1
|
Liu YX, Song JL, Li XM, Lin H, Cao YN. Identification of target genes co-regulated by four key histone modifications of five key regions in hepatocellular carcinoma. Methods 2024; 231:165-177. [PMID: 39349287 DOI: 10.1016/j.ymeth.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/27/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a cancer with high morbidity and mortality. Studies have shown that histone modification plays an important regulatory role in the occurrence and development of HCC. However, the specific regulatory effects of histone modifications on gene expression in HCC are still unclear. This study focuses on HepG2 cell lines and hepatocyte cell lines. First, the distribution of histone modification signals in the two cell lines was calculated and analyzed. Then, using the random forest algorithm, we analyzed the effects of different histone modifications and their modified regions on gene expression in the two cell lines, four key histone modifications (H3K36me3, H3K4me3, H3K79me2, and H3K9ac) and five key regions that co-regulate gene expression were obtained. Subsequently, target genes regulated by key histone modifications in key regions were screened. Combined with clinical data, Cox regression analysis and Kaplan-Meier survival analysis were performed on the target genes, and four key target genes (CBX2, CEBPZOS, LDHA, and UMPS) related to prognosis were identified. Finally, through immune infiltration analysis and drug sensitivity analysis of key target genes, the potential role of key target genes in HCC was confirmed. Our results provide a theoretical basis for exploring the occurrence of HCC and propose potential biomarkers associated with histone modifications, which may be potential drug targets for the clinical treatment of HCC.
Collapse
Affiliation(s)
- Yu-Xian Liu
- School of Artificial Intelligence, Anhui University of Science and Technology, Huainan 232001, China.
| | - Jia-Le Song
- School of Artificial Intelligence, Anhui University of Science and Technology, Huainan 232001, China
| | - Xiao-Ming Li
- School of Artificial Intelligence, Anhui University of Science and Technology, Huainan 232001, China
| | - Hao Lin
- Key Laboratory for Neuro-Information of Ministry of Education, Center for Informational Biology, School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Yan-Ni Cao
- School of Artificial Intelligence, Anhui University of Science and Technology, Huainan 232001, China.
| |
Collapse
|
2
|
Lukosevicius R, Alzbutas G, Varkalaite G, Salteniene V, Tilinde D, Juzenas S, Kulokiene U, Janciauskas D, Poskiene L, Adamonis K, Kiudelis G, Kupcinskas J, Skieceviciene J. 5'-Isoforms of miR-1246 Have Distinct Targets and Stronger Functional Impact Compared with Canonical miR-1246 in Colorectal Cancer Cells In Vitro. Int J Mol Sci 2024; 25:2808. [PMID: 38474054 DOI: 10.3390/ijms25052808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Colorectal cancer (CRC) is a multifactorial disease involving genetic and epigenetic factors, such as miRNAs. Sequencing-based studies have revealed that miRNAs have many isoforms (isomiRs) with modifications at the 3'- and 5'-ends or in the middle, resulting in distinct targetomes and, consequently, functions. In the present study, we aimed to evaluate the putative targets and functional role of miR-1246 and its two 5'-isoforms (ISO-miR-1246_a and ISO-miR-1246_G) in vitro. Commercial Caco-2 cells of CRC origin were analyzed for the expression of WT-miR-1246 and its 5'-isoforms using small RNA sequencing data, and the overabundance of the two miR-1246 isoforms was determined in cells. The transcriptome analysis of Caco-2 cells transfected with WT-miR-1246, ISO-miR-1246_G, and ISO-miR-1246_a indicated the minor overlap of the targetomes between the studied miRNA isoforms. Consequently, an enrichment analysis showed the involvement of the potential targets of the miR-1246 isoforms in distinct signaling pathways. Cancer-related pathways were predominantly more enriched in dysregulated genes in ISO-miR-1246_G and ISO-miR-1246_a, whereas cell cycle pathways were more enriched in WT-miR-1246. The functional analysis of WT-miR-1246 and its two 5'-isoforms revealed that the inhibition of any of these molecules had a tumor-suppressive role (reduced cell viability and migration and promotion of early cell apoptosis) in CRC cells. However, the 5'-isoforms had a stronger effect on viability compared with WT-miR-1246. To conclude, this research shows that WT-miR-1246 and its two 5'-isoforms have different targetomes and are involved in distinct signaling pathways but collectively play an important role in CRC pathogenesis.
Collapse
Affiliation(s)
- Rokas Lukosevicius
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Gediminas Alzbutas
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Greta Varkalaite
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Violeta Salteniene
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Deimante Tilinde
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Simonas Juzenas
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
- Institute of Biotechnology, Life Science Centre, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Ugne Kulokiene
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Dainius Janciauskas
- Department of Pathology, Medical Academy, Hospital of Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Lina Poskiene
- Department of Pathology, Medical Academy, Hospital of Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Kestutis Adamonis
- Department of Gastroenterology, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Gediminas Kiudelis
- Department of Gastroenterology, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Juozas Kupcinskas
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
- Department of Gastroenterology, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| | - Jurgita Skieceviciene
- Institute for Digestive Research, Academy of Medicine, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| |
Collapse
|
3
|
Pawlina-Tyszko K, Szmatoła T. Benchmarking of bioinformatics tools for NGS-based microRNA profiling with RT-qPCR method. Funct Integr Genomics 2023; 23:347. [PMID: 38030823 PMCID: PMC10687144 DOI: 10.1007/s10142-023-01276-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/03/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
MicroRNAs are vital gene expression regulators, extensively studied worldwide. The large-scale characterization of miRNAomes is possible using next-generation sequencing (NGS). This technology offers great opportunities, but these cannot be fully exploited without proper and comprehensive bioinformatics analysis. This may be achieved by the use of reliable dedicated software; however, different programs may generate divergent results, leading to additional discrepancies. Thus, the aim of this study was to compare three bioinformatic algorithms dedicated to NGS-based microRNA profiling and validate them using an alternative method, namely RT-qPCR. The comparison analysis revealed differences in the number and sets of identified miRNAs. The qPCR confirmed the expression of the investigated microRNAs. The correlation analysis of NGS and qPCR measurements showed strong and significant coefficients for a subset of the tested miRNAs, including those detected by all three algorithms. Single miRNA variants (isomiRs) showed different levels of correlation with the qPCR data. The obtained results revealed the good performance of all tested programs, despite the observed differences. Moreover, they implied that some specific miRNAs may be differentially estimated using NGS technology and the qPCR method, regardless of the used bioinformatics software. These discrepancies may stem from many factors, including the composition of the isomiR profile, their abundance, length, and investigated species. In conclusion, in this study, we shed light on the bioinformatics aspects of miRNAome profiling, elucidating its complexity and pinpointing potential features influencing validation. Thus, qPCR validation results should be open to interpretation when not fully concordant with NGS results until further, additional analyses are conducted.
Collapse
Affiliation(s)
- Klaudia Pawlina-Tyszko
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1 st., 32-083, Balice, Poland.
| | - Tomasz Szmatoła
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1 st., 32-083, Balice, Poland
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Redzina 1c, 30-248, Krakow, Poland
| |
Collapse
|
4
|
Hsieh FM, Lai ST, Wu MF, Lin CC. Identification and Elucidation of the Protective isomiRs in Lung Cancer Patient Prognosis. Front Genet 2021; 12:702695. [PMID: 34589114 PMCID: PMC8474875 DOI: 10.3389/fgene.2021.702695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/16/2021] [Indexed: 11/24/2022] Open
Abstract
MicroRNAs (miRNAs) are approximately 20–22 nucleotides in length, which are well known to participate in the post-transcriptional modification. The mature miRNAs were observed to be varied on 5′ or 3′ that raise another term—the isoforms of mature miRNAs (isomiRs), which have been proven not the artifacts and discussed widely recently. In our research, we focused on studying the 5′ isomiRs in lung adenocarcinoma (LUAD) in The Cancer Genome Atlas (TCGA). We characterized 75 isomiRs significantly associated with better prognosis and 43 isomiRs with poor prognosis. The 75 protective isomiRs can successfully distinguish tumors from normal samples and are expressed differently between patients of early and late stages. We also found that most of the protective isomiRs tend to be with downstream shift and upregulated compared with those with upstream shift, implying that a possible selection occurs during cancer development. Among these protective isomiRs, we observed a highly positive and significant correlation, as well as in harmful isomiRs, suggesting cooperation within the group. However, between protective and harmful, there is no such a concordance but conversely more negative correlation, suggesting the possible antagonistic effect between protective and harmful isomiRs. We also identified that two isomiRs miR-181a-3p|-3 and miR-181a-3p|2, respectively, belong to the harmful and protective groups, suggesting a bidirectional regulation of their originated archetype—miR-181a-3p. Additionally, we found that the protective isomiRs of miR-21-5p, which is an oncomiR, may be evolved as the tumor suppressors through producing isomiRs to hinder metastasis. In summary, these results displayed the characteristics of the protective isomiRs and their potential for developing the treatment of lung cancer.
Collapse
Affiliation(s)
- Fu-Mei Hsieh
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Su-Ting Lai
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Fong Wu
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chen-Ching Lin
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
5
|
Morsiani C, Terlecki‐Zaniewicz L, Skalicky S, Bacalini MG, Collura S, Conte M, Sevini F, Garagnani P, Salvioli S, Hackl M, Grillari J, Franceschi C, Capri M. Circulating miR-19a-3p and miR-19b-3p characterize the human aging process and their isomiRs associate with healthy status at extreme ages. Aging Cell 2021; 20:e13409. [PMID: 34160893 PMCID: PMC8282272 DOI: 10.1111/acel.13409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/14/2021] [Accepted: 05/08/2021] [Indexed: 12/15/2022] Open
Abstract
Blood circulating microRNAs (c-miRs) are potential biomarkers to trace aging and longevity trajectories to identify molecular targets for anti-aging therapies. Based on a cross-sectional study, a discovery phase was performed on 12 donors divided into four groups: young, old, healthy, and unhealthy centenarians. The identification of healthy and unhealthy phenotype was based on cognitive performance and capabilities to perform daily activities. Small RNA sequencing identified 79 differentially expressed c-miRs when comparing young, old, healthy centenarians, and unhealthy centenarians. Two miRs, that is, miR-19a-3p and miR-19b-3p, were found increased at old age but decreased at extreme age, as confirmed by RT-qPCR in 49 donors of validation phase. The significant decrease of those miR levels in healthy compared to unhealthy centenarians appears to be due to the presence of isomiRs, not detectable with RT-qPCR, but only with a high-resolution technique such as deep sequencing. Bioinformatically, three main common targets of miR-19a/b-3p were identified, that is, SMAD4, PTEN, and BCL2L11, converging into the FoxO signaling pathway, known to have a significant role in aging mechanisms. For the first time, this study shows the age-related increase of plasma miR-19a/b-3p in old subjects but a decrease in centenarians. This decrease is more pronounced in healthy centenarians and was confirmed by the modified pattern of isomiRs comparing healthy and unhealthy centenarians. Thus, our study paves the way for functional studies using c-miRs and isomiRs as additional parameter to track the onset of aging and age-related diseases using new potential biomarkers.
Collapse
Affiliation(s)
- Cristina Morsiani
- DIMES‐Department of Experimental, Diagnostic and Specialty Medicine University of Bologna Bologna Italy
| | - Lucia Terlecki‐Zaniewicz
- Christian Doppler Laboratory for Biotechnology of Skin Aging Vienna Austria
- Department of Biotechnology Institute of Molecular Biotechnology BOKU – University of Natural Resources and Life Sciences Vienna Austria
| | | | | | - Salvatore Collura
- DIMES‐Department of Experimental, Diagnostic and Specialty Medicine University of Bologna Bologna Italy
| | - Maria Conte
- DIMES‐Department of Experimental, Diagnostic and Specialty Medicine University of Bologna Bologna Italy
- Interdepartmental Center "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)" University of Bologna Bologna Italy
| | - Federica Sevini
- DIMES‐Department of Experimental, Diagnostic and Specialty Medicine University of Bologna Bologna Italy
| | - Paolo Garagnani
- DIMES‐Department of Experimental, Diagnostic and Specialty Medicine University of Bologna Bologna Italy
- Applied Biomedical Research Center (CRBA) S. Orsola‐Malpighi Polyclinic Bologna Italy
- CNR Institute of Molecular Genetics "Luigi Luca Cavalli‐Sforza" – Unit of Bologna Bologna Italy
- Department of Laboratory Medicine Clinical Chemistry Karolinska Institutet Karolinska University Hospital Stockholm Sweden
| | - Stefano Salvioli
- DIMES‐Department of Experimental, Diagnostic and Specialty Medicine University of Bologna Bologna Italy
- Interdepartmental Center "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)" University of Bologna Bologna Italy
| | | | - Johannes Grillari
- Christian Doppler Laboratory for Biotechnology of Skin Aging Vienna Austria
- Department of Biotechnology Institute of Molecular Biotechnology BOKU – University of Natural Resources and Life Sciences Vienna Austria
- Austrian Cluster for Tissue Regeneration Vienna Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology Vienna Austria
| | - Claudio Franceschi
- Laboratory of Systems Medicine of Healthy Aging and Department of Applied Mathematics Lobachevsky University Nizhny Novgorod Russia
| | - Miriam Capri
- DIMES‐Department of Experimental, Diagnostic and Specialty Medicine University of Bologna Bologna Italy
- Interdepartmental Center "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)" University of Bologna Bologna Italy
| |
Collapse
|
6
|
isomiRs-Hidden Soldiers in the miRNA Regulatory Army, and How to Find Them? Biomolecules 2020; 11:biom11010041. [PMID: 33396892 PMCID: PMC7823672 DOI: 10.3390/biom11010041] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/22/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023] Open
Abstract
Numerous studies on microRNAs (miRNA) in cancer and other diseases have been accompanied by diverse computational approaches and experimental methods to predict and validate miRNA biological and clinical significance as easily accessible disease biomarkers. In recent years, the application of the next-generation deep sequencing for the analysis and discovery of novel RNA biomarkers has clearly shown an expanding repertoire of diverse sequence variants of mature miRNAs, or isomiRs, resulting from alternative post-transcriptional processing events, and affected by (patho)physiological changes, population origin, individual's gender, and age. Here, we provide an in-depth overview of currently available bioinformatics approaches for the detection and visualization of both mature miRNA and cognate isomiR sequences. An attempt has been made to present in a systematic way the advantages and downsides of in silico approaches in terms of their sensitivity and accuracy performance, as well as used methods, workflows, and processing steps, and end output dataset overlapping issues. The focus is given to the challenges and pitfalls of isomiR expression analysis. Specifically, we address the availability of tools enabling research without extensive bioinformatics background to explore this fascinating corner of the small RNAome universe that may facilitate the discovery of new and more reliable disease biomarkers.
Collapse
|
7
|
Schmartz GP, Kern F, Fehlmann T, Wagner V, Fromm B, Keller A. Encyclopedia of tools for the analysis of miRNA isoforms. Brief Bioinform 2020; 22:6032629. [PMID: 33313643 DOI: 10.1093/bib/bbaa346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/15/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
RNA sequencing data sets rapidly increase in quantity. For microRNAs (miRNAs), frequently dozens to hundreds of billion reads are generated per study. The quantification of annotated miRNAs and the prediction of new miRNAs are leading computational tasks. Now, the increased depth of coverage allows to gain deeper insights into the variability of miRNAs. The analysis of isoforms of miRNAs (isomiRs) is a trending topic, and a range of computational tools for the analysis of isomiRs has been developed. We provide an overview on 27 available computational solutions for the analysis of isomiRs. These include both stand-alone programs (17 tools) and web-based solutions (10 tools) and span a publication time range from 2010 to 2020. Seven of the tools were published in 2019 and 2020, confirming the rising importance of the topic. While most of the analyzed tools work for a broad range of organisms or are completely independent of a reference organism, several tools have been tailored for the analysis of human miRNA data or for plants. While 14 of the tools are general analysis tools of miRNAs, and isomiR analysis is one of their features, the remaining 13 tools have specifically been developed for isomiR analysis. A direct comparison on 20 deep sequencing data sets for selected tools provides insights into the heterogeneity of results. With our work, we provide users a comprehensive overview on the landscape of isomiR analysis tools and in that support the selection of the most appropriate tool for their respective research task.
Collapse
Affiliation(s)
| | | | | | | | - Bastian Fromm
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Andreas Keller
- Saarland Center for Bioinformatics and Chair for Clinical Bioinformatics, Saarland University Building E2.1, 66123 Saarbrücken, Germany
| |
Collapse
|
8
|
Yelick J, Men Y, Jin S, Seo S, Espejo-Porras F, Yang Y. Elevated exosomal secretion of miR-124-3p from spinal neurons positively associates with disease severity in ALS. Exp Neurol 2020; 333:113414. [PMID: 32712030 DOI: 10.1016/j.expneurol.2020.113414] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/24/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRs) are powerful regulators of CNS development and diseases. Plasma and cerebrospinal fluid (CSF) miRs have recently been implicated as potential new sources for biomarker development. Previously we showed that miR-124-3p, an essential miR for neuronal identity, is highly abundant in neuronal exosomes and its expression decreases in spinal cord of ALS model SOD1G93A mice. In the current study, we found a disease associated reduction of miR-124-3p levels specifically in spinal neurons using in situ hybridization. By employing our recently developed exosome reporter mice in combination with sciatic nerve injections, we observed an increased association of miR-124-3p with spinal motor neuron-derived exosomes in SOD1G93A mice, even at the pre-symptomatic stage. Sciatic nerve injection delivered miR-124-3p is also more frequently localized outside of spinal motor neurons in SOD1G93A mice. Subsequent quantitative analysis of miR-124-3p levels in CSF exosomes from ALS patients found a significant correlation between CSF exosomal miR-124-3p levels and disease stage (indicated by the ALSFRS-R score) of (male) ALS patients. These results provide preliminary evidence to support the potential use of CSF exosomal miR-124-3p as a disease stage indicator in ALS.
Collapse
Affiliation(s)
- Julia Yelick
- Tufts University School of Medicine, Department of Neuroscience, 136 Harrison Ave, Boston, MA 02111, United States of America; Tufts University, Graudate School of Biomedical Sciences, 145 Harrison Ave, Boston, MA 02111, United States of America
| | - Yuqin Men
- Tufts University School of Medicine, Department of Neuroscience, 136 Harrison Ave, Boston, MA 02111, United States of America
| | - Shijie Jin
- Tufts University School of Medicine, Department of Neuroscience, 136 Harrison Ave, Boston, MA 02111, United States of America
| | - Sabrina Seo
- Tufts University School of Medicine, Department of Neuroscience, 136 Harrison Ave, Boston, MA 02111, United States of America
| | - Francisco Espejo-Porras
- Tufts University School of Medicine, Department of Neuroscience, 136 Harrison Ave, Boston, MA 02111, United States of America
| | - Yongjie Yang
- Tufts University School of Medicine, Department of Neuroscience, 136 Harrison Ave, Boston, MA 02111, United States of America; Tufts University, Graudate School of Biomedical Sciences, 145 Harrison Ave, Boston, MA 02111, United States of America.
| |
Collapse
|
9
|
Kirchner B, Buschmann D, Paul V, Pfaffl MW. Postprandial transfer of colostral extracellular vesicles and their protein and miRNA cargo in neonatal calves. PLoS One 2020; 15:e0229606. [PMID: 32109241 PMCID: PMC7048281 DOI: 10.1371/journal.pone.0229606] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) such as exosomes are key regulators of intercellular communication that can be found in almost all bio fluids. Although studies in the last decade have made great headway in discerning the role of EVs in many physiological and pathophysiological processes, the bioavailability and impact of dietary EVs and their cargo still remain to be elucidated. Due to its widespread consumption and high content of EV-associated microRNAs and proteins, a major focus in this field has been set on EVs in bovine milk and colostrum. Despite promising in vitro studies in recent years that show high resiliency of milk EVs to degradation and uptake of milk EV cargo in a variety of intestinal and blood cell types, in vivo experiments continue to be inconclusive and sometimes outright contradictive. To resolve this discrepancy, we assessed the potential postprandial transfer of colostral EVs to the circulation of newborn calves by analysing colostrum-specific protein and miRNAs, including specific isoforms (isomiRs) in cells, EV isolations and unfractionated samples from blood and colostrum. Our findings reveal distinct populations of EVs in colostrum and blood from cows that can be clearly separated by density, particle concentration and protein content (BTN1A1, MFGE8). Postprandial blood samples of calves show a time-dependent increase in EVs that share morphological and protein characteristics of colostral EVs. Analysis of miRNA expression profiles by Next-Generation Sequencing gave a different picture however. Although significant postprandial expression changes could only be detected for calf EV samples, expression profiles show very limited overlap with highly expressed miRNAs in colostral EVs or colostrum in general. Taken together our results indicate a selective uptake of membrane-associated protein cargo but not luminal miRNAs from colostral EVs into the circulation of neonatal calves.
Collapse
Affiliation(s)
- Benedikt Kirchner
- Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
- * E-mail:
| | - Dominik Buschmann
- Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
- Institute of Human Genetics, University Hospital, LMU Munich, Munich, Germany
| | - Vijay Paul
- National Research Centre on Yak, ICAR, Dirang, India
| | - Michael W. Pfaffl
- Division of Animal Physiology and Immunology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| |
Collapse
|
10
|
Zhao D. Single nucleotide alterations in MicroRNAs and human cancer-A not fully explored field. Noncoding RNA Res 2020; 5:27-31. [PMID: 32128468 PMCID: PMC7044681 DOI: 10.1016/j.ncrna.2020.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs are ~20 nt long small noncoding RNAs that are processed from stem-looped precursors and function mainly as posttranscriptional regulators of protein coding genes through binding to 3'-untranslated regions of messenger RNAs to inhibit the translation or cause RNA degradation. It is predicted microRNAs could regulate up to half of all human genes and are proved to play important roles in human diseases including cancer. They bind to target mRNAs based on complementary binding which is dominated by the so-called "seed" region which are the 5' 2-8 bases of the microRNA. Due to the small size in nature, even a single nucleotide variation in the precursor region especially those located in the seed regions could show big influence. Here, I summarized and reviewed the current knowledge of these single nucleotide alterations in microRNAs in human cancer including (i) common SNPs in the precursor region, (ii) isomiRs, (iii) somatic mutations of microRNAs. Briefly, this is an underexploited field and clearly, warrants further studies to reveal their biological and clinical significances. I believe they will be key to advancing personalized medicine.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Genetics and Cell Biology, Nankai University School of Life Sciences, Tianjin, 300071, China
| |
Collapse
|
11
|
Coban N, Pirim D, Erkan AF, Dogan B, Ekici B. Hsa-miR-584-5p as a novel candidate biomarker in Turkish men with severe coronary artery disease. Mol Biol Rep 2019; 47:1361-1369. [PMID: 31863331 DOI: 10.1007/s11033-019-05235-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/07/2019] [Indexed: 12/16/2022]
Abstract
Coronary artery disease (CAD) is still the preliminary cause of mortality and morbidity in the developed world. Identification of novel predictive and therapeutic biomarkers is crucial for accurate diagnosis, prognosis and treatment of the CAD. The aim of this study was to detect novel candidate miRNA biomarker that may be used in the management of CAD. We performed miRNA profiling in whole blood samples of angiographically confirmed Turkish men with CAD and non-CAD controls with insignificant coronary stenosis. Validation of microarray results was performed by qRT-PCR in a larger cohort of 62 samples. We subsequently assessed the diagnostic value of the miRNA and correlations of miRNA with clinical parameters. miRNA-target identification and network analyses were conducted by Ingenuity Pathway Analysis (IPA) software. Hsa-miR-584-5p was one of the top significantly dysregulated miRNA observed in miRNA microarray. Men-specific down-regulation (p = 0.040) of hsa-miR-584-5p was confirmed by qRT-PCR. ROC curve analysis highlighted the potential diagnostic value of hsa-miR-584-5p with a power area under the curve (AUC) of 0.714 and 0.643 in men and in total sample, respectively. The expression levels of hsa-miR-584-5p showed inverse correlation with stenosis and Gensini scores. IPA revealed CDH13 as the only CAD related predicted target for the miRNA with biological evidence of its involvement in CAD. This study suggests that hsa-miR-584-5p, known to be tumor suppressor miRNA, as a candidate biomarker for CAD and highlighted its putative role in the CAD pathogenesis. The validation of results in larger samples incorporating functional studies warrant further research.
Collapse
Affiliation(s)
- Neslihan Coban
- Department of Genetics, Aziz Sancar Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey.
| | - Dilek Pirim
- Faculty of Arts & Science, Department of Molecular Biology and Genetics, Bursa Uludag University, Bursa, Turkey
| | - Aycan Fahri Erkan
- Faculty of Medicine, Department of Cardiology, Ufuk University, Ankara, Turkey
| | - Berkcan Dogan
- Institute of Graduate Studies in Sciences, Department of Molecular Biology and Genetics, Istanbul University, Istanbul, Turkey
- Department of Medical Genetics, Bursa Uludag University, Bursa, Turkey
| | - Berkay Ekici
- Faculty of Medicine, Department of Cardiology, Ufuk University, Ankara, Turkey
| |
Collapse
|
12
|
Exosomes: Biogenesis, Composition, Functions, and Their Role in Pre-metastatic Niche Formation. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0170-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Kim H, Kim J, Kim K, Chang H, You K, Kim VN. Bias-minimized quantification of microRNA reveals widespread alternative processing and 3' end modification. Nucleic Acids Res 2019; 47:2630-2640. [PMID: 30605524 PMCID: PMC6411932 DOI: 10.1093/nar/gky1293] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/07/2018] [Accepted: 12/15/2018] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs (miRNAs) modulate diverse biological and pathological processes via post-transcriptional gene silencing. High-throughput small RNA sequencing (sRNA-seq) has been widely adopted to investigate the functions and regulatory mechanisms of miRNAs. However, accurate quantification of miRNAs has been limited owing to the severe ligation bias in conventional sRNA-seq methods. Here, we quantify miRNAs and their variants (known as isomiRs) by an improved sRNA-seq protocol, termed AQ-seq (accurate quantification by sequencing), that utilizes adapters with terminal degenerate sequences and a high concentration of polyethylene glycol (PEG), which minimize the ligation bias during library preparation. Measurement using AQ-seq allows us to correct the previously misannotated 5' end usage and strand preference in public databases. Importantly, the analysis of 5' terminal heterogeneity reveals widespread alternative processing events which have been underestimated. We also identify highly uridylated miRNAs originating from the 3p strands, indicating regulations mediated by terminal uridylyl transferases at the pre-miRNA stage. Taken together, our study reveals the complexity of the miRNA isoform landscape, allowing us to refine miRNA annotation and to advance our understanding of miRNA regulation. Furthermore, AQ-seq can be adopted to improve other ligation-based sequencing methods including crosslinking-immunoprecipitation-sequencing (CLIP-seq) and ribosome profiling (Ribo-seq).
Collapse
Affiliation(s)
- Haedong Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jimi Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Kijun Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyeshik Chang
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Kwontae You
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
14
|
Mavrikaki M, Pantano L, Potter D, Rogers-Grazado MA, Anastasiadou E, Slack FJ, Amr SS, Ressler KJ, Daskalakis NP, Chartoff E. Sex-Dependent Changes in miRNA Expression in the Bed Nucleus of the Stria Terminalis Following Stress. Front Mol Neurosci 2019; 12:236. [PMID: 31636537 PMCID: PMC6788329 DOI: 10.3389/fnmol.2019.00236] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/17/2019] [Indexed: 01/21/2023] Open
Abstract
Anxiety disorders disproportionately affect women compared to men, which may arise from sex differences in stress responses. MiRNAs are small non-coding RNAs known to regulate gene expression through actions on mRNAs. MiRNAs are regulated, in part, by factors such as stress and gonadal sex, and they have been implicated in the pathophysiology of multiple psychiatric disorders. Here, we assessed putative sex differences in miRNA expression in the bed nucleus of the stria terminalis (BNST) - a sexually dimorphic brain region implicated in anxiety - of adult male and female rats that had been exposed to social isolation (SI) stress throughout adolescence. To assess the translational utility of our results, we assessed if childhood trauma in humans resulted in changes in blood miRNA expression that are similar to those observed in rats. Male and female Sprague-Dawley rats underwent SI during adolescence or remained group housed (GH) and were tested for anxiety-like behavior in the elevated plus maze as adults. Small RNA sequencing was performed on tissue extracted from the BNST. Furthermore, we re-analyzed an already available small RNA sequencing data set from the Grady Trauma Project (GTP) from men and women to identify circulating miRNAs that are associated with childhood trauma exposure. Our results indicated that there were greater anxiogenic-like effects and changes in BNST miRNA expression in SI versus GH females compared to SI versus GH males. In addition, we found nine miRNAs that were regulated in both the BNST from SI compared to GH rats and in blood samples from humans exposed to childhood trauma. These studies emphasize the utility of rodent models in studying neurobiological mechanisms underlying psychiatric disorders and suggest that rodent models could be used to identify novel sex-specific pharmacotherapies for anxiety disorders.
Collapse
Affiliation(s)
- Maria Mavrikaki
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, United States
| | - Lorena Pantano
- Harvard Chan Bioinformatics Core, Harvard School of Public Health, Harvard University, Boston, MA, United States
| | - David Potter
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, United States
| | | | - Eleni Anastasiadou
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Frank J. Slack
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Sami S. Amr
- Translational Genomics Core, Partners Healthcare Personalized Medicine, Cambridge, MA, United States
| | - Kerry J. Ressler
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, United States
| | - Nikolaos P. Daskalakis
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, United States
| | - Elena Chartoff
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, United States
| |
Collapse
|
15
|
Landen S, Voisin S, Craig JM, McGee SL, Lamon S, Eynon N. Genetic and epigenetic sex-specific adaptations to endurance exercise. Epigenetics 2019; 14:523-535. [PMID: 30957644 PMCID: PMC6557612 DOI: 10.1080/15592294.2019.1603961] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/03/2019] [Accepted: 04/02/2019] [Indexed: 01/01/2023] Open
Abstract
In recent years, the interest in personalised interventions such as medicine, nutrition, and exercise is rapidly rising to maximize health outcomes and ensure the most appropriate treatments. Exercising regularly is recommended for both healthy and diseased populations to improve health. However, there are sex-specific adaptations to exercise that often are not taken into consideration. While endurance exercise training alters the human skeletal muscle epigenome and subsequent gene expression, it is still unknown whether it does so differently in men and women, potentially leading to sex-specific physiological adaptations. Elucidating sex differences in genetics, epigenetics, gene regulation and expression in response to exercise will have great health implications, as it may enable gene targets in future clinical interventions and may better individualised interventions. This review will cover this topic and highlight the recent findings of sex-specific genetic, epigenetic, and gene expression studies, address the gaps in the field, and offer recommendations for future research.
Collapse
Affiliation(s)
- Shanie Landen
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - Sarah Voisin
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
| | - Jeffrey M Craig
- Centre for Molecular and Medical Research, Deakin University, Geelong Waurn Ponds Campus, Geelong, Australia
- Environmental & Genetic Epidemiology Research, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, Australia
| | - Sean L. McGee
- Metabolic Research Unit, School of Medicine and Centre for Molecular and Medical Research, Deakin University, Geelong, Australia
| | - Séverine Lamon
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Nir Eynon
- Institute for Health and Sport (iHeS), Victoria University, Melbourne, Australia
- Royal Children’s Hospital, Murdoch Children’s Research Institute, Melbourne, Australia
| |
Collapse
|
16
|
Dhanoa JK, Verma R, Sethi RS, Arora JS, Mukhopadhyay CS. Biogenesis and biological implications of isomiRs in mammals- a review. ACTA ACUST UNITED AC 2019. [DOI: 10.1186/s41544-018-0003-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Halushka PV, Goodwin AJ, Halushka MK. Opportunities for microRNAs in the Crowded Field of Cardiovascular Biomarkers. ANNUAL REVIEW OF PATHOLOGY 2019; 14:211-238. [PMID: 30332561 PMCID: PMC6442682 DOI: 10.1146/annurev-pathmechdis-012418-012827] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cardiovascular diseases exist across all developed countries. Biomarkers that can predict or diagnose diseases early in their pathogeneses can reduce their morbidity and mortality in afflicted individuals. microRNAs are small regulatory RNAs that modulate translation and have been identified as potential fluid-based biomarkers across numerous maladies. We describe the current state of cardiovascular disease biomarkers across a range of diseases, including myocardial infarction, acute coronary syndrome, myocarditis, hypertension, heart failure, heart transplantation, aortic stenosis, diabetic cardiomyopathy, atrial fibrillation, and sepsis. We present the current understanding of microRNAs as possible biomarkers in these categories and where their best opportunities exist to enter clinical practice.
Collapse
Affiliation(s)
- Perry V Halushka
- Department of Pharmacology, South Carolina Clinical and Translational Research Institute, Medical University of South Carolina, Charleston, South Carolina 29425, USA;
- Department of Medicine, South Carolina Clinical and Translational Research Institute, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Andrew J Goodwin
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Medical University of South Carolina, Charleston, South Carolina 29425, USA;
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA;
| |
Collapse
|
18
|
Tripathi AM, Singh A, Singh R, Verma AK, Roy S. Modulation of miRNA expression in natural populations of A. thaliana along a wide altitudinal gradient of Indian Himalayas. Sci Rep 2019; 9:441. [PMID: 30679759 PMCID: PMC6345966 DOI: 10.1038/s41598-018-37465-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 11/26/2018] [Indexed: 01/07/2023] Open
Abstract
Plant populations growing along an altitudinal gradient are exposed to different environmental conditions. They are excellent resources to study regulatory mechanisms adopted by plants to respond to different environmental stresses. Regulation by miRNA is one of such strategies. Here, we report how different miRNAs are preferentially expressed in the three natural populations of A. thaliana originating from a wide altitudinal range. The expression level of miRNAs was mostly governed by temperature and radiation. Majority of the identified miRNAs expressed commonly in the three populations. However, 30 miRNAs expressed significantly at different level between the low and the high altitude populations. Most of these miRNAs regulate the genes associated with different developmental processes, abiotic stresses including UV, cold, secondary metabolites, etc. Further, the expression of miR397 and miR858 involved in lignin biosynthesis and regulation of secondary metabolites respectively, may be regulated by light intensity. A few miRNAs expressed at increasing level with the increase in the altitude of the site indicating environment driven tight regulation of these miRNAs. Further, several novel miRNAs and isomiR diversity specific to the Himalayas are reported which might have an adaptive advantage. To the best of our knowledge, this is the first report on miRNA expression from natural plant populations.
Collapse
Affiliation(s)
- Abhinandan Mani Tripathi
- Division of Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, India
| | - Akanksha Singh
- Division of Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, India
| | - Rajneesh Singh
- Division of Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
| | - Ashwani Kumar Verma
- Division of Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
| | - Sribash Roy
- Division of Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India. .,Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi, India.
| |
Collapse
|
19
|
Sabre L, Guptill JT, Russo M, Juel VC, Massey JM, Howard JF, Hobson-Webb LD, Punga AR. Circulating microRNA plasma profile in MuSK+ myasthenia gravis. J Neuroimmunol 2018; 325:87-91. [PMID: 30316681 PMCID: PMC6240475 DOI: 10.1016/j.jneuroim.2018.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022]
Abstract
Muscle-specific tyrosine kinase antibody positive myasthenia gravis (MuSK+ MG) is an immunological subtype with distinctive pathogenic mechanisms and clinical features. The aim of this study was to analyze the circulating plasma microRNA profile of patients with MuSK+ MG. From the discovery cohort miR-210-3p, miR-324-3p and miR-328-3p were further analyzed in the validation cohort. We found a distinct plasma profile of miR-210-3p and miR-324-3p that were significantly decreased in MuSK+ MG patients compared to healthy controls (4.1 ± 1.4 vs 5.1 ± 1.4, p = .006 and 4.7 ± 1.0 vs 5.4 ± 1.3, p = .02). These findings reveal a distinct plasma miRNA profile in MuSK+ MG.
Collapse
Affiliation(s)
- Liis Sabre
- Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden
| | | | - Melissa Russo
- Department of Neurology, Duke University, Durham, USA
| | - Vern C Juel
- Department of Neurology, Duke University, Durham, USA
| | | | - James F Howard
- Department of Neurology, University of North Carolina - Chapel Hill, Chapel Hill, USA
| | | | - Anna Rostedt Punga
- Department of Neuroscience, Clinical Neurophysiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
20
|
Zhao Q, Liu Y, Zhang N, Hu M, Zhang H, Joshi T, Xu D. Evidence for plant-derived xenomiRs based on a large-scale analysis of public small RNA sequencing data from human samples. PLoS One 2018; 13:e0187519. [PMID: 29949574 PMCID: PMC6021041 DOI: 10.1371/journal.pone.0187519] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 05/14/2018] [Indexed: 02/07/2023] Open
Abstract
In recent years, an increasing number of studies have reported the presence of plant miRNAs in human samples, which resulted in a hypothesis asserting the existence of plant-derived exogenous microRNA (xenomiR). However, this hypothesis is not widely accepted in the scientific community due to possible sample contamination and the small sample size with lack of rigorous statistical analysis. This study provides a systematic statistical test that can validate (or invalidate) the plant-derived xenomiR hypothesis by analyzing 388 small RNA sequencing data from human samples in 11 types of body fluids/tissues. A total of 166 types of plant miRNAs were found in at least one human sample, of which 14 plant miRNAs represented more than 80% of the total plant miRNAs abundance in human samples. Plant miRNA profiles were characterized to be tissue-specific in different human samples. Meanwhile, the plant miRNAs identified from microbiome have an insignificant abundance compared to those from humans, while plant miRNA profiles in human samples were significantly different from those in plants, suggesting that sample contamination is an unlikely reason for all the plant miRNAs detected in human samples. This study also provides a set of testable synthetic miRNAs with isotopes that can be detected in situ after being fed to animals.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Computer Science and Technology, Jilin University, Changchun, Jilin, China
- Department of Electrical Engineering and Computer Science, and Christopher S Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Sino-Dutch Biomedical and Information Engineering School, Northeastern University, Shenyang, Liaoning, China
| | - Yuanning Liu
- Department of Computer Science and Technology, Jilin University, Changchun, Jilin, China
| | - Ning Zhang
- MU Informatics Institute, University of Missouri, Columbia, Missouri, United States of America
| | - Menghan Hu
- Department of Biostatistics, Brown University, Providence, Rhode Island, United States of America
| | - Hao Zhang
- Department of Computer Science and Technology, Jilin University, Changchun, Jilin, China
| | - Trupti Joshi
- Department of Electrical Engineering and Computer Science, and Christopher S Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- MU Informatics Institute, University of Missouri, Columbia, Missouri, United States of America
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Dong Xu
- Department of Computer Science and Technology, Jilin University, Changchun, Jilin, China
- Department of Electrical Engineering and Computer Science, and Christopher S Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- MU Informatics Institute, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
21
|
Ren Y, Feng X, Xia X, Zhang Y, Zhang W, Su J, Wang Z, Xu Y, Zhou F. Gender specificity improves the early-stage detection of clear cell renal cell carcinoma based on methylomic biomarkers. Biomark Med 2018; 12:607-618. [PMID: 29707986 DOI: 10.2217/bmm-2018-0084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM The two genders are different ranging from the molecular to the phenotypic levels. But most studies did not use this important information. We hypothesize that the integration of gender information may improve the overall prediction accuracy. MATERIALS & METHODS A comprehensive comparative study was carried out to test the hypothesis. The classification of the stages I + II versus III + IV of the clear cell renal cell carcinoma samples was formulated as an example. RESULTS & CONCLUSION In most cases, female-specific model significantly outperformed both-gender model, as similarly for the male-specific model. Our data suggested that gender information is essential for building biomedical classification models and even a simple strategy of building two gender-specific models may outperform the gender-mixed model.
Collapse
Affiliation(s)
- Yanjiao Ren
- College of Computer Science & Technology, Key Laboratory of Symbolic Computation & Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, China.,College of Information Technology, Jilin Agricultural University, Changchun, Jilin 130118, China
| | - Xin Feng
- College of Computer Science & Technology, Key Laboratory of Symbolic Computation & Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, China
| | - Xin Xia
- College of Software, Jilin University, Changchun, Jilin 130012, China
| | - Yexian Zhang
- College of Computer Science & Technology, Key Laboratory of Symbolic Computation & Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, China
| | - Wenniu Zhang
- College of Computer Science & Technology, Key Laboratory of Symbolic Computation & Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, China
| | - Jing Su
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Zhongyu Wang
- College of Computer Science & Technology, Key Laboratory of Symbolic Computation & Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, China
| | - Ying Xu
- College of Computer Science & Technology, Key Laboratory of Symbolic Computation & Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, China.,Computational Systems Biology Lab, Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, 30602, USA.,College of Public Health, Jilin University, Changchun, Jilin 130012, China
| | - Fengfeng Zhou
- College of Computer Science & Technology, Key Laboratory of Symbolic Computation & Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin 130012, China
| |
Collapse
|
22
|
Wang X, Liao Z, Bai Z, He Y, Duan J, Wei L. MiR-93-5p Promotes Cell Proliferation through Down-Regulating PPARGC1A in Hepatocellular Carcinoma Cells by Bioinformatics Analysis and Experimental Verification. Genes (Basel) 2018; 9:genes9010051. [PMID: 29361788 PMCID: PMC5793202 DOI: 10.3390/genes9010051] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/15/2018] [Accepted: 01/16/2018] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PPARGC1A, formerly known as PGC-1a) is a transcriptional coactivator and metabolic regulator. Previous studies are mainly focused on the association between PPARGC1A and hepatoma. However, the regulatory mechanism remains unknown. A microRNA associated with cancer (oncomiR), miR-93-5p, has recently been found to play an essential role in tumorigenesis and progression of various carcinomas, including liver cancer. Therefore, this paper aims to explore the regulatory mechanism underlying these two proteins in hepatoma cells. Firstly, an integrative analysis was performed with miRNA–mRNA modules on microarray and The Cancer Genome Atlas (TCGA) data and obtained the core regulatory network and miR-93-5p/PPARGC1A pair. Then, a series of experiments were conducted in hepatoma cells with the results including miR-93-5p upregulated and promoted cell proliferation. Thirdly, the inverse correlation between miR-93-5p and PPARGC1A expression was validated. Finally, we inferred that miR-93-5p plays an essential role in inhibiting PPARGC1A expression by directly targeting the 3′-untranslated region (UTR) of its mRNA. In conclusion, these results suggested that miR-93-5p overexpression contributes to hepatoma development by inhibiting PPARGC1A. It is anticipated to be a promising therapeutic strategy for patients with liver cancer in the future.
Collapse
Affiliation(s)
- Xinrui Wang
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China.
| | - Zhijun Liao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China.
| | - Zhimin Bai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China.
- Department of Clinical Laboratory, Jinjiang Municipal Hospital, Jinjiang 362200, China.
| | - Yan He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China.
| | - Juan Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China.
| | - Leyi Wei
- School of Computer Science and Technology, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
23
|
Yu F, Pillman KA, Neilsen CT, Toubia J, Lawrence DM, Tsykin A, Gantier MP, Callen DF, Goodall GJ, Bracken CP. Naturally existing isoforms of miR-222 have distinct functions. Nucleic Acids Res 2017; 45:11371-11385. [PMID: 28981911 PMCID: PMC5737821 DOI: 10.1093/nar/gkx788] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/31/2017] [Indexed: 12/14/2022] Open
Abstract
Deep-sequencing reveals extensive variation in the sequence of endogenously expressed microRNAs (termed ‘isomiRs’) in human cell lines and tissues, especially in relation to the 3′ end. From the immunoprecipitation of the microRNA-binding protein Argonaute and the sequencing of associated small RNAs, we observe extensive 3′-isomiR variation, including for miR-222 where the majority of endogenously expressed miR-222 is extended by 1–5 nt compared to the canonical sequence. We demonstrate this 3′ heterogeneity has dramatic implications for the phenotype of miR-222 transfected cells, with longer isoforms promoting apoptosis in a size (but not 3′ sequence)-dependent manner. The transfection of longer miR-222 isomiRs did not induce an interferon response, but did downregulate the expression of many components of the pro-survival PI3K-AKT pathway including PIK3R3, a regulatory subunit whose knockdown phenocopied the expression of longer 222 isoforms in terms of apoptosis and the inhibition of other PI3K-AKT genes. As this work demonstrates the capacity for 3′ isomiRs to mediate differential functions, we contend more attention needs to be given to 3′ variance given the prevalence of this class of isomiR.
Collapse
Affiliation(s)
- Feng Yu
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia
| | - Katherine A Pillman
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA 5000, Australia
| | - Corine T Neilsen
- School of Health, Medical and Applied Sciences, Central Queensland University, Queensland 4000, Australia
| | - John Toubia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA 5000, Australia
| | - David M Lawrence
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA 5000, Australia
| | - Anna Tsykin
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA 5000, Australia
| | - Michael P Gantier
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria 3168, Australia
| | - David F Callen
- School of Medicine, Discipline of Medicine, University of Adelaide, SA 5000, Australia
| | - Gregory J Goodall
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia.,School of Medicine, Discipline of Medicine, University of Adelaide, SA 5000, Australia
| | - Cameron P Bracken
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA 5000, Australia.,School of Medicine, Discipline of Medicine, University of Adelaide, SA 5000, Australia
| |
Collapse
|
24
|
Small RNAs in Circulating Exosomes of Cancer Patients: A Minireview. High Throughput 2017; 6:ht6040013. [PMID: 29485611 PMCID: PMC5748592 DOI: 10.3390/ht6040013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/18/2017] [Accepted: 09/29/2017] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) secreted from many cell types play important roles in intercellular communication, both as paracrine and endocrine factors, as they can circulate in biological fluids, including plasma. Amid EVs, exosomes are actively secreted vesicles that contain proteins, lipids, soluble factors, and nucleic acids, including microRNAs (miRNAs) and other classes of small RNAs (sRNA). miRNAs are prominent post-transcriptional regulators of gene expression and epigenetic silencers of transcription. We concisely review the roles of miRNAs in cell-fate determination and development and their regulatory activity on almost all the processes and pathways controlling tumor formation and progression. Next, we consider the evidence linking exosomes to tumor progression, particularly to the setting-up of permissive pre-metastatic niches. The study of exosomes in patients with different survival and therapy response can inform on the possible correlations between exosomal cargo and disease features. Moreover, the exploration of circulating exosomes as possible sources of non-invasive biomarkers could give new implements for anti-cancer therapy and metastasis prevention. Since the characterization of sRNAs in exosomes of cancer patients sparks opportunities to better understand their roles in cancer, we briefly present current experimental and computational protocols for sRNAs analysis in circulating exosomes by RNA-seq.
Collapse
|
25
|
Tay JW, James I, Hughes QW, Tiao JY, Baker RI. Identification of reference miRNAs in plasma useful for the study of oestrogen-responsive miRNAs associated with acquired Protein S deficiency in pregnancy. BMC Res Notes 2017; 10:312. [PMID: 28743297 PMCID: PMC5526281 DOI: 10.1186/s13104-017-2636-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 07/17/2017] [Indexed: 12/13/2022] Open
Abstract
Background Accumulating evidence indicate that circulating microRNAs (miRNAs) are useful independent non-invasive biomarkers, with unique miRNA signatures defined for various pathophysiological conditions. However, there are no established universal housekeeping miRNAs for the normalisation of miRNAs in body fluids. We have previously identified an oestrogen-responsive miRNA, miR-494, in regulating the anticoagulant, Protein S, in HuH-7 liver cells. Moreover, increased thrombotic risk associated with elevated circulating oestrogen levels is frequently observed in pregnant women and oral contraceptive users. In order to identify other oestrogen-responsive miRNAs, including miR-494, that may be indicative of increased thrombotic risk in plasma, we used nanoString analysis to identify robust and stable endogenous reference miRNAs for the study of oestrogen-responsive miRNAs in plasma. Results We compared the plasma miRNA expression profile of individuals with: (1) Low circulating oestrogens (healthy men and non-pregnant women not taking oral contraceptives), (2) High circulating synthetic oestrogens, (women taking oral contraceptives) and (3) High circulating natural oestrogens (pregnant females >14 weeks gestation). From the nanoString analyses, 11 candidate reference miRNAs which exhibited high counts and not significantly differentially expressed between groups were selected for validation using realtime quantitative polymerase chain reaction (RT-qPCR) and digital droplet PCR (DDPCR) in pooled plasma samples, and the stability of their expression evaluated using NormFinder and BestKeeper algorithms. Four miRNAs (miR-25-5p, miR-188-5p, miR-222-3p and miR-520f) demonstrated detectable stable expression between groups and were further analysed by RT-qPCR in individual plasma samples, where miR-188-5p and miR-222-3p expression were identified as a stable pair of reference genes. The miRNA reference panel consisting of synthetic spike-ins cel-miR-39 and ath-miR159a, and reference miRNAs, miR-188-5p and miR-222-3p was useful in evaluating fold-change of the pregnancy-associated miRNA, miR-141-3p, between groups. Conclusion The miRNA reference panel will be useful for normalising qPCR data comparing miRNA expression between men and women, non-pregnant and pregnant females, and the potential effects of endogenous and synthetic oestrogens on plasma miRNA expression. Electronic supplementary material The online version of this article (doi:10.1186/s13104-017-2636-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- J W Tay
- Western Australian Centre for Thrombosis and Haemostasis, Murdoch University, Murdoch, Australia. .,Perth Blood Institute, Nedlands, Australia.
| | - I James
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Q W Hughes
- Western Australian Centre for Thrombosis and Haemostasis, Murdoch University, Murdoch, Australia.,Perth Blood Institute, Nedlands, Australia
| | - J Y Tiao
- Western Australian Centre for Thrombosis and Haemostasis, Murdoch University, Murdoch, Australia.,Perth Blood Institute, Nedlands, Australia
| | - R I Baker
- Western Australian Centre for Thrombosis and Haemostasis, Murdoch University, Murdoch, Australia.,Perth Blood Institute, Nedlands, Australia
| |
Collapse
|
26
|
Pawlina K, Gurgul A, Szmatoła T, Koch C, Mählmann K, Witkowski M, Bugno-Poniewierska M. Comprehensive characteristics of microRNA expression profile of equine sarcoids. Biochimie 2017; 137:20-28. [DOI: 10.1016/j.biochi.2017.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/28/2017] [Indexed: 12/21/2022]
|
27
|
Genome-wide identification and characterization of miRNAome from tomato (Solanum lycopersicum) roots and root-knot nematode (Meloidogyne incognita) during susceptible interaction. PLoS One 2017; 12:e0175178. [PMID: 28426683 PMCID: PMC5398497 DOI: 10.1371/journal.pone.0175178] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/21/2017] [Indexed: 11/19/2022] Open
Abstract
Root-knot nematodes (RKNs, Meloidogyne spp.) are the most damaging plant parasites causing severe losses to crop production. The present study reports genome-wide identification and characterization of both tomato and RKN miRNAs simultaneously from RKN-infected susceptible tomato roots using high-throughput sequencing technique. RNAseq data from 11 small RNA libraries derived from 5 disease development stages identified 281 novel miRNAs of tomato in addition to 52 conserved and 4 variants of conserved miRNAs. Additionally, the same set of RNAseq data identified 38 conserved and 290 novel RKN miRNAs. Both tomato and RKN miRNAs showed differential expression at 5 stages of disease development based on digital expression profiles. In tomato, further validation through qRT-PCR confirmed that majority of miRNAs were significantly upregulated during susceptible response whereas downregulated during resistance response. The predicted targets of 8 conserved and 1 novel miRNAs were validated through 5’RLM-RACE. A negative correlation between expression profiles of a few conserved miRNAs (miR156, miR159, miR164 and miR396) and their targets (SBP, GAMYB-like, NAC and GRF1 transcription factor) was confirmed. A novel Sly_miRNA996 also showed a negative correlation with its target MYB-like transcription factor. These results indicate that the conserved and novel tomato miRNAs are involved in regulating developmental changes in host root during RKN infection. In RKN, the targets of conserved miRNAs were also predicted and a few of their predicted target genes are known to be involved in nematode parasitism. Further, the potential roles of both tomato and RKN miRNAs have been discussed.
Collapse
|
28
|
Sun Z, Hao T, Tian J. Identification of exosomes and its signature miRNAs of male and female Cynoglossus semilaevis. Sci Rep 2017; 7:860. [PMID: 28408738 PMCID: PMC5429842 DOI: 10.1038/s41598-017-00884-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/16/2017] [Indexed: 12/20/2022] Open
Abstract
Exosomes are small membrane particles which are widely found in various cell lines and physiological fluids in mammalian. MicroRNAs (miRNAs) enclosed in exosomes have been identified as proper signatures for many diseases and response to therapies. However, the composition of exosomes and enclosed miRNAs in fishes has not been investigated. Cynoglossus semilaevis is an important commercial flatfish with ambiguous distinction between males and females before sex maturation, which leads to screening difficulty in reproduction and cultivation. An effective detection method was required for sex differentiation of C. semilaevis. In this work, we successfully identified exosomes in C. semilaevis serum. The analysis of nucleotide composition showed that miRNA dominated in exosomes. Thereafter the miRNA profiles in exosomes from males and females were sequenced and compared to identify the signature miRNAs corresponding to sex differentiation. The functions of signature miRNAs were analyzed by target matching and annotation. Furthermore, 7 miRNAs with high expression in males were selected from signature miRNAs as the markers for sex identification with their expression profiles verified by real time quantitative PCR. Exosomes were first found in fish serum in this work. Investigation of marker miRNAs supplies an effective index for the filtration of male and female C. semilaevis in cultivation.
Collapse
Affiliation(s)
- Zhanpeng Sun
- College of Life Sciences, Zhejiang University, Zhejiang, 310058, P.R. China
| | - Tong Hao
- Tianjin Key Laboratory of Animal and Plant Resistance/College of Life Sciences, Tianjin Normal University, Tianjin, 300387, P.R. China.
| | - Jinze Tian
- Tianjin Key Laboratory of Animal and Plant Resistance/College of Life Sciences, Tianjin Normal University, Tianjin, 300387, P.R. China
| |
Collapse
|
29
|
Huang H, Roh J, Davis CD, Wang TTY. An improved method to quantitate mature plant microRNA in biological matrices using modified periodate treatment and inclusion of internal controls. PLoS One 2017; 12:e0175429. [PMID: 28399134 PMCID: PMC5388493 DOI: 10.1371/journal.pone.0175429] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/24/2017] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs (miRNAs) ubiquitously exist in microorganisms, plants, and animals, and appear to modulate a wide range of critical biological processes. However, no definitive conclusion has been reached regarding the uptake of exogenous dietary small RNAs into mammalian circulation and organs and cross-kingdom regulation. One of the critical issues is our ability to assess and distinguish the origin of miRNAs. Although periodate oxidation has been used to differentiate mammalian and plant miRNAs, validation of treatment efficiency and the inclusion of proper controls for this method were lacking in previous studies. This study aimed to address: 1) the efficiency of periodate treatment in a plant or mammalian RNA matrix, and 2) the necessity of inclusion of internal controls. We designed and tested spike-in synthetic miRNAs in various plant and mammalian matrices and showed that they can be used as a control for the completion of periodate oxidation. We found that overloading the reaction system with high concentration of RNA resulted in incomplete oxidation of unmethylated miRNA. The abundant miRNAs from soy and corn were analyzed in the plasma, liver, and fecal samples of C57BL/6 mice fed a corn and soy-based chow diet using our improved methodology. The improvement resulted in the elimination of the false positive detection in the liver, and we did not detect plant miRNAs in the mouse plasma or liver samples. In summary, an improved methodology was developed for plant miRNA detection that appears to work well in different sample matrices.
Collapse
Affiliation(s)
- Haiqiu Huang
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, USDA-ARS, Beltsville, Maryland, United States of America
- Office of Dietary Supplements, NIH, Bethesda, Maryland, United States of America
| | - Jamin Roh
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, USDA-ARS, Beltsville, Maryland, United States of America
| | - Cindy D. Davis
- Office of Dietary Supplements, NIH, Bethesda, Maryland, United States of America
| | - Thomas T. Y. Wang
- Diet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, USDA-ARS, Beltsville, Maryland, United States of America
| |
Collapse
|