is an important agronomic trait that affects crop yield and quality. To understand the molecular mechanism of early leaf senescence, a wheat (Triticum aestivum L.) premature leaf senescence mutant (GSm) and its wild type were employed in this study. We compared the physiological characteristics and transcriptome of wheat leaves between the wild type (WT) and the mutant at two-time points. Physiological characteristics and differentially expressed gene (DEG) analysis revealed many genes and metabolic pathways that were closely related to senescence. These results will not only support further gene cloning and functional analysis of GSm, but also facilitate the study of leaf senescence in wheat. Abstract Premature leaf senescence has a profound influence on crop yield and quality. Here, a stable premature senescence mutant (GSm) was obtained from the common wheat (Triticum aestivum L.) cultivar Chang 6878 by mutagenesis with ethyl methanesulfonate. The differences between the GSm mutant and its wild-type (WT) were analyzed in terms of yield characteristics, photosynthetic fluorescence indices, and senescence-related physiological parameters. RNA sequencing was used to reveal gene expression differences between GSm and WT. The results showed that the yield of GSm was considerably lower than that of WT. The net photosynthetic rate, transpiration rate, maximum quantum yield, non-photochemical quenching coefficient, photosynthetic electron transport rate, soluble protein, peroxidase activity, and catalase activity all remarkably decreased in flag leaves of GSm, whereas malondialdehyde content distinctively increased compared with those of WT. The analysis of differentially expressed genes indicated blockade of chlorophyll and carotenoid biosynthesis, accelerated degradation of chlorophyll, and diminished photosynthetic capacity in mutant leaves; brassinolide might facilitate chlorophyll breakdown and consequently accelerate leaf senescence. NAC genes positively regulated the senescence process. Compared with NAC genes, expression of WRKY and MYB genes was induced earlier in the mutant possibly due to increased levels of reactive oxygen species and plant hormones (e.g., brassinolide, salicylic acid, and jasmonic acid), thereby accelerating leaf senescence. Furthermore, the antioxidant system played a role in minimizing oxidative damage in the mutant. These results provides novel insight into the molecular mechanisms of premature leaf senescence in crops.
Collapse
|
10
|
Lin N, Gao Y, Zhou Q, Ping X, Li J, Liu L, Yin J. Genetic mapping and physiological analysis of chlorophyll-deficient mutant in Brassica napus L. BMC PLANT BIOLOGY 2022; 22:244. [PMID: 35585493 PMCID: PMC9115954 DOI: 10.1186/s12870-022-03630-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Leaf color mutants have reduced photosynthetic efficiency, which has severely negative impacts on crop growth and economic product yield. There are different chlorophyll mutants in Arabidopsis and crops that can be used for genetic control and molecular mechanism studies of chlorophyll biosynthesis, chloroplast development and photoefficiency. Chlorophyll mutants in Brassica napus are mostly used for mapping and location research but are rarely used for physiological research. The chlorophyll-deficient mutant in this experiment were both genetically mapped and physiologically analyzed. RESULTS In this study, yellow leaf mutant of Brassica napus L. mutated by ethyl methyl sulfone (EMS) had significantly lower chlorophyll a, b and carotenoid contents than the wild type, and the net photosynthetic efficiency, stomatal conductance and transpiration rate were all significantly reduced. The mutant had sparse chloroplast distribution and weak autofluorescence. The granule stacks were reduced, and the shape was extremely irregular, with more broken stromal lamella. Transcriptome data analysis enriched the differentially expressed genes mainly in phenylpropane and sugar metabolism. The mutant was mapped to a 2.72 Mb region on A01 by using BSA-Seq, and the region was validated by SSR markers. CONCLUSIONS The mutant chlorophyll content and photosynthetic efficiency were significantly reduced compared with those of the wild type. Abnormal chloroplasts and thylakoids less connected to the stroma lamella appeared in the mutant. This work on the mutant will facilitate the process of cloning the BnaA01.cd gene and provide more genetic and physiological information concerning chloroplast development in Brassica napus.
Collapse
Affiliation(s)
- Na Lin
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, PR China
| | - Yumin Gao
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, PR China
| | - Qingyuan Zhou
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, PR China
| | - Xiaoke Ping
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, PR China
- Academy of Agricultural Sciences, Southwest University, Tiansheng Rd2#, Beibei, Chongqing, 400715, PR China
| | - Jiana Li
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, PR China
- Academy of Agricultural Sciences, Southwest University, Tiansheng Rd2#, Beibei, Chongqing, 400715, PR China
| | - Liezhao Liu
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, PR China
- Academy of Agricultural Sciences, Southwest University, Tiansheng Rd2#, Beibei, Chongqing, 400715, PR China
| | - Jiaming Yin
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, PR China.
| |
Collapse
|
11
|
Gao Y, Du L, Ma Q, Yuan Y, Liu J, Song H, Feng B. Conjunctive Analyses of Bulk Segregant Analysis Sequencing and Bulk Segregant RNA Sequencing to Identify Candidate Genes Controlling Spikelet Sterility of Foxtail Millet. FRONTIERS IN PLANT SCIENCE 2022; 13:842336. [PMID: 35498640 PMCID: PMC9047506 DOI: 10.3389/fpls.2022.842336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/28/2022] [Indexed: 05/11/2023]
Abstract
Foxtail millet has gradually become a model gramineous C4 crop owing to its short growth period and small genome. Research on the development of its spikelets is not only directly related to the yield and economic value of foxtail millet but also can provide a reference for studying the fertility of other C4 crops. In this study, a hybrid population containing 200 offspring was constructed from the Xinong8852 and An15 parental lines, and two extreme trait populations were constructed from the F2 generation for analysis of the spikelet sterility. The F2 population conformed to a 3:1 Mendelian segregation ratio, and it was thus concluded that this trait is likely controlled by a single recessive gene. Bulk segregant analysis sequencing (BSA-Seq) was used to determine the candidate regions and candidate genes related to the development of foxtail millet spikelets. Additionally, the functional analysis of differentially expressed genes in populations with different traits was conducted by bulk segregant RNA sequencing (BSR-Seq). Finally, conjunctive analysis of BSA-Seq and BSR-Seq results, combined with biological information analysis, revealed six genes on chromosome VII that were ultimately identified as candidate genes controlling foxtail millet spikelet development. This study provides a new reference for research on foxtail millet sterility and lays a solid foundation for the examination of fertility in other gramineous crops.
Collapse
Affiliation(s)
- Yongbin Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang, China
- Dexing Township Agro-Pastoral Comprehensive Service Center, Nyingchi, China
| | - Lihong Du
- Anyang Academy of Agricultural Sciences, Anyang, China
| | - Qian Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang, China
| | - Yuhao Yuan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang, China
| | - Jinrong Liu
- Anyang Academy of Agricultural Sciences, Anyang, China
| | - Hui Song
- Anyang Academy of Agricultural Sciences, Anyang, China
| | - Baili Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang, China
| |
Collapse
|
12
|
Cao W, Zhang H, Zhou Y, Zhao J, Lu S, Wang X, Chen X, Yuan L, Guan H, Wang G, Shen W, De Vleesschauwer D, Li Z, Shi X, Gu J, Guo M, Feng Z, Chen Z, Zhang Y, Pan X, Liu W, Liang G, Yan C, Hu K, Liu Q, Zuo S. Suppressing chlorophyll degradation by silencing OsNYC3 improves rice resistance to Rhizoctonia solani, the causal agent of sheath blight. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:335-349. [PMID: 34582620 PMCID: PMC8753359 DOI: 10.1111/pbi.13715] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 08/21/2021] [Accepted: 09/10/2021] [Indexed: 05/20/2023]
Abstract
Necrotrophic fungus Rhizoctonia solani Kühn (R. solani) causes serious diseases in many crops worldwide, including rice and maize sheath blight (ShB). Crop resistance to the fungus is a quantitative trait and resistance mechanism remains largely unknown, severely hindering the progress on developing resistant varieties. In this study, we found that resistant variety YSBR1 has apparently stronger ability to suppress the expansion of R. solani than susceptible Lemont in both field and growth chamber conditions. Comparison of transcriptomic profiles shows that the photosynthetic system including chlorophyll biosynthesis is highly suppressed by R. solani in Lemont but weakly in YSBR1. YSBR1 shows higher chlorophyll content than that of Lemont, and inducing chlorophyll degradation by dark treatment significantly reduces its resistance. Furthermore, three rice mutants and one maize mutant that carry impaired chlorophyll biosynthesis all display enhanced susceptibility to R. solani. Overexpression of OsNYC3, a chlorophyll degradation gene apparently induced expression by R. solani infection, significantly enhanced ShB susceptibility in a high-yield ShB-susceptible variety '9522'. However, silencing its transcription apparently improves ShB resistance without compromising agronomic traits or yield in field tests. Interestingly, altering chlorophyll content does not affect rice resistance to blight and blast diseases, caused by biotrophic and hemi-biotrophic pathogens, respectively. Our study reveals that chlorophyll plays an important role in ShB resistance and suppressing chlorophyll degradation induced by R. solani infection apparently improves rice ShB resistance. This discovery provides a novel target for developing resistant crop to necrotrophic fungus R. solani.
Collapse
|
13
|
Zou K, Li Y, Zhang W, Jia Y, Wang Y, Ma Y, Lv X, Xuan Y, Du W. Early infection response of fungal biotroph Ustilago maydis in maize. FRONTIERS IN PLANT SCIENCE 2022; 13:970897. [PMID: 36161006 PMCID: PMC9504671 DOI: 10.3389/fpls.2022.970897] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/15/2022] [Indexed: 05/03/2023]
Abstract
Common smut, caused by Ustilago maydis (DC.) Corda, is a destructive fungal disease of maize worldwide; it forms large tumors, reducing corn yield and quality. However, the molecular defense mechanism to common smut in maize remains unclear. The present study aimed to use a leading maize inbred line Ye478 to analyze the response to U. maydis inoculation. The histological and cytological analyses demonstrated that U. maydis grew gradually to the host cells 6 h post-inoculation (hpi). The samples collected at 0, 3, 6, and 12 hpi were analyzed to assess the maize transcriptomic changes in response to U. maydis. The results revealed differences in hormone signaling, glycometabolism, and photosynthesis after U. maydis infection; specific changes were detected in jasmonic acid (JA), salicylic acid (SA), ethylene (ET), and abscisic acid (ABA) signaling pathways, glycolysis/gluconeogenesis, and photosystems I and II, probably related to defense response. MapMan analysis demonstrated that the differentially expressed genes between the treatment and control groups were clustered into light reaction and photorespiration pathways. In addition, U. maydis inoculation induced chloroplast swelling and damage, suggesting a significant effect on the chloroplast activity and subsequent metabolic process, especially hexose metabolism. A further genetic study using wild-type and galactinol-sucrose galactosyltransferase (gsg) and yellow-green leaf-1 (ygl-1) mutants identified that these two U. maydis-induced genes negatively regulated defense against common smut in maize. Our measurements showed the pathogen early-invasion process, and the key pathways of both chlorophyll biosynthesis and sugar transportation were critical modified in the infected maize line, thereby throwing a light on the molecular mechanisms in the maize-U. maydis interaction.
Collapse
Affiliation(s)
- Kunkun Zou
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Yang Li
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Wenjie Zhang
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yunfeng Jia
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Yang Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Yuting Ma
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Xiangling Lv
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Yuanhu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Wanli Du
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Wanli Du
| |
Collapse
|
14
|
Li T, Yang H, Lu Y, Dong Q, Liu G, Chen F, Zhou Y. Comparative transcriptome analysis of differentially expressed genes related to the physiological changes of yellow-green leaf mutant of maize. PeerJ 2021; 9:e10567. [PMID: 33628629 PMCID: PMC7894110 DOI: 10.7717/peerj.10567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/23/2020] [Indexed: 11/20/2022] Open
Abstract
Chlorophylls, green pigments in chloroplasts, are essential for photosynthesis. Reduction in chlorophyll content may result in retarded growth, dwarfism, and sterility. In this study, a yellow-green leaf mutant of maize, indicative of abnormity in chlorophyll content, was identified. The physiological parameters of this mutant were measured. Next, global gene expression of this mutant was determined using transcriptome analysis and compared to that of wild-type maize plants. The yellow-green leaf mutant of maize was found to contain lower contents of chlorophyll a, chlorophyll b and carotenoid compounds. It contained fewer active PSII centers and displayed lower values of original chlorophyll fluorescence parameters than the wild-type plants. The real-time fluorescence yield, the electron transport rate, and the net photosynthetic rate of the mutant plants showed reduction as well. In contrast, the maximum photochemical quantum yield of PSII of the mutant plants was similar to that of the wild-type plants. Comparative transcriptome analysis of the mutant plants and wild-type plants led to the identification of differentially expressed 1,122 genes, of which 536 genes were up-regulated and 586 genes down-regulated in the mutant. Five genes in the chlorophyll metabolism pathway, nine genes in the tricarboxylic acid cycle and seven genes related to the conversion of sucrose to starch displayed down-regulated expression. In contrast, genes encoding a photosystem II reaction center PsbP family protein and the PGR5-like protein 1A (PGRL1A) exhibited increased transcript abundance.
Collapse
Affiliation(s)
- Tingchun Li
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China.,Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Huaying Yang
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yan Lu
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - Qing Dong
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Guihu Liu
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Yingbing Zhou
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
15
|
A Mutation in CsYL2.1 Encoding a Plastid Isoform of Triose Phosphate Isomerase Leads to Yellow Leaf 2.1 ( yl2.1) in Cucumber ( Cucumis Sativus L.). Int J Mol Sci 2020; 22:ijms22010322. [PMID: 33396869 PMCID: PMC7795558 DOI: 10.3390/ijms22010322] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 11/17/2022] Open
Abstract
The leaf is an important photosynthetic organ and plays an essential role in the growth and development of plants. Leaf color mutants are ideal materials for studying chlorophyll metabolism, chloroplast development, and photosynthesis. In this study, we identified an EMS-induced mutant, yl2.1, which exhibited yellow cotyledons and true leaves that did not turn green with leaf growth. The yl2.1 locus was controlled by a recessive nuclear gene. The CsYL2.1 was mapped to a 166.7-kb genomic region on chromosome 2, which contains 24 predicted genes. Only one non-synonymous single nucleotide polymorphism (SNP) was found between yl2.1 and wt-WD1 that was located in Exon 7 of Csa2G263900, resulting in an amino acid substitution. CsYL2.1 encodes a plastid isoform of triose phosphate isomerase (pdTPI), which catalyzes the reversible conversion of dihydroxyacetone phosphate (DHAP) to glyceraldehyde-3-phosphate (GAP) in chloroplasts. CsYL2.1 was highly expressed in the cotyledons and leaves. The mesophyll cells of the yl2.1 leaves contained reduced chlorophyll and abnormal chloroplasts. Correspondingly, the photosynthetic efficiency of the yl2.1 leaves was impaired. Identification of CsYL2.1 is helpful in elucidating the function of ptTPI in the chlorophyll metabolism and chloroplast development and understanding the molecular mechanism of this leaf color variant in cucumber.
Collapse
|
16
|
Yu X, Wang L, Xu K, Kong F, Wang D, Tang X, Sun B, Mao Y. Fine Mapping to Identify the Functional Genetic Locus for Red Coloration in Pyropia yezoensis Thallus. FRONTIERS IN PLANT SCIENCE 2020; 11:867. [PMID: 32655600 PMCID: PMC7324768 DOI: 10.3389/fpls.2020.00867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/27/2020] [Indexed: 05/26/2023]
Abstract
Pyropia yezoensis, commonly known as "Nori" or "Laver" is an economically important marine crop. In natural or selected populations of P. yezoensis, coloration mutants are frequently observed. Various coloration mutants are excellent materials for genetic research and study photosynthesis. However, the candidate gene controlling the Pyropia coloration phenotype remains unclear to date. QTL-seq, in combination with kompetitive allele-specific PCR (KASP) and RNA-seq, can be generally applied to population genomics studies to rapidly identify genes that are responsible for phenotypes showing extremely opposite traits. Through cross experiments between the wild line RZ and red-mutant HT, offsprings with 1-4 sectors chimeric blade were generated. Statistical analyses revealed that the red thallus coloration phenotype is conferred by a single nuclear allele. Two-pair populations, consisting of 24 and 56 wild-type/red-type single-genotype sectors from F1 progeny, were used in QTL-seq to detect a genomic region in P. yezoensis harboring the red coloration locus. Based on a high-quality genome, we first identified the candidate region within a 3.30-Mb region at the end of chromosome 1. Linkage map-based QTL analysis was used to confirm the candidate region identified by QTL-seq. Then, four KASP markers developed in this region were used to narrow down the candidate region to a 1.42-Mb region. Finally, we conducted RNA-seq to focus on 13 differentially expressed genes and further predicted rcl-1, which contains one non-synonymous SNP [A/C] in the coding region that could be regulating red thallus coloration in P. yezoensis. Our results provide novel insights into the underlying mechanism controlling blade coloration, which is a desirable trait in algae.
Collapse
Affiliation(s)
- Xinzi Yu
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Lu Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Kuipeng Xu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Fanna Kong
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Dongmei Wang
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xianghai Tang
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Bin Sun
- Key Laboratory of Marine Genetics and Breeding (Ministry of Education), Ocean University of China, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yunxiang Mao
- Key Laboratory of Utilization and Conservation of Tropical Marine Bioresource (Hainan Tropical Ocean University), Ministry of Education, Sanya, China
| |
Collapse
|
17
|
Li X, Huang S, Liu Z, Hou L, Feng H. Mutation in EMB1923 gene promoter is associated with chlorophyll deficiency in Chinese cabbage (Brassica campestris ssp. pekinensis). PHYSIOLOGIA PLANTARUM 2019; 166:909-920. [PMID: 31058333 DOI: 10.1111/ppl.12979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/07/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
Leaf color mutants are widespread in higher plants and can be used as markers in crop breeding or as important material in understanding the regulatory mechanisms of chlorophyll biosynthesis and chloroplast development. A stably inherited plant etiolated mutation (pem) was obtained from its wild-type 'FT' (a doubled haploid line of the Chinese cabbage variety 'Fukuda 50') by combining 60 Co-γ radiation and isolated microspore culture in Chinese cabbage. Compared to the wild-type 'FT', the chlorophyll content in the pem mutant was decreased, the photosynthetic capacity was reduced and the chloroplast development was retarded. These physiological changes may lead to a reduction in growth and yield in the pem mutant line. Genetic analysis showed that the mutant phenotype was controlled by the single recessive nuclear pem gene. The pem gene was mapped to a 25.88 kb region on the A03 chromosome. Cloning and sequencing results showed that there was only one DNA sequence variation in this region, which was a 30 bp deletion on the promoter of Bra024218. Its homologous gene encodes EMBRYO DEFECTIVE 1923 (EMB1923) in Arabidopsis thaliana. We therefore predicted that Bra024218 was the mutated gene associated with etiolated leaves in Chinese cabbage. The pem mutant is a useful line for researching chloroplast development and the mechanism of leaf color mutation in Chinese cabbage.
Collapse
Affiliation(s)
- Xiang Li
- Department of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Shengnan Huang
- Department of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zhiyong Liu
- Department of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Li Hou
- Department of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Hui Feng
- Department of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
18
|
Physiological and transcriptomic analyses of a yellow-green mutant with high photosynthetic efficiency in wheat (Triticum aestivum L.). Funct Integr Genomics 2017; 18:175-194. [DOI: 10.1007/s10142-017-0583-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/31/2017] [Accepted: 12/11/2017] [Indexed: 10/18/2022]
|
19
|
Cao Z, Sui S, Yang Q, Deng Z. A single gene controls leaf background color in caladium (Araceae) and is tightly linked to genes for leaf main vein color, spotting and rugosity. HORTICULTURE RESEARCH 2017; 4:16067. [PMID: 28101369 PMCID: PMC5209669 DOI: 10.1038/hortres.2016.67] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/11/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
Modern cultivated caladiums (Caladium×hortulanum) are grown for their long-lasting and colorful leaves. Understanding the mode of inheritance for caladium leaf characteristics is critical for plant breeders to select appropriate parents, predict progeny performance, estimate breeding population sizes needed, and increase breeding efficiencies. This study was conducted to determine the mode of inheritance of two leaf background colors (lemon and green) in caladium and to understand their relationships with four other important leaf characteristics including leaf shape, main vein color, spotting, and rugosity. Seven caladium cultivars and three breeding lines were used as parents in 19 crosses, and their progeny were phenotyped for segregation of leaf traits. Results showed that the two leaf background colors are controlled by a single nuclear locus, with two alleles, LEM and lem, which control the dominant lemon and the recessive green leaf background color, respectively. The lemon-colored cultivar 'Miss Muffet' and breeding lines UF-52 and UF-53 have a heterozygous genotype LEMlem. Chi-square tests showed that the leaf background color locus LEM is independent from the leaf shape locus F, but is tightly linked to three loci (S, V and RLF) controlling leaf spotting, main vein color, and rugosity in caladium. A linkage map that consists of four loci controlling major caladium leaf characteristics and extends ~15 cM was developed based on the observed recombination frequencies. This is the first report on the mode of inheritance of leaf background colors in caladium and in the Araceae family. The information gained in this study will be very useful for caladium breeding and study of the inheritance of leaf colors in other ornamental aroids, an important group of ornamental plants in the world.
Collapse
Affiliation(s)
- Zhe Cao
- Gulf Coast Research and Education Center, Department of Environmental Horticulture, IFAS, University of Florida, 14625 County Road 672, Wimauma, FL 33598, USA
| | - Shunzhao Sui
- College of Horticulture and Landscape, Southwest University, Chongqing 400715, China
- Visiting Scientist, Gulf Coast Research and Education Center, Department of Environmental Horticulture, IFAS, University of Florida, 14625 County Road 672, Wimauma, FL 33598, USA
| | - Qian Yang
- Gulf Coast Research and Education Center, Department of Environmental Horticulture, IFAS, University of Florida, 14625 County Road 672, Wimauma, FL 33598, USA
| | - Zhanao Deng
- Gulf Coast Research and Education Center, Department of Environmental Horticulture, IFAS, University of Florida, 14625 County Road 672, Wimauma, FL 33598, USA
| |
Collapse
|