1
|
Tubeeckx MRL, De Keulenaer GW, Heidbuchel H, Segers VFM. Pathophysiology and clinical relevance of atrial myopathy. Basic Res Cardiol 2024; 119:215-242. [PMID: 38472506 DOI: 10.1007/s00395-024-01038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/14/2024]
Abstract
Atrial myopathy is a condition that consists of electrical, structural, contractile, and autonomic remodeling of the atria and is the substrate for development of atrial fibrillation, the most common arrhythmia. Pathophysiologic mechanisms driving atrial myopathy are inflammation, oxidative stress, atrial stretch, and neurohormonal signals, e.g., angiotensin-II and aldosterone. These mechanisms initiate the structural and functional remodeling of the atrial myocardium. Novel therapeutic strategies are being developed that target the pathophysiologic mechanisms of atrial myopathy. In this review, we will discuss the pathophysiology of atrial myopathy, as well as diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Michiel R L Tubeeckx
- Laboratory of Physiopharmacology, Universiteitsplein 1, Building T (2nd Floor), 2610, Antwerp, Belgium.
| | - Gilles W De Keulenaer
- Laboratory of Physiopharmacology, Universiteitsplein 1, Building T (2nd Floor), 2610, Antwerp, Belgium
- Department of Cardiology, ZNA Middelheim Hospital Antwerp, Antwerp, Belgium
| | - Hein Heidbuchel
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, University Hospital Antwerp, Antwerp, Belgium
| | - Vincent F M Segers
- Laboratory of Physiopharmacology, Universiteitsplein 1, Building T (2nd Floor), 2610, Antwerp, Belgium
- Department of Cardiology, University Hospital Antwerp, Antwerp, Belgium
| |
Collapse
|
2
|
Panagiotides NG, Poledniczek M, Andreas M, Hülsmann M, Kocher AA, Kopp CW, Piechota-Polanczyk A, Weidenhammer A, Pavo N, Wadowski PP. Myocardial Oedema as a Consequence of Viral Infection and Persistence-A Narrative Review with Focus on COVID-19 and Post COVID Sequelae. Viruses 2024; 16:121. [PMID: 38257821 PMCID: PMC10818479 DOI: 10.3390/v16010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Microvascular integrity is a critical factor in myocardial fluid homeostasis. The subtle equilibrium between capillary filtration and lymphatic fluid removal is disturbed during pathological processes leading to inflammation, but also in hypoxia or due to alterations in vascular perfusion and coagulability. The degradation of the glycocalyx as the main component of the endothelial filtration barrier as well as pericyte disintegration results in the accumulation of interstitial and intracellular water. Moreover, lymphatic dysfunction evokes an increase in metabolic waste products, cytokines and inflammatory cells in the interstitial space contributing to myocardial oedema formation. This leads to myocardial stiffness and impaired contractility, eventually resulting in cardiomyocyte apoptosis, myocardial remodelling and fibrosis. The following article reviews pathophysiological inflammatory processes leading to myocardial oedema including myocarditis, ischaemia-reperfusion injury and viral infections with a special focus on the pathomechanisms evoked by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In addition, clinical implications including potential long-term effects due to viral persistence (long COVID), as well as treatment options, are discussed.
Collapse
Affiliation(s)
- Noel G. Panagiotides
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Michael Poledniczek
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| | - Martin Andreas
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.A.); (A.A.K.)
| | - Martin Hülsmann
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Alfred A. Kocher
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.A.); (A.A.K.)
| | - Christoph W. Kopp
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| | | | - Annika Weidenhammer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Noemi Pavo
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Patricia P. Wadowski
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
3
|
Guo Y, Sun Z, Chen M, Lun J. LncRNA TUG1 Regulates Proliferation of Cardiac Fibroblast via the miR-29b-3p/TGF-β1 Axis. Front Cardiovasc Med 2021; 8:646806. [PMID: 34540908 PMCID: PMC8446361 DOI: 10.3389/fcvm.2021.646806] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 07/12/2021] [Indexed: 01/22/2023] Open
Abstract
Background: Atrial fibrillation (AF) is a very common clinical arrhythmia, accompanied by the overproliferation of cardiac fibroblasts (CFs). This study aimed to investigate the role of the long non-coding RNA(lncRNA) taurine upregulated gene 1 (TUG1) in the proliferation of CFs and further investigated its underlying mechanism. Methods: One hundred four paroxysmal AF patients and 94 healthy controls were recruited. Human cardiac fibroblasts (HCFs) were applied to establish an AF cell model through treatment with angiotensin II (AngII). qRT-PCR was used for the measurement of gene levels. The cell proliferation was detected by cell counting kit-8 (CCK-8). Luciferase reporter assay was performed for target gene analysis. Results: Elevated levels of TUG1 and low expression of miR-29b-3p were detected in the serum of AF patients compared with the healthy controls. Pearson's correlation analysis exhibited an inverse relationship between TUG1 and miR-29b-3p expression in AF patients (r = −7.106, p < 0.001). Knockdown of TUG1 inhibited AngII-induced CF proliferation. Taurine upregulated gene 1 (TUG1) functions as a competing endogenous RNA (ceRNA) for miR-29b-3p, and downregulation of miR-29b-3p reversed the role of TUG1 in CF proliferation. TGF-β1 is a direct target gene of miR-29b-3p. Conclusions: Long non-coding RNA taurine upregulated gene 1 is a key regulator in the occurrence of AF. Slicing TUG1 inhibits CF proliferation by regulating the miR-29b-3p/TGF-β1 axis.
Collapse
Affiliation(s)
- Yini Guo
- First Department of Cardiology, Changle People's Hospital, Weifang, China
| | - Zongli Sun
- Second Department of Cardiology, Changle People's Hospital, Weifang, China
| | - Minghe Chen
- Second Department of Cardiology, Changle People's Hospital, Weifang, China
| | - Junjie Lun
- Department of Oncology, Changle People's Hospital, Weifang, China
| |
Collapse
|
4
|
Tidbury N, Preston J, Ding WY, Rivera-Caravaca JM, Marín F, Lip GYH. Utilizing biomarkers associated with cardiovascular events in atrial fibrillation: informing a precision medicine response. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1804864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Nicola Tidbury
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
| | - Joshua Preston
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
| | - Wern Yew Ding
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
| | - José Miguel Rivera-Caravaca
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
- Department of Cardiology, Hospital Clínico Universitario Virgen De La Arrixaca, University of Murcia, Instituto Murciano De Investigación Biosanitaria (Imib-arrixaca), CIBERCV, Murcia, Spain
| | - Francisco Marín
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
- Department of Cardiology, Hospital Clínico Universitario Virgen De La Arrixaca, University of Murcia, Instituto Murciano De Investigación Biosanitaria (Imib-arrixaca), CIBERCV, Murcia, Spain
| | - Gregory Y. H. Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
- Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
5
|
Stone E, Kiat H, McLachlan CS. Atrial fibrillation in COVID-19: A review of possible mechanisms. FASEB J 2020; 34:11347-11354. [PMID: 33078484 DOI: 10.1096/fj.202001613] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022]
Abstract
A relationship between COVID-19 infection and an increasing incidence of atrial fibrillation has been observed. However, the underlying pathophysiology as a precipitant to AF has not been reviewed. This paper will consider the possible pathological and immunological AF mechanisms as a result, of COVID-19 infection. We discuss the role myocardial microvascular pericytes expressing the ACE-2 receptor and their potential for an organ-specific cardiac involvement with COVID-19. Dysfunctional microvascular support by pericytes or endothelial cells may increase the propensity for AF via increased myocardial inflammation, fibrosis, increased tissue edema, and interstitial hydrostatic pressure. All of these factors can lead to electrical perturbances at the tissue and cellular level. We also consider the contribution of Angiotensin, pulmonary hypertension, and regulatory T cells as additional contributors to AF during COVID-19 infection. Finally, reference is given to two common drugs, corticosteroids and metformin, in COVID-19 and how they might influence AF incidence.
Collapse
Affiliation(s)
- Elijah Stone
- Health Vertical, Centre for Healthy Futures, Torrens University Australia, Sydney, NSW, Australia
| | - Hosen Kiat
- Health Vertical, Centre for Healthy Futures, Torrens University Australia, Sydney, NSW, Australia.,Cardiac Health Institute, Eastwood, NSW, Australia.,The Australian School of Advanced Medicine, 2 Technology Place, Macquarie University, Sydney, NSW, Australia
| | - Craig S McLachlan
- Health Vertical, Centre for Healthy Futures, Torrens University Australia, Sydney, NSW, Australia
| |
Collapse
|
6
|
Manfrini O, Cenko E, Ricci B, Bugiardini R. Post Cardiovascular Surgery Atrial Fibrillation. Biomarkers Determining Prognosis. Curr Med Chem 2019; 26:916-924. [DOI: 10.2174/0929867324666170727104930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/14/2016] [Accepted: 12/22/2016] [Indexed: 12/30/2022]
Abstract
<p>Background: New onset of atrial fibrillation (AF) after cardiovascular surgery is associated with increased risk of complications and length of hospital stay. Identification of patients at high risk of post-operative AF (POAF) may help to act with preventive strategies having clinical and economic relevance. </P><P> Objective: The focus of this review is to summarize findings on biomarkers of myocardial fibrosis (PICP and PIIINP), profibrotic mediators (TGF-beta1), extracellular matrix remodeling (MMP-9), myocardial stretch (BNP and NTpro-BNP), inflammation (interleukins, C-reactive protein and sCD40L), and myocardial necrosis (high-sensitivity troponin T), biomarkers, that can be used in clinical practice to stratify patients at risk for POAF. </P><P> Method: We searched English-language studies on MEDLINE and PubMed. Evidence synthesis was based on cohort studies, clinical trials and meta-analysis data. International clinical practice guidelines were reviewed, as well. </P><P> Results: Factors such as cardiac remodelling, atrial pressure, surgery trauma, inflammation, oxidative stress, and sympathetic/parasympathetic activation have been implicated in the development of POAF. On the basis of multifactorial mechanism underlying the onset of POAF, several studies have investigated the predictive value of some serum biomarkers. To date, there are promising preliminary data on the clinical utility of PICP, PIINP, TGF-β1 and sCD40L, whereas data on NT-proBNP, BNP, CRP, IL- 6, and hs-cTnT are controversial. </P><P> Conclusion: Although some studies have shown promising results, there is a need for future larger studies with longer follow-up, before applying biomarkers as tools for POAF risk-stratification into clinical practice.</p>
Collapse
Affiliation(s)
- Olivia Manfrini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Edina Cenko
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Beatrice Ricci
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Raffaele Bugiardini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| |
Collapse
|
7
|
Najjari M, Vaezi G, Hojati V, Mousavi Z, Bakhtiarian A, Nikoui V. Involvement of IL-1β and IL-6 in antiarrhythmic properties of atorvastatin in ouabain-induced arrhythmia in rats. Immunopharmacol Immunotoxicol 2018; 40:256-261. [PMID: 29486618 DOI: 10.1080/08923973.2018.1440592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE Evidence show that statins possess wide beneficial cardioprotective and anti-inflammatory effects; therefore, in the present experiment, we investigated the antiarrhythmic properties of atorvastatin in ouabain-induced arrhythmia in isolated rat atria and the role of several inflammatory cytokines in this effect. MATERIALS AND METHODS Male rats were pretreated with either of atorvastatin (10 mg/kg) or vehicle, orally once daily for 6 weeks. After induction of anesthesia, we isolated the atria and after incubation with ouabain, time of onset of arrhythmia and asystole as well as atrial beating rate and contractile force were recorded. We also measured the atrial levels of IL-1β, IL-6, and TNF-α after the injection of ouabain to animals. RESULTS Pretreatment with atorvastatin significantly delayed the onset of arrhythmia and asystole compared with vehicle-treated group (p < .01, p < .001, respectively). Incubation of ouabain boosted both atrial beating rate and contractile force in vehicle-treated group (p < .05), while these responses in atorvastatin-treated group were not significant (p > .05). Injection of ouabain elevated the atrial levels of IL-1β, IL-6, and TNF-α, while pretreatment of animals with atorvastatin could reverse the ouabain-induced increase in atrial IL-1β and IL-6 (p < .01 and p < .05, respectively). CONCLUSIONS It is concluded that observed antiarrhythmic effects of atorvastatin might be attributed to modulation of some inflammatory cytokines, at least IL-1β and IL-6.
Collapse
Affiliation(s)
- Mahya Najjari
- a Department of Biology, Damghan Branch , Islamic Azad University , Damghan , Iran
| | - Gholamhassan Vaezi
- a Department of Biology, Damghan Branch , Islamic Azad University , Damghan , Iran
| | - Vida Hojati
- a Department of Biology, Damghan Branch , Islamic Azad University , Damghan , Iran
| | - Zahra Mousavi
- b Department of Pharmacology-Toxicology, Faculty of Pharmacy , Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS) , Tehran , Iran
| | - Azam Bakhtiarian
- c Department of Pharmacology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran.,d Experimental Medicine Research Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Vahid Nikoui
- e Razi Drug Research Center , Iran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
8
|
The role of pro-fibrotic biomarkers in paroxysmal and persistent atrial fibrillation. Cytokine 2018; 103:63-68. [DOI: 10.1016/j.cyto.2017.12.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/14/2017] [Accepted: 12/26/2017] [Indexed: 01/05/2023]
|
9
|
Dzeshka MS, Shahid F, Shantsila A, Lip GYH. Hypertension and Atrial Fibrillation: An Intimate Association of Epidemiology, Pathophysiology, and Outcomes. Am J Hypertens 2017; 30:733-755. [PMID: 28338788 DOI: 10.1093/ajh/hpx013] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 01/18/2023] Open
Abstract
Atrial fibrillation (AF) is the most prevalent sustained arrhythmia found in clinical practice. AF rarely exists as a single entity but rather as part of a diverse clinical spectrum of cardiovascular diseases, related to structural and electrical remodeling within the left atrium, leading to AF onset, perpetuation, and progression. Due to the high overall prevalence within the AF population arterial hypertension plays a significant role in the pathogenesis of AF and its complications. Fibroblast proliferation, apoptosis of cardiomyocytes, gap junction remodeling, accumulation of collagen both in atrial and ventricular myocardium all accompany ageing-related structural remodeling with impact on electrical activity. The presence of hypertension also stimulates oxidative stress, systemic inflammation, rennin-angiotensin-aldosterone and sympathetic activation, which further drives the remodeling process in AF. Importantly, both hypertension and AF independently increase the risk of cardiovascular and cerebrovascular events, e.g., stroke and myocardial infarction. Given that both AF and hypertension often present with limited on patient wellbeing, treatment may be delayed resulting in development of complications as the first clinical manifestation of the disease. Antithrombotic prevention in AF combined with strict blood pressure control is of primary importance, since stroke risk and bleeding risk are both greater with underlying hypertension.
Collapse
Affiliation(s)
- Mikhail S Dzeshka
- University of Birmingham Institute of Cardiovascular Sciences, City Hospital, Birmingham, UK
- Grodno State Medical University, Grodno, Belarus
| | - Farhan Shahid
- University of Birmingham Institute of Cardiovascular Sciences, City Hospital, Birmingham, UK
| | - Alena Shantsila
- University of Birmingham Institute of Cardiovascular Sciences, City Hospital, Birmingham, UK
| | - Gregory Y H Lip
- University of Birmingham Institute of Cardiovascular Sciences, City Hospital, Birmingham, UK
- Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
10
|
The Predictive Role of Inflammatory Biomarkers in Atrial Fibrillation as Seen through Neutrophil-Lymphocyte Ratio Mirror. J Biomark 2016; 2016:8160393. [PMID: 27446629 PMCID: PMC4947500 DOI: 10.1155/2016/8160393] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 12/25/2022] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia and is responsible for significant disease burden worldwide. Current evidence has suggested that systemic inflammatory response plays a crucial role in the initiation, maintenance, and progression of AF. So, recent efforts have been directed in search of measurable inflammatory biomarkers as additional tools in severity and prognosis assessment of AF. A simple, and easily obtainable, inflammatory marker is the neutrophil-lymphocyte ratio (NLR), which has shown good performance in preliminary studies as a potential prognostic biomarker in patients with AF. In this work, we performed a thorough review of clinical studies that evaluated the role of C-reactive protein (CRP), interleukin-6 (IL-6), and NLR as predictors of outcomes in AF. We gave a particular emphasis on the NLR because it is a simpler, widely available, and inexpensive biomarker.
Collapse
|