1
|
Aleem AW, Rai MF, Cai L, Brophy RH. Gene Expression in Glenoid Articular Cartilage Varies Across Acute Instability, Chronic Instability, and Osteoarthritis. J Bone Joint Surg Am 2023:00004623-990000000-00776. [PMID: 37011069 DOI: 10.2106/jbjs.22.01124] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
BACKGROUND Shoulder instability is a common pathology associated with an elevated risk of osteoarthritis (OA). Little is known about gene expression in the cartilage of the glenohumeral joint after dislocation events, particularly as it relates to the risk of posttraumatic OA. This study tested the hypothesis that gene expression in glenoid cartilage varies among acute instability (<3 dislocations), chronic instability (≥3 dislocations), and OA. METHODS Articular cartilage was collected from the anteroinferior glenoid of consenting patients undergoing shoulder stabilization surgery (n = 17) or total shoulder arthroplasty (n = 16). Digital quantitative polymerase chain reaction was used to assess the relative expression of 57 genes (36 genes from OA risk allele studies, 21 genes from differential expression studies), comparing (1) OA versus instability (acute and chronic combined), (2) acute versus chronic instability, (3) OA versus acute instability, and (4) OA versus chronic instability. RESULTS The expression of 11 genes from OA risk allele studies and 9 genes from differential expression studies was significantly different between cartilage from patients with instability and those with OA. Pro-inflammatory genes from differential expression studies and genes from OA risk allele studies were more highly expressed in cartilage in the OA group compared with the instability group, which expressed higher levels of extracellular matrix and pro-anabolic genes. The expression of 14 genes from OA risk allele studies and 4 genes from differential expression studies, including pro-inflammatory genes, anti-anabolic genes, and multiple genes from OA risk allele studies, was higher in the acute instability group compared with the chronic instability group. Cartilage in the OA group displayed higher expression of CCL3, CHST11, GPR22, PRKAR2B, and PTGS2 than cartilage in the group with acute or chronic instability. Whereas cartilage in both the acute and chronic instability groups had higher expression of collagen genes, cartilage in the OA group had expression of a subset of genes from OA risk allele studies or from differential expression studies that was lower than in the acute group and higher than in the chronic group. CONCLUSIONS Glenoid cartilage has an inflammatory and catabolic phenotype in shoulders with OA but an anabolic phenotype in shoulders with instability. Cartilage from shoulders with acute instability displayed greater (cellular) metabolic activity compared with shoulders with chronic instability. CLINICAL RELEVANCE This exploratory study identified genes of interest, such as CCL3, CHST11, GPR22, PRKAR2B, and PTGS2, that have elevated expression in osteoarthritic glenoid cartilage. These findings provide new biological insight into the relationship between shoulder instability and OA, which could lead to strategies to predict and potentially modify patients' risk of degenerative arthritis due to shoulder instability.
Collapse
Affiliation(s)
- Alexander W Aleem
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Muhammad Farooq Rai
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri
| | - Lei Cai
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Robert H Brophy
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
2
|
Turlo AJ, McDermott BT, Barr ED, Riggs CM, Boyde A, Pinchbeck GL, Clegg PD. Gene expression analysis of subchondral bone, cartilage, and synovium in naturally occurring equine palmar/plantar osteochondral disease. J Orthop Res 2022; 40:595-603. [PMID: 33993513 DOI: 10.1002/jor.25075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/23/2021] [Accepted: 05/03/2021] [Indexed: 02/04/2023]
Abstract
Osteoarthritis (OA) is a disease of the entire joint but the relationship between pathological events in various joint tissues is poorly understood. We examined concurrent changes in bone, cartilage, and synovium in a naturally occurring equine model of joint degeneration. Joints (n = 64) were grossly assessed for palmar/plantar osteochondral disease (POD) in racehorses that required euthanasia for unrelated reasons and assigned a grade of 0 (n = 34), 1 (n = 17), 2 or 3 (n = 13) using a recognized grading scheme. Synovium, cartilage, and subchondral bone were collected for histological and gene expression analysis. Relations between POD grade, cartilage histological score, and gene expression levels were examined using one-way analysis of variance or Kruskal-Wallis test and Spearman's correlation coefficient with corrections for multiple comparisons. Cartilage histological score increased in joints with POD grade 1 (p = 0.002) and 2 or 3 (p < 0.001) compared to 0. At grade 1, expression of COL1A1, COL2A1, and MMP1 increased and BGN decreased in subchondral bone while expression of BGN and ACAN decreased in cartilage. These changes further progressed at grades 2 and 3. POD grades 2 and 3 were associated with decreased expression of osteoclast inhibitor OPG and increased markers of cartilage degeneration (MMP13, COL1A1). Expression of the vascular endothelial growth factor decreased with POD grade and negatively correlated with cartilage histological score. Synovium showed no histological or transcriptomic changes related to pathology grade. Cartilage degeneration in POD is likely to be secondary to remodeling of the subchondral bone. Limited activation of proinflammatory and catabolic genes and moderate synovial pathology suggests distinct molecular phenotype of POD compared with OA.
Collapse
Affiliation(s)
- Agnieszka J Turlo
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Benjamin T McDermott
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | | | - Chris M Riggs
- Department of Veterinary Clinical Services, Hong Kong Jockey Club, Sha Tin Racecourse, New Territories, Hong Kong SAR, China
| | - Alan Boyde
- Dental Physical Sciences, Oral BioEngineering, Queen Mary University of London, Mile End Campus, London, UK
| | - Gina L Pinchbeck
- Department of Epidemiology and Population Health, Institute of Infection and Global Health, School of Veterinary Science, University of Liverpool, Liverpool, UK
| | - Peter D Clegg
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
3
|
Rai MF, Sandell LJ, Barrack TN, Cai L, Tycksen ED, Tang SY, Silva MJ, Barrack RL. A Microarray Study of Articular Cartilage in Relation to Obesity and Severity of Knee Osteoarthritis. Cartilage 2020; 11:458-472. [PMID: 30173558 PMCID: PMC7488940 DOI: 10.1177/1947603518796122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To query the transcript-level changes in the medial and lateral tibial plateau cartilage in tandem with obesity in patients with end-stage osteoarthritis (OA). DESIGN Cartilage was obtained from 23 patients (20 obese [body mass index > 30 kg/m2], 3 overweight [body mass index < 30 kg/m2]) at the time of total knee replacement. Cartilage integrity was assessed using Outerbridge scale, while radiographic changes were scored on preoperative X-rays using Kellgren-Lawrence (K-L) classification. RNA was probed for differentially expressed transcripts between medial and lateral compartments using Affymetrix Gene 2.0 ST Array and validated via real-time polymerase chain reaction. Gene ontology and pathway analyses were also queried. RESULTS Scoring of cartilage integrity by the Outerbridge scale indicated that the medial and lateral compartments were similar, while scoring by the K-L classification indicated that the medial compartment was more severely damaged than the lateral compartment. We observed a distinct transcript profile with >50% of transcripts unique between medial and lateral compartments. MMP13 and COL2A1 were more highly expressed in medial versus lateral compartment. Polymerase chain reaction confirmed expression of 4 differentially expressed transcripts. Numerous transcripts, biological processes, and pathways were significantly different between overweight and obese patients with a differential response of obesity on medial and lateral compartments. CONCLUSIONS Our findings support molecular differences between medial and lateral compartments reflective of the greater severity of OA in the medial compartment. The K-L system better reflected the molecular results than did the Outerbridge. Moreover, the molecular effect of obesity was different between the medial and lateral compartments of the same knee plausibly reflecting the molecular effects of differential biomechanical loading.
Collapse
Affiliation(s)
- Muhammad Farooq Rai
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO, USA,Department of Cell Biology and Physiology, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO, USA,Muhammad Farooq Rai, Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine at Barnes Jewish Hospital, MS 8233, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | - Linda J. Sandell
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO, USA,Department of Cell Biology and Physiology, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO, USA,Department of Biomedical Engineering, Washington University School of Engineering & Applied Science, St. Louis, MO, USA
| | - Toby N. Barrack
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO, USA
| | - Lei Cai
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO, USA
| | - Eric D. Tycksen
- Genome Technology Access Center, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO, USA
| | - Simon Y. Tang
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO, USA,Department of Biomedical Engineering, Washington University School of Engineering & Applied Science, St. Louis, MO, USA
| | - Matthew J. Silva
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO, USA,Department of Biomedical Engineering, Washington University School of Engineering & Applied Science, St. Louis, MO, USA
| | - Robert L. Barrack
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, MO, USA
| |
Collapse
|
4
|
Lamplot JD, Rai MF, Tompkins WP, Friedman MV, Schmidt EJ, Sandell LJ, Brophy RH. Gene Expression in Meniscal Tears at the Time of Arthroscopic Partial Meniscectomy Predicts the Progression of Osteoarthritis Within 6 Years of Surgery. Orthop J Sports Med 2020; 8:2325967120936275. [PMID: 32923494 PMCID: PMC7446268 DOI: 10.1177/2325967120936275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
Background: While knees with meniscal tears are associated with a heightened risk of developing osteoarthritis (OA), it is difficult to predict which patients are at the greatest risk for OA. Gene signatures in menisci that are resected during arthroscopic partial meniscectomy (APM) may provide insight into the risk of OA progression. Hypothesis: Meniscal gene signatures at the time of APM will predict radiographic OA progression. Study Design: Case series; Level of evidence, 4. Methods: Meniscal fragments were collected from 38 patients without OA during clinically indicated APM of the medial meniscus. The expression of 28 candidate genes with known roles in cartilage homeostasis, OA, extracellular matrix degradation, and obesity was assessed by quantitative real-time polymerase chain reaction. Weightbearing radiographs obtained before surgery and at final follow-up were graded by a musculoskeletal radiologist using the Kellgren-Lawrence classification of OA. The association of meniscal gene expression at baseline with the progression of radiographic OA was determined. Results: Gene expression and baseline and follow-up radiographic data were available from 31 patients (81.6%) at a mean follow-up of 6.2 ± 1.3 years. Patients without OA progression had significantly higher expression of 7 genes: MMP9 (5.1-fold; P = .002), IL8 (2.9-fold; P = .016), CCL3 (3.7-fold; P = .032), CCL3L1 (4.5-fold; P = .008), CXCL6 (6.2-fold; P = .010), LEP (5.2-fold; P = .004), and RETN (46-fold; P = .008). Conclusion: Gene expression in the meniscus at the time of APM may be associated with the risk for progression of OA after surgery. Elevated expression of the aforementioned genes may reflect a chondroprotective response. Stratifying the risk for OA progression after APM could facilitate targeted interventions to delay or prevent the development of OA. Further studies in a larger cohort with an extended follow-up, and inclusion of additional genes, are warranted to better characterize this association.
Collapse
Affiliation(s)
- Joseph D Lamplot
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Muhammad Farooq Rai
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, Missouri, USA.,Department of Cell Biology & Physiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - William P Tompkins
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, Missouri, USA
| | - Michael V Friedman
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Eric J Schmidt
- Department of Health Sciences, University of Lynchburg, Lynchburg, Virginia, USA
| | - Linda J Sandell
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, Missouri, USA.,Department of Cell Biology & Physiology, Washington University School of Medicine, St Louis, Missouri, USA
| | - Robert H Brophy
- Department of Orthopaedic Surgery, Washington University School of Medicine, St Louis, Missouri, USA
| |
Collapse
|
5
|
Brophy RH, Schmidt EJ, Cai L, Rai MF. Duration of symptoms prior to partial meniscectomy is not associated with the expression of osteoarthritis genes in the injured meniscus. J Orthop Res 2020; 38:1268-1278. [PMID: 31876303 PMCID: PMC7225063 DOI: 10.1002/jor.24574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/21/2019] [Indexed: 02/04/2023]
Abstract
While there is emerging data on how duration of symptoms prior to surgery relates to outcomes of patients undergoing arthroscopic partial meniscectomy, little is known about how duration of symptoms relates to the biology of the knee in these patients. The purpose of this study was to test the hypothesis that duration of symptoms prior to arthroscopic partial meniscectomy is associated with expression of osteoarthritis (OA)-related genes in the meniscus. We collected resected meniscus from patients (N = 76) undergoing clinically indicated arthroscopic partial meniscectomy from knees without advanced degenerative changes. RNA from 64 patients was analyzed for 28 candidate OA transcripts by real-time polymerase chain reaction (PCR). RNA was also probed for identification of novel genes by RNA microarray in 12 patients followed by validation of selected candidates by real-time PCR. The association of gene expression with duration of symptoms prior to surgery was tested. Additional screening was performed with known OA genetic risk alleles assembled from published literature and with gene transcripts differentially expressed between non-OA and OA cartilage and menisci. Our data revealed that duration of symptoms did not predict expression of OA genes in the meniscus, other than limited association with CXCL3, BMP2, and HLA-DQA1. Microarray identified new genes and pathways with unknown role(s) in meniscus injury and OA and validation of a subset of genes by real-time PCR showed expression pattern highly concordant with the microarray data. While duration of symptoms prior to arthroscopic partial meniscectomy does not significantly alter the expression of OA related genes, the association with novel genes and pathways deserves further investigation.
Collapse
Affiliation(s)
- Robert H. Brophy
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Eric J. Schmidt
- School of Physician Assistant Medicine, College of Health Sciences, University of Lynchburg College, Lynchburg, VA, USA
| | - Lei Cai
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Muhammad Farooq Rai
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, 63110, USA,Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
6
|
|
7
|
Rai MF, Tycksen ED, Cai L, Yu J, Wright RW, Brophy RH. Distinct degenerative phenotype of articular cartilage from knees with meniscus tear compared to knees with osteoarthritis. Osteoarthritis Cartilage 2019; 27:945-955. [PMID: 30797944 PMCID: PMC6536326 DOI: 10.1016/j.joca.2019.02.792] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/29/2019] [Accepted: 02/07/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To compare the transcriptome of articular cartilage from knees with meniscus tears to knees with end-stage osteoarthritis (OA). DESIGN Articular cartilage was collected from the non-weight bearing medial intercondylar notch of knees undergoing arthroscopic partial meniscectomy (APM; N = 10, 49.7 ± 10.8 years, 50% females) for isolated medial meniscus tears and knees undergoing total knee arthroplasty (TKA; N = 10, 66.0 ± 7.6 years, 70% females) due to end-stage OA. Ribonucleic acid (RNA) preparation was subjected to SurePrint G3 human 8 × 60K RNA microarrays to probe differentially expressed transcripts followed by computational exploration of underlying biological processes. Real-time polymerase chain reaction amplification was performed on selected transcripts to validate microarray data. RESULTS We observed that 81 transcripts were significantly differentially expressed (45 elevated, 36 repressed) between APM and TKA samples (≥ 2 fold) at a false discovery rate of ≤ 0.05. Among these, CFD, CSN1S1, TSPAN11, CSF1R and CD14 were elevated in the TKA group, while CHI3L2, HILPDA, COL3A1, COL27A1 and FGF2 were highly expressed in APM group. A few long intergenic non-coding RNAs (lincRNAs), small nuclear RNAs (snoRNAs) and antisense RNAs were also differentially expressed between the two groups. Transcripts up-regulated in TKA cartilage were enriched for protein localization and activation, chemical stimulus, immune response, and toll-like receptor signaling pathway. Transcripts up-regulated in APM cartilage were enriched for mesenchymal cell apoptosis, epithelial morphogenesis, canonical glycolysis, extracellular matrix organization, cartilage development, and glucose catabolic process. CONCLUSIONS This study suggests that APM and TKA cartilage express distinct sets of OA transcripts. The gene profile in cartilage from TKA knees represents an end-stage OA whereas in APM knees it is clearly earlier in the degenerative process.
Collapse
Affiliation(s)
- Muhammad Farooq Rai
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO 63110, United States of America,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Eric D. Tycksen
- Genome Technology Access Center, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Lei Cai
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Jinsheng Yu
- Genome Technology Access Center, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Rick W. Wright
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Robert H. Brophy
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| |
Collapse
|
8
|
Osteoarthritis following meniscus and ligament injury: insights from translational studies and animal models. Curr Opin Rheumatol 2019; 31:70-79. [DOI: 10.1097/bor.0000000000000566] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
9
|
Huang P, Gu J, Wu J, Geng L, Hong Y, Wang S, Wang M. Microarray analysis of the molecular mechanisms associated with age and body mass index in human meniscal injury. Mol Med Rep 2018; 19:93-102. [PMID: 30483788 PMCID: PMC6297773 DOI: 10.3892/mmr.2018.9685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022] Open
Abstract
The aim of the present study was to identify genes and functional pathways associated with meniscal injuries affected by age or body mass index (BMI) using microarray analysis. The GSE45233 gene expression dataset with 12 injured meniscus samples associated with age and BMI and GSE66635 dataset with 12 injured and 12 normal meniscus samples were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified based on age or BMI in GSE45233. DEGs between injured and normal meniscus samples in GSE66635 were also identified. Common DEGs between GSE45233 and GSE66635 were identified as feature genes associated with age or BMI, followed by protein-protein interaction (PPI) network and functional pathway enrichment analyses for the feature genes. Finally, the GSE51588 genome-wide expression profile was then downloaded from the GEO database to validate the results. A total of 1,328 DEGs were identified. Of these, 28 age-associated and 20 BMI-associated meniscal injury genes were obtained. B-cell lymphoma-2 (Bcl-2) and matrix metalloproteinase-14 were identified as hub genes in the PPI networks. Functional pathway enrichment analysis revealed that vascular endothelial growth factor A (VEGFA), transferrin (TF) and Bcl-2 were involved in the hypoxia-inducible factor 1 signaling pathway. TF was involved in the mineral absorption function pathway associated with BMI. Additionally, TF and VEGFA were identified to be overlapping candidate genes of GSE45233 and GSE66635, and DEGs in GSE51588. Therefore, VEGFA, TF, and Bcl-2 may be important genes for human meniscal injuries. Additional evaluations of these results are required.
Collapse
Affiliation(s)
- Peiyan Huang
- Department of Orthopedic Surgery, Shanghai Fifth People's Hospital Affiliated to Fudan University, Shanghai 200240, P.R. China
| | - Jun Gu
- Department of Orthopedic Surgery, Shanghai Fifth People's Hospital Affiliated to Fudan University, Shanghai 200240, P.R. China
| | - Junguo Wu
- Department of Orthopedic Surgery, Shanghai Fifth People's Hospital Affiliated to Fudan University, Shanghai 200240, P.R. China
| | - Lei Geng
- Department of Orthopedic Surgery, Shanghai Fifth People's Hospital Affiliated to Fudan University, Shanghai 200240, P.R. China
| | - Yang Hong
- Department of Orthopedic Surgery, Shanghai Fifth People's Hospital Affiliated to Fudan University, Shanghai 200240, P.R. China
| | - Siqun Wang
- Department of Orthopedic Surgery, Shanghai Fifth People's Hospital Affiliated to Fudan University, Shanghai 200240, P.R. China
| | - Minghai Wang
- Department of Orthopedic Surgery, Shanghai Fifth People's Hospital Affiliated to Fudan University, Shanghai 200240, P.R. China
| |
Collapse
|
10
|
Piuzzi NS, Dominici M, Long M, Pascual-Garrido C, Rodeo S, Huard J, Guicheux J, McFarland R, Goodrich LR, Maddens S, Robey PG, Bauer TW, Barrett J, Barry F, Karli D, Chu CR, Weiss DJ, Martin I, Jorgensen C, Muschler GF. Proceedings of the signature series symposium "cellular therapies for orthopaedics and musculoskeletal disease proven and unproven therapies-promise, facts and fantasy," international society for cellular therapies, montreal, canada, may 2, 2018. Cytotherapy 2018; 20:1381-1400. [PMID: 30316562 PMCID: PMC8487641 DOI: 10.1016/j.jcyt.2018.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/06/2018] [Indexed: 12/17/2022]
Abstract
The Signature Series Symposium "Cellular Therapies for Orthopaedics and Musculoskeletal Disease Proven and Unproven Therapies-Promise, Facts and Fantasy" was held as a pre-meeting of the 26th International Society for Cellular Therapy (ISCT) annual congress in Montreal, Canada, May 2, 2018. This was the first ISCT program that was entirely dedicated to the advancement of cell-based therapies for musculoskeletal diseases. Cellular therapies in musculoskeletal medicine are a source of great promise and opportunity. They are also the source of public controversy, confusion and misinformation. Patients, clinicians, scientists, industry and government share a commitment to clear communication and responsible development of the field. Therefore, this symposium convened thought leaders from around the world in a forum designed to catalyze communication and collaboration to bring the greatest possible innovation and value to patients with musculoskeletal conditions.
Collapse
Affiliation(s)
- Nicolas S Piuzzi
- Department of Orthopedic Surgery and Biomedical Engineering Cleveland Clinic, Cleveland, Ohio, USA; Instituto Universitario del Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Massimo Dominici
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Marc Long
- MTF Biologics, Edison, New Jersey, USA
| | - Cecilia Pascual-Garrido
- Adult Reconstruction-Adolescent and Young Adult Hip Service, Washington University in St. Louis, School of Medicine, St. Louis, Missouri, USA
| | - Scott Rodeo
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, New York, New York, USA
| | - Johnny Huard
- Department of Orthopaedic Surgery, UTHealth Medical School, Houston, Texas, USA; Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Jérome Guicheux
- INSERM, UMR 1229, RMeS, Regenerative Medicine and Skeleton, Nantes University School of Dental Medicine, ONIRIS, Nantes, France; CHU Nantes, PHU4 OTONN, Nantes, France
| | - Richard McFarland
- Advanced Regenerative Manufacturing Institute, Manchester, New Hampshire, USA, and Standards Coordinating Body, Gaithersburg, Maryland, USA
| | - Laurie R Goodrich
- Orthopaedic Research Center and Department of Clinical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | | | - Pamela G Robey
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Thomas W Bauer
- Department of Pathology and Laboratory Medicine, Hospital for Special Surgery, New York, New York, USA
| | - John Barrett
- Stem Cell Allogeneic Transplant Section, National Institutes of Health, Bethesda, Maryland, USA
| | - Frank Barry
- Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - David Karli
- Steadman Philippon Research Institute, Vail, Colorado, USA; Greyledge Technologies, LLC, Vail, Colorado, USA
| | - Constance R Chu
- Department of Orthopaedic Surgery, Stanford University, Stanford, California, USA; Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
| | - Daniel J Weiss
- University of Vermont College of Medicine, Burlington, Vermont, USA
| | - Ivan Martin
- Department of Biomedicine, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Christian Jorgensen
- Clinical Immunology and Osteoarticular Diseases Therapeutic Unit, Hôpital Lapeyronie, Montpellier, France
| | - George F Muschler
- Department of Orthopedic Surgery and Biomedical Engineering Cleveland Clinic, Cleveland, Ohio, USA.
| |
Collapse
|
11
|
Rai MF, Pham CT. Intra-articular drug delivery systems for joint diseases. Curr Opin Pharmacol 2018; 40:67-73. [PMID: 29625332 DOI: 10.1016/j.coph.2018.03.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/24/2018] [Indexed: 12/20/2022]
Abstract
Intra-articular (IA) injections directly deliver high concentrations of therapeutics to the joint space and are routinely used in various musculoskeletal conditions such as osteoarthritis (OA) and rheumatoid arthritis (RA). However, current IA-injected drugs are rapidly cleared and do not significantly affect the course of joint disease. In this review, we highlight recent developments in IA therapy, with a special emphasis on current and emerging therapeutic carriers and their potential to deliver disease-modifying treatment modalities for arthritis. Recent IA approaches concentrate on platforms that are safe with efficient tissue penetration, and readily translatable for controlled and sustained delivery of therapeutic agents. Gene therapy delivered by viral or non-viral vectors and cell-based therapy for cartilage preservation and regeneration are being intensively explored.
Collapse
Affiliation(s)
- Muhammad Farooq Rai
- Department of Orthopedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, 660 South Euclid Avenue, Box 8233, Saint Louis, MO 63110, USA; Department of Cell Biology and Physiology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8233, Saint Louis, MO 63110, USA.
| | - Christine Tn Pham
- Department of Medicine, Division of Rheumatology, 660 South Euclid Avenue, Box 8045, Saint Louis, MO 63110, USA.
| |
Collapse
|
12
|
Brophy RH, Zhang B, Cai L, Wright RW, Sandell LJ, Rai MF. Transcriptome comparison of meniscus from patients with and without osteoarthritis. Osteoarthritis Cartilage 2018; 26:422-432. [PMID: 29258882 PMCID: PMC6007850 DOI: 10.1016/j.joca.2017.12.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 11/13/2017] [Accepted: 12/08/2017] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To assess the impact of osteoarthritis (OA) on the meniscus by comparing transcripts and biological processes in the meniscus between patients with and without OA. DESIGN RNA microarrays were used to identify transcripts differentially expressed (DE) in meniscus obtained from 12 OA and 12 non-OA patients. The non-OA specimens were obtained at the time of arthroscopic partial meniscectomy. Real-time PCR was performed on selected transcripts. Biological processes and gene-networking was examined computationally. Transcriptome signatures were mapped with 37 OA-related transcripts to evaluate how meniscus gene expression relates to that of OA cartilage. RESULTS We identified 168 transcripts significantly DE between OA (75 elevated, 93 repressed) and non-OA samples (≥1.5-fold). Among these, CSN1S1, COL10A1, WIF1, and SPARCL1 were the most prominent transcripts elevated in OA meniscus, POSTN and VEGFA were most highly repressed in OA meniscus. Transcripts elevated in OA meniscus represented response to external stimuli, cell migration and cell localization while those repressed in OA meniscus represented histone deacetylase activity (related to epigenetics) and skeletal development. Numerous long non-coding RNAs (lncRNAs) were DE between the two groups. When segregated by OA-related transcripts, two distinct clustering patterns appeared: OA meniscus appeared to be more inflammatory while non-OA meniscus exhibited a "repair" phenotype. CONCLUSIONS Numerous transcripts with potential relevance to the pathogenesis of OA are DE in OA and non-OA meniscus. These data suggest an involvement of epigenetically regulated histone deacetylation in meniscus tears as well as expression of lncRNAs. Patient clustering based on transcripts related to OA in articular cartilage confirmed distinct phenotypes between injured (non-OA) and OA meniscus.
Collapse
Affiliation(s)
- R H Brophy
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine at Barnes-Jewish Hospital, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | - B Zhang
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine at Barnes-Jewish Hospital, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | - L Cai
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine at Barnes-Jewish Hospital, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | - R W Wright
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine at Barnes-Jewish Hospital, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | - L J Sandell
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine at Barnes-Jewish Hospital, 660 South Euclid Avenue, St. Louis, MO 63110, USA; Department of Cell Biology and Physiology, Washington University School of Medicine at Barnes-Jewish Hospital, 660 South Euclid Avenue, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Engineering & Applied Science, 1 Brookings Drive, St. Louis, MO 63130, USA.
| | - M F Rai
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine at Barnes-Jewish Hospital, 660 South Euclid Avenue, St. Louis, MO 63110, USA; Department of Cell Biology and Physiology, Washington University School of Medicine at Barnes-Jewish Hospital, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
13
|
Rai MF, Tycksen ED, Sandell LJ, Brophy RH. Advantages of RNA-seq compared to RNA microarrays for transcriptome profiling of anterior cruciate ligament tears. J Orthop Res 2018; 36:484-497. [PMID: 28749036 PMCID: PMC5787041 DOI: 10.1002/jor.23661] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/19/2017] [Indexed: 02/04/2023]
Abstract
Microarrays and RNA-seq are at the forefront of high throughput transcriptome analyses. Since these methodologies are based on different principles, there are concerns about the concordance of data between the two techniques. The concordance of RNA-seq and microarrays for genome-wide analysis of differential gene expression has not been rigorously assessed in clinically derived ligament tissues. To demonstrate the concordance between RNA-seq and microarrays and to assess potential benefits of RNA-seq over microarrays, we assessed differences in transcript expression in anterior cruciate ligament (ACL) tissues based on time-from-injury. ACL remnants were collected from patients with an ACL tear at the time of ACL reconstruction. RNA prepared from torn ACL remnants was subjected to Agilent microarrays (N = 24) and RNA-seq (N = 8). The correlation of biological replicates in RNA-seq and microarrays data was similar (0.98 vs. 0.97), demonstrating that each platform has high internal reproducibility. Correlations between the RNA-seq data and the individual microarrays were low, but correlations between the RNA-seq values and the geometric mean of the microarrays values were moderate. The cross-platform concordance for differentially expressed transcripts or enriched pathways was linearly correlated (r = 0.64). RNA-Seq was superior in detecting low abundance transcripts and differentiating biologically critical isoforms. Additional independent validation of transcript expression was undertaken using microfluidic PCR for selected genes. PCR data showed 100% concordance (in expression pattern) with RNA-seq and microarrays data. These findings demonstrate that RNA-seq has advantages over microarrays for transcriptome profiling of ligament tissues when available and affordable. Furthermore, these findings are likely transferable to other musculoskeletal tissues where tissue collection is challenging and cells are in low abundance. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:484-497, 2018.
Collapse
Affiliation(s)
- Muhammad Farooq Rai
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine at Barnes-Jewish Hospital, 660 S. Euclid Ave., St. Louis, MO 63110, United States,Department of Cell Biology and Physiology, Washington University School of Medicine at Barnes-Jewish Hospital, 660 S. Euclid Ave., St. Louis, MO 63110, United States,Corresponding author: Muhammad Farooq Rai, Ph.D., Department of Orthopaedic Surgery, Washington University School of Medicine at Barnes-Jewish Hospital, MS 8233, 660 South Euclid Avenue, St. Louis, MO 63110 United States, Ph: 314-286-0955; Fax: 314-362-0334;
| | - Eric D. Tycksen
- Genome Technology Access Center, Washington University School of Medicine at Barnes-Jewish Hospital, 660 S. Euclid Ave., St. Louis, MO 63110, United States
| | - Linda J. Sandell
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine at Barnes-Jewish Hospital, 660 S. Euclid Ave., St. Louis, MO 63110, United States,Department of Cell Biology and Physiology, Washington University School of Medicine at Barnes-Jewish Hospital, 660 S. Euclid Ave., St. Louis, MO 63110, United States,Department of Biomedical Engineering, Washington University School of Medicine at Barnes-Jewish Hospital, 660 S. Euclid Ave., St. Louis, MO 63110, United States
| | - Robert H. Brophy
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine at Barnes-Jewish Hospital, 660 S. Euclid Ave., St. Louis, MO 63110, United States
| |
Collapse
|
14
|
Brophy RH, Sandell LJ, Cheverud JM, Rai MF. Gene expression in human meniscal tears has limited association with early degenerative changes in knee articular cartilage. Connect Tissue Res 2017; 58:295-304. [PMID: 27435997 PMCID: PMC5931210 DOI: 10.1080/03008207.2016.1211114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
UNLABELLED Purpose/Aim: Meniscus tears are a common injury to the knee associated with the development of osteoarthritis. Gene expression in the injured meniscus may be associated with early degeneration in the articular cartilage. The purpose of this study was to test the hypothesis that gene expression in meniscus tears is associated with early degenerative changes in the articular cartilage at the time of partial meniscectomy. MATERIALS AND METHODS Torn meniscus was removed at the time of partial meniscectomy in 68 patients without radiographic osteoarthritis. Meniscal mRNA expression was measured by quantitative PCR for multiple molecular markers of osteoarthritis and cartilage homeostasis. The presence of early degenerative changes in the knee was recorded by X-ray (N = 63), magnetic resonance imaging (MRI, N = 48), and arthroscopy (N = 63). Gene expression was tested for correlation with the presence/absence of degenerative changes after adjusting for age, sex, and body mass index. RESULTS Overall gene expression varied significantly with degenerative changes based on X-ray (P = 0.047) and MRI (P = 0.018). The linear combination of gene variation was also significant. However, only adiponectin (ADIPOQ) (P = 0.015) was expressed at a significantly lower level in patients with chondrosis on MRI, while the expression of ADIPOQ (P = 0.035) and resistin (RETN) (P = 0.017) was higher in patients with early degenerative changes on X-ray. None of the genes varied significantly with presence/absence of chondrosis as measured by arthroscopy. CONCLUSIONS There is an overall association of gene expression in meniscal tears to early degenerative changes in the knee, but only a limited number of specific genes demonstrate this relationship. The roles of adiponectin and resistin in knee injury and osteoarthritis deserve further study.
Collapse
Affiliation(s)
- Robert H. Brophy
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA,
| | - Linda J. Sandell
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA,Department of Biomedical Engineering, Washington University in St. Louis, MO, USA
| | | | - Muhammad Farooq Rai
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
15
|
Abstract
The knee is a fascinating yet complex joint. Researchers and clinicians agree that the joint is an organ comprised of highly specialized intrinsic and extrinsic tissues contributing to both health and disease. Key to the function and movement of the knee are the menisci, exquisite fibrocartilage structures that are critical structures for maintaining biological and biomechanical integrity of the joint. The biological/physiological functions of the menisci must be understood at the tissue, cellular and even molecular levels in order to determine clinically relevant methods for assessing it and influencing it. By investigating normal and pathological functions at the basic science level, we can begin to translate data to patients. The objective of this article is to provide an overview of this translational pathway so that progression toward improved diagnostic, preventative, and therapeutic strategies can be effectively pursued. We have thoroughly examined the pathobiological, biomarker, and imaging aspects of meniscus research. This translational approach can be effective toward optimal diagnosis, prevention, and treatment for the millions of patients who suffer from meniscal disorders each year.
Collapse
Affiliation(s)
- James L Cook
- a University of Missouri Department of Orthopaedic Surgery and Thompson Laboratory for Regenerative Orthopaedics , Columbia , MO , USA
| | - Keiichi Kuroki
- a University of Missouri Department of Orthopaedic Surgery and Thompson Laboratory for Regenerative Orthopaedics , Columbia , MO , USA
| | - Aaron M Stoker
- a University of Missouri Department of Orthopaedic Surgery and Thompson Laboratory for Regenerative Orthopaedics , Columbia , MO , USA
| | - Farrah A Monibi
- a University of Missouri Department of Orthopaedic Surgery and Thompson Laboratory for Regenerative Orthopaedics , Columbia , MO , USA
| | - Brandon L Roller
- b Department of Radiology , Wake Forest Baptist Medical Center , Winston-Salem , NC , USA
| |
Collapse
|
16
|
Bone-cartilage crosstalk: a conversation for understanding osteoarthritis. Bone Res 2016; 4:16028. [PMID: 27672480 PMCID: PMC5028726 DOI: 10.1038/boneres.2016.28] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 07/27/2016] [Indexed: 01/06/2023] Open
Abstract
Although cartilage degradation is the characteristic feature of osteoarthritis (OA), it is now recognized that the whole joint is involved in the progression of OA. In particular, the interaction (crosstalk) between cartilage and subchondral bone is thought to be a central feature of this process. The interface between articular cartilage and bone of articulating long bones is a unique zone, which comprises articular cartilage, below which is the calcified cartilage sitting on and intercalated into the subchondral bone plate. Below the subchondral plate is the trabecular bone at the end of the respective long bones. In OA, there are well-described progressive destructive changes in the articular cartilage, which parallel characteristic changes in the underlying bone. This review examines the evidence that biochemical and biomechanical signaling between these tissue compartments is important in OA disease progression and asks whether such signaling might provide possibilities for therapeutic intervention to halt or slow disease development.
Collapse
|