1
|
Mucha A, Nowak B, Dzimira S, Liszka B, Zatoń-Dobrowolska M. Identification of SNP markers for canine mammary gland tumours in females based on a genome-wide association study - preliminary results. J Vet Res 2023; 67:427-436. [PMID: 37786854 PMCID: PMC10541661 DOI: 10.2478/jvetres-2023-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/28/2023] [Indexed: 10/04/2023] Open
Abstract
Introduction The development of genetic research over recent decades has enabled the discovery of new genetic markers, such as single nucleotide polymorphisms (SNPs). This, as well as the full sequencing of the dog genome, has enabled genome-wide association studies (GWAS) to be used in the search for genetic causes of canine mammary tumours (CMTs). Material and Methods Genotypic data containing 175,000 SNPs, which had been obtained using the Illumina CanineHD BeadChip microarray technique, were available for analysis in this study. The data concerned 118 bitches, including 36 animals with CMT, representing various breeds and age groups. Statistical analysis was performed in two steps: quality control of genotyping data and genome-wide association analysis based on dominant, recessive, overdominant, codominant, and log-additive models with the single SNP effects. Results A total of 40 different SNPs significantly associated with CMT appearance were detected. Moreover, twelve SNPs showed statistical significance in more than one model. Of all the significant SNPs, two, namely BICF2G630136001 in the overdominant model and TIGRP2P107898_rs9044787 in the log-additive model, reached the 5-8 significance level. The other SNPs were significant to a 1-5 level. Conclusion In the group of SNPs indicated as significant in the GWAS analysis, several transpired to be localised within genes that may play an important role in CMT.
Collapse
Affiliation(s)
- Anna Mucha
- Department of Genetics, Wrocław University of Environmental and Life Sciences, 51-631Wrocław, Poland
| | - Błażej Nowak
- Department of Genetics, Wrocław University of Environmental and Life Sciences, 51-631Wrocław, Poland
| | - Stanisław Dzimira
- Department of Pathology, Wrocław University of Environmental and Life Sciences; 50-375Wrocław, Poland
| | - Bartłomiej Liszka
- Department and Clinic of Surgery, Wrocław University of Environmental and Life Sciences; 50-366Wrocław, Poland
| | | |
Collapse
|
2
|
Jasinska AJ, Apetrei C, Pandrea I. Walk on the wild side: SIV infection in African non-human primate hosts-from the field to the laboratory. Front Immunol 2023; 13:1060985. [PMID: 36713371 PMCID: PMC9878298 DOI: 10.3389/fimmu.2022.1060985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023] Open
Abstract
HIV emerged following cross-species transmissions of simian immunodeficiency viruses (SIVs) that naturally infect non-human primates (NHPs) from Africa. While HIV replication and CD4+ T-cell depletion lead to increased gut permeability, microbial translocation, chronic immune activation, and systemic inflammation, the natural hosts of SIVs generally avoid these deleterious consequences when infected with their species-specific SIVs and do not progress to AIDS despite persistent lifelong high viremia due to long-term coevolution with their SIV pathogens. The benign course of natural SIV infection in the natural hosts is in stark contrast to the experimental SIV infection of Asian macaques, which progresses to simian AIDS. The mechanisms of non-pathogenic SIV infections are studied mainly in African green monkeys, sooty mangabeys, and mandrills, while progressing SIV infection is experimentally modeled in macaques: rhesus macaques, pigtailed macaques, and cynomolgus macaques. Here, we focus on the distinctive features of SIV infection in natural hosts, particularly (1): the superior healing properties of the intestinal mucosa, which enable them to maintain the integrity of the gut barrier and prevent microbial translocation, thus avoiding excessive/pathologic immune activation and inflammation usually perpetrated by the leaking of the microbial products into the circulation; (2) the gut microbiome, the disruption of which is an important factor in some inflammatory diseases, yet not completely understood in the course of lentiviral infection; (3) cell population shifts resulting in target cell restriction (downregulation of CD4 or CCR5 surface molecules that bind to SIV), control of viral replication in the lymph nodes (expansion of natural killer cells), and anti-inflammatory effects in the gut (NKG2a/c+ CD8+ T cells); and (4) the genes and biological pathways that can shape genetic adaptations to viral pathogens and are associated with the non-pathogenic outcome of the natural SIV infection. Deciphering the protective mechanisms against SIV disease progression to immunodeficiency, which have been established through long-term coevolution between the natural hosts and their species-specific SIVs, may prompt the development of novel therapeutic interventions, such as drugs that can control gut inflammation, enhance gut healing capacities, or modulate the gut microbiome. These developments can go beyond HIV infection and open up large avenues for correcting gut damage, which is common in many diseases.
Collapse
Affiliation(s)
- Anna J. Jasinska
- Division of Infectious Diseases, Department of Medicine (DOM), School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cristian Apetrei
- Division of Infectious Diseases, Department of Medicine (DOM), School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ivona Pandrea
- Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
3
|
Wang X, Ran X, Niu X, Huang S, Li S, Wang J. Whole-genome sequence analysis reveals selection signatures for important economic traits in Xiang pigs. Sci Rep 2022; 12:11823. [PMID: 35821031 PMCID: PMC9276726 DOI: 10.1038/s41598-022-14686-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
Xiang pig (XP) is one of the best-known indigenous pig breeds in China, which is characterized by its small body size, strong disease resistance, high adaptability, favorite meat quality, small litter sizes, and early sexual maturity. However, the genomic evidence that links these unique traits of XP is still poorly understood. To identify the genomic signatures of selection in XP, we performed whole-genome resequencing on 25 unrelated individual XPs. We obtained 876.70 Gb of raw data from the genomic libraries. The LD analysis showed that the lowest level of linkage disequilibrium was observed in Xiang pig. Comparative genomic analysis between XPs and other breeds including Tibetan, Meishan, Duroc and Landrace revealed 3062, 1228, 907 and 1519 selected regions, respectively. The genes identified in selected regions of XPs were associated with growth and development processes (IGF1R, PROP1, TBX19, STAC3, RLF, SELENOM, MSTN), immunity and disease resistance (ZCCHC2, SERPINB2, ADGRE5, CYP7B1, STAT6, IL2, CD80, RHBDD3, PIK3IP1), environmental adaptation (NR2E1, SERPINB8, SERPINB10, SLC26A7, MYO1A, SDR9C7, UVSSA, EXPH5, VEGFC, PDE1A), reproduction (CCNB2, TRPM6, EYA3, CYP7B1, LIMK2, RSPO1, ADAM32, SPAG16), meat quality traits (DECR1, EWSR1), and early sexual maturity (TAC3). Through the absolute allele frequency difference (ΔAF) analysis, we explored two population-specific missense mutations occurred in NR6A1 and LTBP2 genes, which well explained that the vertebrae numbers of Xiang pigs were less than that of the European pig breeds. Our results indicated that Xiang pigs were less affected by artificial selection than the European and Meishan pig breeds. The selected candidate genes were mainly involved in growth and development, disease resistance, reproduction, meat quality, and early sexual maturity. This study provided a list of functional candidate genes, as well as a number of genetic variants, which would provide insight into the molecular basis for the unique traits of Xiang pig.
Collapse
Affiliation(s)
- Xiying Wang
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang, 550025, China.,Tongren University, Tongren, 554300, China
| | - Xueqin Ran
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang, 550025, China.
| | - Xi Niu
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Shihui Huang
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Sheng Li
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Jiafu Wang
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
4
|
Jasinska AJ. Resources for functional genomic studies of health and development in nonhuman primates. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 171 Suppl 70:174-194. [PMID: 32221967 DOI: 10.1002/ajpa.24051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 01/22/2020] [Accepted: 02/26/2020] [Indexed: 01/01/2023]
Abstract
Primates display a wide range of phenotypic variation underlaid by complex genetically regulated mechanisms. The links among DNA sequence, gene function, and phenotype have been of interest from an evolutionary perspective, to understand functional genome evolution and its phenotypic consequences, and from a biomedical perspective to understand the shared and human-specific roots of health and disease. Progress in methods for characterizing genetic, transcriptomic, and DNA methylation (DNAm) variation is driving the rapid development of extensive omics resources, which are now increasingly available from humans as well as a growing number of nonhuman primates (NHPs). The fast growth of large-scale genomic data is driving the emergence of integrated tools and databases, thus facilitating studies of gene functionality across primates. This review describes NHP genomic resources that can aid in exploration of how genes shape primate phenotypes. It focuses on the gene expression trajectories across development in different tissues, the identification of functional genetic variation (including variants deleterious for protein function and regulatory variants modulating gene expression), and DNAm profiles as an emerging tool to understand the process of aging. These resources enable comparative functional genomics approaches to identify species-specific and primate-shared gene functionalities associated with health and development.
Collapse
Affiliation(s)
- Anna J Jasinska
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, California, USA.,Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.,Eye on Primates, Los Angeles, California, USA
| |
Collapse
|
5
|
Zhang T, Song C, Song L, Shang Z, Yang S, Zhang D, Sun W, Shen Q, Zhao D. RNA Sequencing and Coexpression Analysis Reveal Key Genes Involved in α-Linolenic Acid Biosynthesis in Perilla frutescens Seed. Int J Mol Sci 2017; 18:ijms18112433. [PMID: 29144390 PMCID: PMC5713401 DOI: 10.3390/ijms18112433] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/09/2017] [Accepted: 11/15/2017] [Indexed: 12/24/2022] Open
Abstract
Perilla frutescen is used as traditional food and medicine in East Asia. Its seeds contain high levels of α-linolenic acid (ALA), which is important for health, but is scarce in our daily meals. Previous reports on RNA-seq of perilla seed had identified fatty acid (FA) and triacylglycerol (TAG) synthesis genes, but the underlying mechanism of ALA biosynthesis and its regulation still need to be further explored. So we conducted Illumina RNA-sequencing in seven temporal developmental stages of perilla seeds. Sequencing generated a total of 127 million clean reads, containing 15.88 Gb of valid data. The de novo assembly of sequence reads yielded 64,156 unigenes with an average length of 777 bp. A total of 39,760 unigenes were annotated and 11,693 unigenes were found to be differentially expressed in all samples. According to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, 486 unigenes were annotated in the “lipid metabolism” pathway. Of these, 150 unigenes were found to be involved in fatty acid (FA) biosynthesis and triacylglycerol (TAG) assembly in perilla seeds. A coexpression analysis showed that a total of 104 genes were highly coexpressed (r > 0.95). The coexpression network could be divided into two main subnetworks showing over expression in the medium or earlier and late phases, respectively. In order to identify the putative regulatory genes, a transcription factor (TF) analysis was performed. This led to the identification of 45 gene families, mainly including the AP2-EREBP, bHLH, MYB, and NAC families, etc. After coexpression analysis of TFs with highly expression of FAD2 and FAD3 genes, 162 TFs were found to be significantly associated with two FAD genes (r > 0.95). Those TFs were predicted to be the key regulatory factors in ALA biosynthesis in perilla seed. The qRT-PCR analysis also verified the relevance of expression pattern between two FAD genes and partial candidate TFs. Although it has been reported that some TFs are involved in seed development, more direct evidence is still needed to verify their function. However, these findings can provide clues to reveal the possible molecular mechanisms of ALA biosynthesis and its regulation in perilla seed.
Collapse
Affiliation(s)
- Tianyuan Zhang
- Rapeseed Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550008, China.
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China.
| | - Chi Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Li Song
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China.
| | - Zhiwei Shang
- Rapeseed Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550008, China.
| | - Sen Yang
- Rapeseed Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550008, China.
| | - Dong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Wei Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Qi Shen
- Rapeseed Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550008, China.
| | - Degang Zhao
- Rapeseed Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550008, China.
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, China.
| |
Collapse
|