1
|
Pelea MA, Serban O, Badarinza M, Gutiu R, Fodor D. Shear-Wave Elastography of the Achilles tendon: reliability analysis and impact of parameters modulating elasticity values. J Ultrasound 2024; 27:559-566. [PMID: 38613661 PMCID: PMC11333681 DOI: 10.1007/s40477-024-00877-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 01/31/2024] [Indexed: 04/15/2024] Open
Abstract
PURPOSE Shear wave elastography (SWE) has seen many advancements in Achilles tendon evaluation in recent years, yet standardization of this technique is still problematic due to the lack of knowledge regarding the optimal way to perform the examination. The purpose of this study was to evaluate the effects of ankle position, probe frequency and physical effort on the shear modulus of the Achilles tendon, but also to determine the intra and inter-observer reliability of the technique. METHODS 37 healthy volunteers were included; SWE protocol was performed by two examiners. We analyzed the shear modulus of the tendon with the ankle in neutral, maximum dorsiflexion and maximum plantar flexion using two different high frequency probes. Afterwards, the subjects performed a brief physical exercise and SWE measurements were repeated. RESULTS The L18-5 probe showed the highest ICC values (ICC = 0.798, 95% CI 0.660-0.880, p < 0.001) when positioned at 2 cm from the calcaneal insertion with the ankle in a neutral state. Conversely, utilizing the same L18-5 probe at 1 cm from the insertion during maximum plantar flexion of the ankle resulted in the lowest ICC (ICC = 0.422, 95% CI 0.032-0.655, p = 0.019). Significant variations in elasticity values were noted among different ankle positions and probe types, while no significant changes in elasticity were observed post-physical exercise. CONCLUSION Ankle position and probe frequency are factors that influence elasticity values of the Achilles tendon. An ankle position between 10 and 20 degrees of plantar flexion is the most suitable for SWE evaluation. However, more research focusing on Achilles tendon SWE is essential due to the challenges encountered in standardizing this region.
Collapse
Affiliation(s)
- Michael-Andrei Pelea
- 2nd Internal Medicine Department, "Iuliu Hatieganu" University of Medicine and Pharmacy, 2-4 Clinicilor Street, 400006, Cluj-Napoca Napoca, Romania
| | - Oana Serban
- 2nd Internal Medicine Department, "Iuliu Hatieganu" University of Medicine and Pharmacy, 2-4 Clinicilor Street, 400006, Cluj-Napoca Napoca, Romania
| | - Maria Badarinza
- 2nd Internal Medicine Department, "Iuliu Hatieganu" University of Medicine and Pharmacy, 2-4 Clinicilor Street, 400006, Cluj-Napoca Napoca, Romania
| | - Roxana Gutiu
- 2nd Internal Medicine Department, "Iuliu Hatieganu" University of Medicine and Pharmacy, 2-4 Clinicilor Street, 400006, Cluj-Napoca Napoca, Romania
| | - Daniela Fodor
- 2nd Internal Medicine Department, "Iuliu Hatieganu" University of Medicine and Pharmacy, 2-4 Clinicilor Street, 400006, Cluj-Napoca Napoca, Romania.
| |
Collapse
|
2
|
Ceker E, Fadiloglu A, Cataltepe E, Sendur HN, Allahverdiyeva S, Varan HD. Predictive ability of Achilles tendon elastography for frailty in older adults. Eur Geriatr Med 2024:10.1007/s41999-024-01023-9. [PMID: 39090315 DOI: 10.1007/s41999-024-01023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024]
Abstract
PURPOSE The Achilles tendon (AT) is the largest and strongest tendon in the human body, and its elasticity is known to be affected by the aging process. However, the relation between AT stiffness and frailty in older individuals remains uncertain. This study aims to explore the potential of Achilles tendon shear wave elastography (AT-SWE) as a tool for assessing physical frailty in older adults. METHODS A total of 148 patients aged 65 years and over were included in this cross-sectional study. Patients with heart failure, AT injury, stroke history, active malignancy, and claudication were excluded. All patients underwent a comprehensive geriatric assessment. Physical frailty assessment was performed with the fried frailty phenotype. Achilles tendon elastography was measured by ultrasound. RESULTS The mean age of the participants was 73.8 years and 62.2% were female. 30.4% of the participants were defined as frail. Achilles tendon shear wave elastography measurements were statistically lower in the frail group (p < 0.05). In the multivariate regression analysis, AT-SWE demonstrated a statistically significant association with frailty independent of confounding factors (OR 0.982, 95% CI 0.965-0.999, p value = 0.038). In the ROC curve analysis, the area under the curve for AT-SWE was 0.647 (95% CI, 0.564-0.724, p < 0.01) and the optimum cut-off point was 124.1 kilopascals. CONCLUSION These findings highlight the value of AT-SWE as a non-invasive and objective tool for predicting frailty in older adults.
Collapse
Affiliation(s)
- Eda Ceker
- Faculty of Medicine, Department of Geriatric Medicine, Gazi University, 06560, Ankara, Turkey.
| | - Ayse Fadiloglu
- Faculty of Medicine, Department of Geriatric Medicine, Gazi University, 06560, Ankara, Turkey
| | - Esra Cataltepe
- Faculty of Medicine, Department of Geriatric Medicine, Gazi University, 06560, Ankara, Turkey
| | - Halit Nahit Sendur
- Faculty of Medicine, Department of Radiology, Gazi University, Ankara, Turkey
| | | | - Hacer Dogan Varan
- Faculty of Medicine, Department of Geriatric Medicine, Gazi University, 06560, Ankara, Turkey
| |
Collapse
|
3
|
Sukanen M, Khair RM, Ihalainen JK, Laatikainen-Raussi I, Eon P, Nordez A, Finni T. Achilles tendon and triceps surae muscle properties in athletes. Eur J Appl Physiol 2024; 124:633-647. [PMID: 37950761 PMCID: PMC10858159 DOI: 10.1007/s00421-023-05348-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/23/2023] [Indexed: 11/13/2023]
Abstract
PURPOSE The aim of this study was to investigate internal Achilles tendon (AT) displacement, AT shear wave velocity (SWV), and triceps surae (TS) muscle shear modulus in athletes. METHODS Internal AT displacement was assessed using ultrasound during isometric contraction. Shear wave elastography was used to assess AT SWV (m × s-1) at rest and TS muscle shear modulus (kPa) during passive ankle dorsiflexion. RESULTS A total of 131 athletes participated in this study. Athletes who had not exercised within two days had greater AT non-uniformity and mean anterior tendon displacement, and lower SWV at the proximal AT measurement site (mean difference [95% CI]: 1.8 mm [0.6-2.9], p = 0.003; 1.6 mm [0.2-2.9], p = 0.021; - 0.9 m × s-1 [- 1.6 to - 0.2], p = 0.014, respectively). Male basketball players had a lower mean AT displacement compared to gymnasts (- 3.7 mm [- 6.9 to - 0.5], p = 0.042), with the difference localised in the anterior half of the tendon (- 5.1 mm [- 9.0 to - 1.1], p = 0.022). Male gymnasts had a smaller absolute difference in medial gastrocnemius-minus-soleus shear modulus than basketball players (59.6 kPa [29.0-90.2], p < 0.001) and track and field athletes (52.7 kPa [19.2-86.3], p = 0.004). Intraclass correlation coefficients of measurements ranged from 0.720 to 0.937 for internal AT displacement, from 0.696 to 0.936 for AT SWE, and from 0.570 to 0.890 for TS muscles. CONCLUSION This study provides a reliability assessment of muscle and tendon SWV. The relative differences in passive TS muscle shear modulus suggest sport-specific adaptation. Importantly, in healthy individuals, lower AT displacement after exercise may reflect the time required for tendon recovery.
Collapse
Affiliation(s)
- Maria Sukanen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.
| | - Ra'ad M Khair
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Johanna K Ihalainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | | | - Pauline Eon
- Nantes Université, Movement-Interactions-Performance, MIP, UR 4334, F-44000, Nantes, France
| | - Antoine Nordez
- Nantes Université, Movement-Interactions-Performance, MIP, UR 4334, F-44000, Nantes, France
- Institut Universitaire de France, Paris, France
| | - Taija Finni
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
4
|
Albuquerque Brandão MC, de Carvalho Teixeira G, Fernandes de Oliveira L. Acute Effects of Stretching Exercises on Posterior Chain: Analysis of Shear Modulus by Elastography SSI. TRANSLATIONAL SPORTS MEDICINE 2023; 2023:5582277. [PMID: 38654914 PMCID: PMC11023729 DOI: 10.1155/2023/5582277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 04/26/2024]
Abstract
The posterior chain muscles of the lower limb include the hamstrings and triceps surae, along with the Achilles tendon. This study aimed to investigate the acute effects of static stretching exercises commonly used in clinical and training settings on the shear modulus (µ) of these muscles and tendon using Supersonic Shear-Wave Imaging (SSI) elastography. Fifteen healthy adults participated in the study, performing stretching exercises for hamstrings and triceps surae. Shear modulus and joint range of motion (ROM) were measured before and after the stretching protocols. The hip and ankle mean ROM significantly increased by 19.27% and 24.10%, respectively. However, the stretching protocol did not significantly alter in µ of the hamstrings, the gastrocnemius muscles, and the Achilles tendon. K-means clustering analysis identified a group where the subjects with lower initial ROM showed higher amplitude gains and a significant decrease in the semimembranosus stiffness after stretching. These findings suggest that the stretching protocol was effective in improving joint mobility but not sufficient to elicit immediate mechanical changes in muscle and tendon stiffness. Neural adaptations and nonmuscular structures might contribute to increased ROM. The study highlights the importance of considering individual initial ROM and subsequent responses when evaluating the effects of stretching exercises on muscle and tendon properties.
Collapse
Affiliation(s)
- Maria Clara Albuquerque Brandão
- Laboratório de Biomecânica, Programa de Engenharia Biomédica—COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Gabriela de Carvalho Teixeira
- Laboratório de Biomecânica, Programa de Engenharia Biomédica—COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Liliam Fernandes de Oliveira
- Laboratório de Biomecânica, Programa de Engenharia Biomédica—COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Miller T, Bello UM, Tsang CSL, Winser SJ, Ying MTC, Pang MYC. Using ultrasound elastography to assess non-invasive, non-pharmacological interventions for musculoskeletal stiffness: a systematic review and meta-analysis. Disabil Rehabil 2023:1-15. [PMID: 37668241 DOI: 10.1080/09638288.2023.2252744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023]
Abstract
PURPOSE To evaluate the current evidence regarding the use of ultrasound elastography for assessing non-invasive, non-pharmacological interventions for eliciting changes in musculoskeletal stiffness. METHODS A systematic search of MEDLINE, CINAHL, EMBASE, and Web of Science databases was performed in accordance with Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines. Information on measurement and intervention procedures was extracted. Bias was assessed using Cochrane Risk of Bias or Risk of Bias In Non-randomised Studies of Interventions (ROBINS-I) tools for studies with true or quasi-experimental designs, respectively. Analyses were conducted for adequately powered subgroups based on intervention type, measurement site, and population assessed. RESULTS Twenty-one studies were included in the review. Overall risk of bias was low for true experimental studies and moderate for quasi-experimental studies. Subgroup analyses indicated a large overall effect for interventions involving manual physiotherapy and taping/splinting for reducing masseter muscle stiffness in patients with masticatory muscle disorders (g = 1.488, 95% CI = 0.320-2.655, p = 0.013). Analyses for other intervention types and patient groups were underpowered. CONCLUSION Ultrasound elastography demonstrates clinical applicability for assessing non-invasive, non-pharmacological interventions for musculoskeletal stiffness. However, the comparative efficacy of these interventions for modulating tissue stiffness remains inconclusive.
Collapse
Affiliation(s)
- Tiev Miller
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
- International Collaboration on Repair Discoveries, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Umar M Bello
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Physiotherapy and Paramedicine, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Charlotte S L Tsang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Stanley J Winser
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Michael T C Ying
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Marco Y C Pang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
6
|
Mifsud T, Chatzistergos P, Maganaris C, Chockalingam N, Padhiar N, Stafrace KM, Gatt A. Supersonic shear wave elastography of human tendons is associated with in vivo tendon stiffness over small strains. J Biomech 2023; 152:111558. [PMID: 37004390 DOI: 10.1016/j.jbiomech.2023.111558] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Supersonic shear wave (SW) elastography has emerged as a useful imaging modality offering researchers and clinicians a fast, non-invasive, quantitative assessment of tendon biomechanics. However, the exact relationship between SW speed and in vivo tendon stiffness is not intuitively obvious and needs to be verified. This study aimed to explore the validity of supersonic SW elastography against a gold standard method to measure the Achilles tendon's in vivo tensile stiffness by combining conventional ultrasound imaging with dynamometry. Twelve healthy participants performed maximal voluntary isometric plantarflexion contractions (MVC) on a dynamometer with simultaneous ultrasonographic recording of the medial gastrocnemius musculotendinous junction for dynamometry-based measurement of stiffness. The tendon's force-elongation relationship and stress-strain behaviour were assessed. Tendon stiffness at different levels of tension was calculated as the slope of the stress-strain graph. SW speed was measured at the midportion of the free tendon and tendon Young's modulus was estimated. A correlation analysis between the two techniques revealed a statistically significant correlation for small strains (r(10) = 0.604, p =.038). SW-based assessments of in vivo tendon stiffness were not correlated to the gold standard method for strains in the tendon>10 % of the maximum strain during MVC. The absolute values of SW-based Young's modulus estimations were approximately-three orders of magnitude lower than dynamometry-based measurements. Supersonic SW elastography should be only used to assess SW speed for the detection and study of differences between tissue regions, differences between people or groups of people or changes over time in tendon initial stiffness (i.e., stiffness for small strains).
Collapse
Affiliation(s)
- Tiziana Mifsud
- Faculty of Health Sciences, University of Malta, Msida, Malta; Department of Orthopaedics, Trauma and Sports Medicine, Mater Dei Hospital, Malta
| | - Panagiotis Chatzistergos
- Centre for Biomechanics and Rehabilitation Technologies, Staffordshire University, Stoke-on-Trent, United Kingdom.
| | - Constantinos Maganaris
- John Moores University, School of Sport and Exercise Sciences, Liverpool, United Kingdom
| | - Nachiappan Chockalingam
- Faculty of Health Sciences, University of Malta, Msida, Malta; Centre for Biomechanics and Rehabilitation Technologies, Staffordshire University, Stoke-on-Trent, United Kingdom
| | - Nat Padhiar
- Centre for Sports & Exercise Medicine, Queen Mary University of London, United Kingdom
| | | | - Alfred Gatt
- Faculty of Health Sciences, University of Malta, Msida, Malta; Centre for Biomechanics and Rehabilitation Technologies, Staffordshire University, Stoke-on-Trent, United Kingdom
| |
Collapse
|
7
|
Sugino Y, Yoshimura I, Hagio T, Ishimatsu T, Nagatomo M, Yamamoto T. Effect of plantar fascia-specific stretching and Achilles tendon stretching on shear wave elasticity of the plantar fascia in healthy subjects. Foot Ankle Surg 2023; 29:208-212. [PMID: 36646592 DOI: 10.1016/j.fas.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/29/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
BACKGROUND The effect of stretching on the mechanical properties of the plantar fascia (PF) remain unclear. This study was performed to determine the effect of PF-specific stretching (PFSS) and Achilles tendon stretching (ATS) on the viscoelastic properties of the PF with shear wave elastography (SWE). METHODS We recruited 14 participants (8 men, 6 women) with no history of PF disorders or painful episodes. The mean age of the participants was 30.9 ± 4.8 (range, 25-41) years. All participants performed sustained PFSS (sPFSS) on one foot and intermittent PFSS (iPFSS) on the other foot. Two weeks later, all participants performed sustained ATS (sATS) on one foot and intermittent ATS (iATS) on the other foot. SWE measurements were performed immediately after each stretching. RESULTS The PF elasticity immediately before stretching ranged from 133.8 kPa to 144.7 kPa. The PF elasticity after stretching ranged from 158.9 kPa to 215.8 kPa. There was a significant increase in PF elasticity after sPFSS, iPFSS, sATS, and iATS (P < .01). The elasticity after sATS was greater than that after iATS (P = .03). In contrast, there were no differences in PF elasticity after stretching between sPFSS and iPFSS (P = .13), sPFSS and sATS (P = .17), or iPFSS and iATS (P = .50). CONCLUSIONS PF elasticity increased after stretching regardless of the frequency and type of PFSS and ATS. LEVEL OF EVIDENCE Level II, prospective cohort study.
Collapse
Affiliation(s)
- Yuki Sugino
- Department of Orthopaedic Surgery, Fukuoka University Faculty of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Ichiro Yoshimura
- Fukuoka University Faculty of Sports and Health Science, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| | - Tomonobu Hagio
- Department of Orthopaedic Surgery, Fukuoka University Faculty of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Tetsuro Ishimatsu
- Department of Orthopaedic Surgery, Fukuoka University Faculty of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | - Masaya Nagatomo
- Department of Orthopedic Surgery, Nagasaki Prefecture Tsushima Hospital, 1168-7 Kechiotsu, Mitsushima-machi, Tsushima-shi, Nagasaki 817-0322, Japan
| | - Takuaki Yamamoto
- Department of Orthopaedic Surgery, Fukuoka University Faculty of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| |
Collapse
|
8
|
Jacques T, Bini R, Arndt A. Inter-limb differences in in-vivo tendon behavior, kinematics, kinetics and muscle activation during running. J Biomech 2022; 141:111209. [DOI: 10.1016/j.jbiomech.2022.111209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/28/2022] [Accepted: 06/23/2022] [Indexed: 11/28/2022]
|
9
|
Marberry SM, Filmalter SE, Pujalte GGA, Presley JC, DeMatas KF, Montero DP, Israni K, Ball CT, Maynard JR. Self-reported foot strike patterns and sonographic evidence of Achilles tendinopathy in asymptomatic marathon runners. J Sports Sci 2022; 40:1308-1314. [PMID: 35640042 DOI: 10.1080/02640414.2022.2080158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
It is unknown whether ultrasound findings and symptoms of Achilles tendinopathy in runners correlate with foot strike patterns. We aimed to examine the relationships among Achilles tendon ultrasound findings in runners with or without Achilles tendinopathy, their foot strike patterns, and their training regimens. We recruited marathon runners 18 years of age or older with no history of Achilles tendon pain or surgery participating in the 2018 DONNA Marathon. Participants completed surveys and underwent Achilles tendon sonographic evaluations and were categorized by foot strike patterns. Seventy-nine runners were included; 22 (28%) with forefoot, 30 (38%) midfoot, and 27 (34%) hindfoot strike patterns. Foot strike pattern was not associated with tendon hyperaemia (P = 1.00) or hypoechogenicity (P = .97), and there was no association of cross-sectional area of the Achilles tendon with peak weekly distance while training. Sonographic characteristics of Achilles tendinopathy did not correlate with foot strike patterns or training regimens. Although not statistically significant, it is worth noting that cross-sectional area was 1 mm2 larger per every 1 kg/m2 increase in body mass index.
Collapse
Affiliation(s)
- Scott M Marberry
- Department of Orthopedic Surgery, Mayo Clinic, Jacksonville, Florida, USA.,Department of Family Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Sara E Filmalter
- Department of Orthopedic Surgery, Mayo Clinic, Jacksonville, Florida, USA.,Department of Family Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - George G A Pujalte
- Department of Orthopedic Surgery, Mayo Clinic, Jacksonville, Florida, USA.,Department of Family Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - James C Presley
- Department of Orthopedic Surgery, Mayo Clinic, Jacksonville, Florida, USA
| | - Kristina F DeMatas
- Department of Orthopedic Surgery, Mayo Clinic, Jacksonville, Florida, USA.,Department of Family Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Daniel P Montero
- Department of Orthopedic Surgery, Mayo Clinic, Jacksonville, Florida, USA
| | - Krishna Israni
- Department of Family Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Colleen T Ball
- Biostatistics Unit, Mayo Clinic, Jacksonville, Florida, USA
| | - Jennifer R Maynard
- Department of Orthopedic Surgery, Mayo Clinic, Jacksonville, Florida, USA.,Department of Family Medicine, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
10
|
Li YP, Liu CL, Zhang ZJ. Feasibility of Using a Portable MyotonPRO Device to Quantify the Elastic Properties of Skeletal Muscle. Med Sci Monit 2022; 28:e934121. [PMID: 35087016 PMCID: PMC8805342 DOI: 10.12659/msm.934121] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/30/2021] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND The aims of this study were to (1) calculate the correlation between different tensile force levels and corresponding muscle stiffness both in vitro and in vivo; (2) determine whether muscle stiffness assessed using a MyotonPRO myotonometer can be used to accurately estimate muscle activity level; and (3) evaluate the inter-operator reliability of MyotonPRO-based measurement in assessing biceps brachii muscle (BBM) stiffness. MATERIAL AND METHODS In Experiment I, muscle stiffness, as measured using the MyotonPRO, was obtained at 0 N, 2 N, 4 N, 6 N, 8 N, and 10 N of applied force on 6 fresh medial gastrocnemius muscle specimens. In Experiment II, 11 healthy subjects were recruited. BBM stiffness, assessed by the same device, was obtained at different tensile force levels, from 0 to 50% of maximal voluntary contraction (MVC). For the reliability test, the score for each subject was quantified by 2 operators (I and II), thrice, at 30-minute intervals on the same day. RESULTS A strong correlation was found between the different tensile force levels, which corresponded to muscle stiffness in vitro (r=0.71-0.95, all P<0.05). In vivo, muscle stiffness increased linearly with an increase of the tensile force levels from 0 to 50% of MVC (r=0.99, P=0.00) and there was a significant difference in BBM stiffness among the incremental isometric tasks (F [1.76, 17.60]=91.52, P=0.00). The inter-operator reliability for the measurement of BBM stiffness was good (ICC=0.86). CONCLUSIONS Our findings indicate that muscle stiffness measured using the MyotonPRO is strongly related to muscle activity level and that the MyotonPRO is a feasible tool for quantifying BBM stiffness as well as for quantifying changes in MVC levels.
Collapse
Affiliation(s)
- Ya-Peng Li
- Rehabilitation Therapy Center, Orthopedic Hospital of Henan Province, Luoyang, Henan, PR China
| | - Chun-Long Liu
- Clinical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Zhi-Jie Zhang
- Rehabilitation Therapy Center, Orthopedic Hospital of Henan Province, Luoyang, Henan, PR China
| |
Collapse
|
11
|
Amoudi M, Ayed A. Effectiveness of stretching exercise program among nurses with neck pain: Palestinian perspective. Sci Prog 2021; 104:368504211038163. [PMID: 34459689 PMCID: PMC10361596 DOI: 10.1177/00368504211038163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The study aimed to assess the effect of muscle stretching exercise on neck pain and disability among nurses in Palestine. A quasi-experimental, pre-post design with a convenience sample of 90 nurses with moderate-to-severe neck pain from two hospitals in Palestine participated in the study. The hospitals were randomly selected to be an experimental and the other one as a control group. The experimental group received the instruction to perform structured neck and around shoulder stretching exercises two sessions/day for 5 days/week for 1 month. The control group was told to maintain their current level of physical activity. Results showed that the magnitude of improvement in neck pain and disability was greater in the experimental group than in the control group (t(88) = 8.5, P = 0.001).
Collapse
Affiliation(s)
- Mosab Amoudi
- Faculty of Allied Medical Sciences, Arab American University, Palestine
| | - Ahmad Ayed
- Faculty of Nursing, Arab American University, Palestine
| |
Collapse
|
12
|
Triceps surae muscle-tendon unit mechanical property changes during 10 minutes of streching. J Bodyw Mov Ther 2021; 27:591-596. [PMID: 34391292 DOI: 10.1016/j.jbmt.2021.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/22/2021] [Accepted: 05/07/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To verify the effect of 10-min static stretching on the triceps surae mechanical properties. DESIGN Quasi-experimental one-group pre test-post test study compared the time points of before, after, and minute by minute of one session of triceps surae passive static stretching. METHODS 15 participants performed a 10-min plantar flexor passive static stretching on the isokinetic dynamometer. We evaluated passive torque and myotendinous junction (MTJ) displacement before, minute by minute, and after the intervention. In contrast, we evaluated the range of motion (ROM), passive torque, MTJ displacement, and hysteresis before and after the intervention. Paired t-test compared pre and post-intervention time points. Passive torque and MTJ displacement in the minute-by-minute evaluations were compared by repeated measures one-way ANOVA with a Bonferroni post-hoc test. RESULTS ROM increased (effect size d = 0.56) and passive torque and muscle-tendon unit stiffness decreased (effect size d = 0.65 and d = 0.73, respectively) post-stretching. There was a reduction only in passive torque in the minute-by-minute evaluation, mainly at minutes five and seven. CONCLUSIONS passive torque decreased over a 10-min static stretching session of the ankle plantar flexors, followed by a ROM increase and muscle-tendon unit, a stiffness decrease.
Collapse
|
13
|
Jacques T, Bini R, Arndt A. Bilateral in vivo neuromechanical properties of the triceps surae and Achilles tendon in runners and triathletes. J Biomech 2021; 123:110493. [PMID: 34000645 DOI: 10.1016/j.jbiomech.2021.110493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022]
Abstract
Inter-limb differences in Achilles tendon mechanical, material and morphological properties have previously been described in non-athletes and attributed to the preferential use of a given limb. Achilles tendon overuse tendon injury generally initiate unilaterally and alters triceps surae activation and Achilles tendon properties. The investigation of inter-limb differences in muscle activation and tendon properties may provide directions for injury prevention in habitual runners. In this study triceps surae and Achilles tendon properties were investigated bilaterally in habitual runners during unilateral maximal isometric contractions. Morphological, mechanical and material Achilles tendon properties were assessed using isokinetic dynamometry, motion capture and ultrasonography while triceps surae activation strategies were assessed using electromyography. Lower limb preference was assessed for inter-limb comparisons using the Waterloo questionnaire. Zero and one-dimensional statistical analysis and Cohen's d were employed to investigate possible inter-limb differences. Inter-limb associations in Achilles tendon properties and intra-limb associations between triceps surae activations were assessed using Pearson's correlation coefficients. No differences were observed between the preferred and non-preferred limb in terms of triceps surae muscle activation amplitude and Achilles tendon properties. However, intra-limb association among triceps surae activation ratios were not identical between limbs. Runners and triathletes present similar Achilles tendons properties between limbs, and thus initial observations of unilateral changes in the Achilles tendon properties might be used as a strategy to prevent the onset of overuse tendon injury. The non-similar associations within activation ratios between limbs should be further explored since triceps surae activation strategies may alter loading of the Achilles tendon.
Collapse
Affiliation(s)
- Tiago Jacques
- The Swedish School of Sport and Health Sciences, Lidingovägen 1, 114 33 Stockholm, Sweden.
| | - Rodrigo Bini
- La Trobe Rural Health School, Edwards Rd, Flora Hill, VIC 3552, Bendigo, Australia
| | - Anton Arndt
- The Swedish School of Sport and Health Sciences, Lidingovägen 1, 114 33 Stockholm, Sweden; Karolinska Institute, Alfred Nobels Allé 8, 11486 Stockholm, Sweden
| |
Collapse
|
14
|
Götschi T, Schulz N, Snedeker JG, Hanimann J, Franchi MV, Spörri J. Three-Dimensional Mapping of Shear Wave Velocity in Human Tendon: A Proof of Concept Study. SENSORS 2021; 21:s21051655. [PMID: 33673664 PMCID: PMC7957754 DOI: 10.3390/s21051655] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/25/2022]
Abstract
Ultrasound-based shear wave elastography (SWE) provides the means to quantify tissue mechanical properties in vivo and has proven valuable in detecting degenerative processes in tendons. Its current mode of use is for two-dimensional rendering measurements, which are highly position-dependent. We therefore propose an approach to create a volumetric reconstruction of the mechano-acoustic properties of a structure of interest based on optically tracking the ultrasound probe during free-hand measurement sweeps. In the current work, we aimed (1) to assess the technical feasibility of the three-dimensional mapping of unidirectional shear wave velocity (SWV), (2) to evaluate the possible artefacts associated with hand-held image acquisition, (3) to investigate the reproducibility of the proposed technique, and (4) to study the potential of this method in detecting local adaptations in a longitudinal study setting. Operative and technical feasibility as well as potential artefacts associated with hand-held image acquisition were studied on a synthetic phantom containing discrete targets of known mechanical properties. Measurement reproducibility was assessed based on inter-day and inter-reader scans of the patellar, Achilles, and supraspinatus tendon of ten healthy volunteers and was compared to traditional two-dimensional image acquisition. The potential of this method in detecting local adaptations was studied by testing the effect of short-term voluntary isometric loading history on SWV along the tendon long axis. The suggested approach was technically feasible and reproducible, with a moderate to very good reliability and a standard error of measurement in the range of 0.300-0.591 m/s for the three assessed tendons at the two test-retest modalities. We found a consistent variation in SWV along the longitudinal axis of each tendon, and isometric loading resulted in regional increases in SWV in the patellar and Achilles tendons. The proposed method outperforms traditional two-dimensional measurement with regards to reproducibility and may prove valuable in the objective assessment of pathological tendon changes.
Collapse
Affiliation(s)
- Tobias Götschi
- Department of Orthopaedics, Balgrist University Hospital, University of Zurich, 8008 Zurich, Switzerland;
- Institute for Biomechanics, ETH Zurich, 8093 Zurich, Switzerland;
- Sports Medical Research Group, Department of Orthopaedics, Balgrist University Hospital, University of Zurich, 8008 Zurich, Switzerland; (J.H.); (M.V.F.); (J.S.)
- Correspondence: ; Tel.: +41-44-386-11-11
| | - Nicole Schulz
- Institute for Biomechanics, ETH Zurich, 8093 Zurich, Switzerland;
| | - Jess G. Snedeker
- Department of Orthopaedics, Balgrist University Hospital, University of Zurich, 8008 Zurich, Switzerland;
- Institute for Biomechanics, ETH Zurich, 8093 Zurich, Switzerland;
| | - Jonas Hanimann
- Sports Medical Research Group, Department of Orthopaedics, Balgrist University Hospital, University of Zurich, 8008 Zurich, Switzerland; (J.H.); (M.V.F.); (J.S.)
| | - Martino V. Franchi
- Sports Medical Research Group, Department of Orthopaedics, Balgrist University Hospital, University of Zurich, 8008 Zurich, Switzerland; (J.H.); (M.V.F.); (J.S.)
- Institute of Physiology, Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy
| | - Jörg Spörri
- Sports Medical Research Group, Department of Orthopaedics, Balgrist University Hospital, University of Zurich, 8008 Zurich, Switzerland; (J.H.); (M.V.F.); (J.S.)
- University Centre for Prevention and Sports Medicine, Department of Orthopaedics, Balgrist University Hospital, University of Zurich, 8008 Zurich, Switzerland
| |
Collapse
|
15
|
Merza E, Pearson S, Lichtwark G, Ollason M, Malliaras P. Immediate and long-term effects of mechanical loading on Achilles tendon volume: A systematic review and meta-analysis. J Biomech 2021; 118:110289. [PMID: 33556887 DOI: 10.1016/j.jbiomech.2021.110289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 01/14/2021] [Accepted: 01/23/2021] [Indexed: 01/07/2023]
Abstract
The Achilles tendon (AT) may experience changes in dimensions related to fluid flow under load. The extent to which fluid flow involves redistribution within or flow out of the tendon is not known and could be determined by investigating volume changes. This study aimed to synthesize data on immediate and long-term effects of loading on tendon volume among people with a healthy AT and midportion Achilles tendinopathy (MAT). A secondary aim was to synthesise data from the included studies investigating parallel change in cross-sectional area and length. Systematic electronic search was performed in MEDLINE, EMBASE, CINAHL, AMED, and Scopus from inception until May 2020. Standardized mean differences (SMDs) were calculated for intervention-induced changes from baseline for all outcomes. Methodological quality was assessed using modified version of Newcastle Ottawa Scale (NOS). Twelve studies were included in meta-analysis. For healthy AT, there were negligible to small changes in volume following cross-country running (-0.33 [95% CI = -1.11 to 0.45] (P = 0.41)) and isometric exercise (0.01 [95% CI = -0.54 to 0.55] (P = 0.98)) and a large increase at the short-term with 12-week isometric protocol (0.88 [95% CI = -0.10 to1.86] (P = 0.08)). For MAT, there was an immediate large reduction in volume with isometric exercise (-1.24 [95% CI = -1.93 to -0.55] (P = 0.0004)), small increase with eccentric exercise (0.41 [95% CI = -0.18 to 1.01](P = 0.18)) and small reduction at the short-term with long-term interventions (-0.46 [95% CI = -0.87 to -0.05] (P = 0.03)). This meta-analysis suggests that healthy AT remain isovolumetric with acute interventions while MAT exhibit immediate and short-term volume reductions in response to different interventions.
Collapse
Affiliation(s)
- Eman Merza
- Department of Physiotherapy, Faculty of Medicine, Nursing and Health Science, Monash University, Frankston, Vic 3199, Melbourne, Australia.
| | - Stephen Pearson
- Centre for Health, Sport and Rehabilitation Sciences Research, University of Salford, Greater Manchester M5 4WT, United Kingdom.
| | - Glen Lichtwark
- Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, St. Lucia, QLD 4072, Brisbane, Australia.
| | - Meg Ollason
- Department of Physiology, Biomedicine Discovery Institute, Monash University, Clayton, Vic 3800, Melbourne, Australia.
| | - Peter Malliaras
- Department of Physiotherapy, Faculty of Medicine, Nursing and Health Science, Monash University, Frankston, Vic 3199, Melbourne, Australia.
| |
Collapse
|
16
|
Abstract
OBJECTIVE. The purpose of this article is to cover technical advances in musculo-skeletal ultrasound from the viewpoint of the radiologist. CONCLUSION. Among the advances in musculoskeletal ultrasound that we highlight the use of ultrahigh-frequency transducers to visualize ever-finer anatomic detail, the expanding practical clinical applications for microvascular imaging, and the use of elastography to predict function and, possibly, healing potential.
Collapse
|
17
|
Chen M, Shetye SS, Rooney SI, Soslowsky LJ. Short- and Long-Term Exercise Results in a Differential Achilles Tendon Mechanical Response. J Biomech Eng 2020; 142:081011. [PMID: 32253439 PMCID: PMC7477707 DOI: 10.1115/1.4046864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/22/2020] [Indexed: 12/28/2022]
Abstract
The study was conducted to define the biomechanical response of rat Achilles tendon after a single bout of exercise and a short or long duration of daily exercise. We hypothesized that a single bout or a short duration of exercise would cause a transient decrease in Achilles tendon mechanical properties and a long duration of daily exercise would improve these properties. One hundred and thirty-six Sprague-Dawley rats were divided into cage activity (CA) or exercise (EX) groups for a single bout, short-term, or long-term exercise. Animals in single bout EX groups were euthanized, 3, 12, 24, or 48 h upon completion of a single bout of exercise (10 m/min, 1 h) on a flat treadmill. Animals in short-term EX groups ran on a flat treadmill for 3 days, 1, or 2 weeks while animals in long-term EX groups ran for 8 weeks. Tendon quasi-static and viscoelastic response was evaluated for all Achilles tendons. A single bout of exercise increased tendon stiffness after 48 h of recovery. Short-term exercise up to 1 week decreased cross-sectional area, stiffness, modulus, and dynamic modulus of the Achilles tendon. In contrast, 8 weeks of daily exercise increased stiffness, modulus, and dynamic modulus of the tendon. This study highlights the response of Achilles tendons to single and sustained bouts of exercise. Adequate time intervals are important to allow for tendon adaptations when initiating a new training regimen and overall beneficial effects to the Achilles tendon.
Collapse
Affiliation(s)
- Mengcun Chen
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104; Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Snehal S. Shetye
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Louis J. Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, G13A Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104-6081
| |
Collapse
|
18
|
Liu CL, Zhou JP, Sun PT, Chen BZ, Zhang J, Tang CZ, Zhang ZJ. Influence of different knee and ankle ranges of motion on the elasticity of triceps surae muscles, Achilles tendon, and plantar fascia. Sci Rep 2020. [DOI: https://doi.org/10.1038/s41598-020-63730-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
AbstractStiffness is a valuable indicator of the functional capabilities of muscle-tendon-fascia. Twenty healthy subjects participated in this study in which the passive elastic properties of the medial gastrocnemius (MG), lateral gastrocnemius (LG), soleus muscles (SOL), Achilles tendon (AT, at 0 cm, 3 cm and 6 cm proximal to the calcaneus tubercle, corresponding to AT0cm, AT3cm and AT6cm, respectively) and plantar fascia (PF) were quantified when their knee was fully extended or flexed to 90° using shear wave elastography at 25° of dorsiflexion (DF25°), 0° (neutral position) of flexion, and 50° of plantar flexion (PF50°) of the ankle joint. The stiffnesses of the AT, MG, LG, SOL and the fascia with the knee fully extended were significantly higher than those with the knee flexed to 90° (p < 0.05), while the stiffness of the PF showed the opposite relationship (p < 0.05). When the knee was fully extended, the stiffness was higher in the LG than in the MG at PF50° and 0° (p < 0.01), and it was higher in the MG than in the LG at DF25° (p = 0.009). Nevertheless, regardless of the knee angle, the stiffness decreased from AT3cm > AT0cm > AT6cm at PF50° and 0° (p < 0.001), while the stiffness decreased from AT0cm > AT3cm > AT6cm at DF25°. Regardless of the knee and ankle angles, the stiffness of the PF increased in a proximal-to-distal direction (p < 0.001). These insights can be used to gain a more intuitive understanding of the relationships between the elastic properties of the muscle-tendon unit and its function.
Collapse
|
19
|
Liu CL, Zhou JP, Sun PT, Chen BZ, Zhang J, Tang CZ, Zhang ZJ. Influence of different knee and ankle ranges of motion on the elasticity of triceps surae muscles, Achilles tendon, and plantar fascia. Sci Rep 2020. [DOI: doi.org/10.1038/s41598-020-63730-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
AbstractStiffness is a valuable indicator of the functional capabilities of muscle-tendon-fascia. Twenty healthy subjects participated in this study in which the passive elastic properties of the medial gastrocnemius (MG), lateral gastrocnemius (LG), soleus muscles (SOL), Achilles tendon (AT, at 0 cm, 3 cm and 6 cm proximal to the calcaneus tubercle, corresponding to AT0cm, AT3cm and AT6cm, respectively) and plantar fascia (PF) were quantified when their knee was fully extended or flexed to 90° using shear wave elastography at 25° of dorsiflexion (DF25°), 0° (neutral position) of flexion, and 50° of plantar flexion (PF50°) of the ankle joint. The stiffnesses of the AT, MG, LG, SOL and the fascia with the knee fully extended were significantly higher than those with the knee flexed to 90° (p < 0.05), while the stiffness of the PF showed the opposite relationship (p < 0.05). When the knee was fully extended, the stiffness was higher in the LG than in the MG at PF50° and 0° (p < 0.01), and it was higher in the MG than in the LG at DF25° (p = 0.009). Nevertheless, regardless of the knee angle, the stiffness decreased from AT3cm > AT0cm > AT6cm at PF50° and 0° (p < 0.001), while the stiffness decreased from AT0cm > AT3cm > AT6cm at DF25°. Regardless of the knee and ankle angles, the stiffness of the PF increased in a proximal-to-distal direction (p < 0.001). These insights can be used to gain a more intuitive understanding of the relationships between the elastic properties of the muscle-tendon unit and its function.
Collapse
|
20
|
Liu CL, Zhou JP, Sun PT, Chen BZ, Zhang J, Tang CZ, Zhang ZJ. Influence of different knee and ankle ranges of motion on the elasticity of triceps surae muscles, Achilles tendon, and plantar fascia. Sci Rep 2020; 10:6643. [PMID: 32313166 PMCID: PMC7171074 DOI: 10.1038/s41598-020-63730-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/31/2020] [Indexed: 02/07/2023] Open
Abstract
Stiffness is a valuable indicator of the functional capabilities of muscle-tendon-fascia. Twenty healthy subjects participated in this study in which the passive elastic properties of the medial gastrocnemius (MG), lateral gastrocnemius (LG), soleus muscles (SOL), Achilles tendon (AT, at 0 cm, 3 cm and 6 cm proximal to the calcaneus tubercle, corresponding to AT0cm, AT3cm and AT6cm, respectively) and plantar fascia (PF) were quantified when their knee was fully extended or flexed to 90° using shear wave elastography at 25° of dorsiflexion (DF25°), 0° (neutral position) of flexion, and 50° of plantar flexion (PF50°) of the ankle joint. The stiffnesses of the AT, MG, LG, SOL and the fascia with the knee fully extended were significantly higher than those with the knee flexed to 90° (p < 0.05), while the stiffness of the PF showed the opposite relationship (p < 0.05). When the knee was fully extended, the stiffness was higher in the LG than in the MG at PF50° and 0° (p < 0.01), and it was higher in the MG than in the LG at DF25° (p = 0.009). Nevertheless, regardless of the knee angle, the stiffness decreased from AT3cm > AT0cm > AT6cm at PF50° and 0° (p < 0.001), while the stiffness decreased from AT0cm > AT3cm > AT6cm at DF25°. Regardless of the knee and ankle angles, the stiffness of the PF increased in a proximal-to-distal direction (p < 0.001). These insights can be used to gain a more intuitive understanding of the relationships between the elastic properties of the muscle-tendon unit and its function.
Collapse
Affiliation(s)
- Chun-Long Liu
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ji-Ping Zhou
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China.,Nan'ao people's Hospital, Dapeng New District, Shenzhen, China
| | - Peng-Tao Sun
- Department of Medical Ultrasound, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bai-Zhen Chen
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jun Zhang
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chun-Zhi Tang
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhi-Jie Zhang
- Luoyang Orthopedics Hospital of Henan Province, Luoyang, China.
| |
Collapse
|
21
|
Liu CL, Zhou JP, Sun PT, Chen BZ, Zhang J, Tang CZ, Zhang ZJ. Influence of different knee and ankle ranges of motion on the elasticity of triceps surae muscles, Achilles tendon, and plantar fascia. Sci Rep 2020; 10:6643. [DOI: https:/doi.org/10.1038/s41598-020-63730-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/31/2020] [Indexed: 09/11/2023] Open
Abstract
AbstractStiffness is a valuable indicator of the functional capabilities of muscle-tendon-fascia. Twenty healthy subjects participated in this study in which the passive elastic properties of the medial gastrocnemius (MG), lateral gastrocnemius (LG), soleus muscles (SOL), Achilles tendon (AT, at 0 cm, 3 cm and 6 cm proximal to the calcaneus tubercle, corresponding to AT0cm, AT3cm and AT6cm, respectively) and plantar fascia (PF) were quantified when their knee was fully extended or flexed to 90° using shear wave elastography at 25° of dorsiflexion (DF25°), 0° (neutral position) of flexion, and 50° of plantar flexion (PF50°) of the ankle joint. The stiffnesses of the AT, MG, LG, SOL and the fascia with the knee fully extended were significantly higher than those with the knee flexed to 90° (p < 0.05), while the stiffness of the PF showed the opposite relationship (p < 0.05). When the knee was fully extended, the stiffness was higher in the LG than in the MG at PF50° and 0° (p < 0.01), and it was higher in the MG than in the LG at DF25° (p = 0.009). Nevertheless, regardless of the knee angle, the stiffness decreased from AT3cm > AT0cm > AT6cm at PF50° and 0° (p < 0.001), while the stiffness decreased from AT0cm > AT3cm > AT6cm at DF25°. Regardless of the knee and ankle angles, the stiffness of the PF increased in a proximal-to-distal direction (p < 0.001). These insights can be used to gain a more intuitive understanding of the relationships between the elastic properties of the muscle-tendon unit and its function.
Collapse
|
22
|
Taş S, Özkan Ö, Karaçoban L, Dönmez G, Çetin A, Korkusuz F. Knee muscle and tendon stiffness in professional soccer players: a shear-wave elastography study. J Sports Med Phys Fitness 2020; 60:276-281. [DOI: 10.23736/s0022-4707.19.09938-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Li YP, Feng YN, Liu CL, Zhang ZJ. Paraffin therapy induces a decrease in the passive stiffness of gastrocnemius muscle belly and Achilles tendon: A randomized controlled trial. Medicine (Baltimore) 2020; 99:e19519. [PMID: 32195954 PMCID: PMC7220386 DOI: 10.1097/md.0000000000019519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The purposes of this study were to examine the feasibility of using the MyotonPRO digital palpation device in measuring the passive stiffness of gastrocnemius muscle belly and Achilles tendon; to determine between-days test-retest reliability of MyotonPRO; and to evaluate the acute effect of paraffin therapy on stiffness measurements in healthy participants. METHODS It is a randomized controlled trial. Twenty healthy participants (male, n = 10; female, n = 10; total, n = 20) were recruited to evaluate the passive stiffness of gastrocnemius muscle belly and Achilles tendon. Dominant and nondominant legs were randomly divided into an experimental side (20 cases) and a control side (20 cases). The experimental side received 20 minutes of paraffin therapy. RESULTS The stiffness of muscle and tendon in the experimental side decreased significantly after paraffin therapy (P < .01), whereas no significant differences in stiffness measurements were found in the control side (P > .05). The passive stiffness of muscle and tendon was positively correlated with the ankle from 30° plantar flexion to10° dorsiflexion for dominant legs. Between-days test-retest reliability in stiffness measurements was high or very high (ICCs were above 0.737). CONCLUSION Paraffin therapy induces a decrease in the passive stiffness of gastrocnemius muscle belly and Achilles tendon. Furthermore, the MyotonPRO can reliably determine stiffness measurements.
Collapse
Affiliation(s)
- Ya Peng Li
- Rehabilitation Therapy Center, Luoyang Orthopedic Hospital of Henan Province, Luoyang
| | - Ya Nan Feng
- Rehabilitation Therapy Center, Luoyang Orthopedic Hospital of Henan Province, Luoyang
| | - Chun Long Liu
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhi Jie Zhang
- Rehabilitation Therapy Center, Luoyang Orthopedic Hospital of Henan Province, Luoyang
| |
Collapse
|
24
|
Zhou J, Liu C, Zhang Z. Non-uniform Stiffness within Gastrocnemius-Achilles tendon Complex Observed after Static Stretching. J Sports Sci Med 2019; 18:454-461. [PMID: 31427867 PMCID: PMC6683623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/20/2019] [Indexed: 06/10/2023]
Abstract
Higher stiffness of the Achilles tendon (AT) and gastrocnemius have been found to be risk factors associated with Achilles tendinitis. Static stretching (SS) is one intervention that has been investigated to improve the flexibility and therefore reduce injury risk. Previous studies have investigated the acute effect of SS on one region for AT and gastrocnemius morphology and stiffness; however, there is a lack of knowledge about the effect of SS on other regions of the AT and gastrocnemius (e.g., proximal vs. distal, within gastrocnemius). The aims of the present study were: (1) to investigate the acute effects of SS on the shear modulus of the medial gastrocnemius muscles (MG) and lateral gastrocnemius muscles (LG) and AT for different regions; (2) to examine the differences in range of motion (ROM) before and after SS; and (3) to investigate the change of thickness of AT and fascicle length of MG and LG before and after SS. The stiffness of AT and the gastrocnemius, fascicle length of the muscles, thickness of the AT, and maximal ankle joint dorsiflexion angle were measured in thirty healthy subjects (15 males, 15 females) before(pre) and immediately after (post) 5-minute SS. Stretching effects are not homogeneous among different regions. After SS administration, the proximal, middle, and distal regions of MG stiffness decreased by 34.12%, 22.45%, and 25.27%, respectively (p = 0.000), and LG stiffness decreased by 37.71%, 30.47%, and 22.13%, respectively (p = 0.000), whereas AT stiffness increased by 25.73%, 17.01%, and 19.53%, respectively (p= 0.000). ROM of ankle joint increased by 8.02% (p=0.00). Nevertheless, there were no changes in the thickness of AT and fascicle length of the gastrocnemius. These results suggest that non-uniform behaviour is consistently present within the gastrocnemius and AT, and the gastrocnemius heterogeneity is reduced after SS. The stretching maneuver could be effective to increase the flexibility.
Collapse
Affiliation(s)
- Jiping Zhou
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, China
| | - Chunlong Liu
- Clinical Medical College of Acupuncture, Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, China
| | - Zhijie Zhang
- Luoyang Orthopedics Hospital of Henan Province, China
| |
Collapse
|
25
|
Assessing the elastic properties of skeletal muscle and tendon using shearwave ultrasound elastography and MyotonPRO. Sci Rep 2018; 8:17064. [PMID: 30459432 PMCID: PMC6244233 DOI: 10.1038/s41598-018-34719-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/24/2018] [Indexed: 12/19/2022] Open
Abstract
The purposes of this study were to compare Young’s modulus values determined by shear wave ultrasound elastography (SWUE) with stiffness index obtained using a hand-held MyotonPRO device on the resting stiffness of gastrocnemius muscle belly and Achilles tendon; and to examine the test-retest reliability of those stiffness measurement using hand-held MyotonPRO. Twenty healthy volunteers participated in the study. The measurement values of muscle and tendon was determined in dominant legs. Each marker point was assessed using MyotonPRO and SWUE, respectively. Intra-operator reliability of MyotonPRO was established in 10 of the subjects. The correlation coefficients between the values of muscle and tendon stiffness indices determined by MyotonPRO and SWUE were calculated. Significant correlations were found for muscle and tendon stiffness and Young’s modulus ranged from 0.463 to 0.544 (all P < 0.05). The intra-operator reliability ranged from good to excellent (ICC(3,1) = 0.787~0.928). These results suggest that the resting stiffness of gastrocnemius muscle belly and Achilles tendon measured by MyotonPRO is related to the Young’s modulus of those quantified by SWUE. The MyotonPRO shows good intra-operator repeatability. Therefore, the present study shows that MyotonPRO can be used to assess mechanical properties of gastrocnemius muscle belly and Achilles tendon with a resting condition.
Collapse
|
26
|
Leung WK, Chu KL, Lai C. Sonographic evaluation of the immediate effects of eccentric heel drop exercise on Achilles tendon and gastrocnemius muscle stiffness using shear wave elastography. PeerJ 2017; 5:e3592. [PMID: 28740756 PMCID: PMC5520961 DOI: 10.7717/peerj.3592] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 06/28/2017] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Mechanical loading is crucial for muscle and tendon tissue remodeling. Eccentric heel drop exercise has been proven to be effective in the management of Achilles tendinopathy, yet its induced change in the mechanical property (i.e., stiffness) of the Achilles tendon (AT), medial and lateral gastrocnemius muscles (MG and LG) was unknown. Given that shear wave elastography has emerged as a powerful tool in assessing soft tissue stiffness with promising intra- and inter-operator reliability, the objective of this study was hence to characterize the stiffness of the AT, MG and LG in response to an acute bout of eccentric heel drop exercise. METHODS Forty-five healthy young adults (36 males and nine females) performed 10 sets of 15-repetition heel drop exercise on their dominant leg with fully-extended knee, during which the AT and gastrocnemius muscles, but not soleus, were highly stretched. Before and immediately after the heel drop exercise, elastic moduli of the AT, MG and LG were measured by shear wave elastography. RESULTS After the heel drop exercise, the stiffness of AT increased significantly by 41.8 + 33.5% (P < 0.001), whereas the increases in the MG and LG stiffness were found to be more drastic by 75 + 47.7% (P < 0.001) and 71.7 + 51.8% (P < 0.001), respectively. Regarding the AT, MG and LG stiffness measurements, the inter-operator reliability was 0.940, 0.987 and 0.986, and the intra-operator reliability was 0.916 to 0.978, 0.801 to 0.961 and 0.889 to 0.985, respectively. DISCUSSION The gastrocnemius muscles were shown to bear larger mechanical loads than the AT during an acute bout of eccentric heel drop exercise. The findings from this pilot study shed some light on how and to what extent the AT and gastrocnemius muscles mechanically responds to an isolated set of heel drop exercise. Taken together, appropriate eccentric load might potentially benefit mechanical adaptations of the AT and gastrocnemius muscles in the rehabilitation of patients with Achilles tendinopathy.
Collapse
Affiliation(s)
- Wilson K.C. Leung
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - KL Chu
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Christopher Lai
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hung Hom, Hong Kong
| |
Collapse
|
27
|
Ryu J, Jeong WK. Current status of musculoskeletal application of shear wave elastography. Ultrasonography 2017; 36:185-197. [PMID: 28292005 PMCID: PMC5494870 DOI: 10.14366/usg.16053] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/03/2017] [Accepted: 02/04/2017] [Indexed: 12/31/2022] Open
Abstract
Ultrasonography (US) is a very powerful diagnostic modality for the musculoskeletal system due to the ability to perform real-time dynamic high-resolution examinations with the Doppler technique. In addition to acquiring morphologic data, we can now obtain biomechanical information by quantifying the elasticity of the musculoskeletal structures with US elastography. The earlier diagnosis of degeneration and the ability to perform follow-up evaluations of healing and the effects of treatment are possible. US elastography enables a transition from US-based inspection to US-based palpation in order to diagnose the characteristics of tissue. Shear wave elastography is considered the most suitable type of US elastography for the musculoskeletal system. It is widely used for tendons, ligaments, and muscles. It is important to understand practice guidelines in order to enhance reproducibility. Incorporating viscoelasticity and overcoming inconsistencies among manufacturers are future tasks for improving the capabilities of US elastography.
Collapse
Affiliation(s)
- JeongAh Ryu
- Department of Radiology, Hanyang University Guri Hospital, Hanyang University School of Medicine, Guri, Korea
| | - Woo Kyoung Jeong
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|