1
|
Gu X, Zhang Y, Zhou W, Wang F, Yan F, Gao H, Wang W. Infusion and delivery strategies to maximize the efficacy of CAR-T cell immunotherapy for cancers. Exp Hematol Oncol 2024; 13:70. [PMID: 39061100 PMCID: PMC11282638 DOI: 10.1186/s40164-024-00542-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has achieved substantial clinical outcomes for tumors, especially for hematological malignancies. However, extending the duration of remission, reduction of relapse for hematological malignancies and improvement of the anti-tumor efficacy for solid tumors are challenges for CAR-T cells immunotherapy. Besides the endeavors to enhance the functionality of CAR-T cell per se, optimization of the infusion and delivery strategies facilitates the breakthrough of the hurdles that limited the efficacy of this cancer immunotherapy. Here, we summarized the infusion and delivery strategies of CAR-T cell therapies under pre-clinical study, clinical trials and on-market status, through which the improvements of safety and efficacy for hematological and solid tumors were analyzed. Of note, novel infusion and delivery strategies, including local-regional infusion, biomaterials bearing the CAR-T cells and multiple infusion technique, overcome many limitations of CAR-T cell therapy. This review provides hints to determine infusion and delivery strategies of CAR-T cell cancer immunotherapy to maximize clinical benefits.
Collapse
Affiliation(s)
- Xinyu Gu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, People's Republic of China
| | - Yalan Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, People's Republic of China
| | - Weilin Zhou
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, People's Republic of China
| | - Fengling Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, People's Republic of China
| | - Feiyang Yan
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, People's Republic of China
| | - Haozhan Gao
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, People's Republic of China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
2
|
Lund JM, Hladik F, Prlic M. Advances and challenges in studying the tissue-resident T cell compartment in the human female reproductive tract. Immunol Rev 2023; 316:52-62. [PMID: 37140024 PMCID: PMC10524394 DOI: 10.1111/imr.13212] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/07/2023] [Accepted: 04/15/2023] [Indexed: 05/05/2023]
Abstract
Tissue-resident memory T cells (TRM ) are considered to be central to maintaining mucosal barrier immunity and tissue homeostasis. Most of this knowledge stems from murine studies, which provide access to all organs. These studies also allow for a thorough assessment of the TRM compartment for each tissue and across tissues with well-defined experimental and environmental variables. Assessing the functional characteristics of the human TRM compartment is substantially more difficult; thus, notably, there is a paucity of studies profiling the TRM compartment in the human female reproductive tract (FRT). The FRT is a mucosal barrier tissue that is naturally exposed to a wide range of commensal and pathogenic microbes, including several sexually transmitted infections of global health significance. We provide an overview of studies describing T cells within the lower FRT tissues and highlight the challenges of studying TRM cells in the FRT: different sampling methods of the FRT greatly affect immune cell recovery, especially of TRM cells. Furthermore, menstrual cycle, menopause, and pregnancy affect FRT immunity, but little is known about changes in the TRM compartment. Finally, we discuss the potential functional plasticity of the TRM compartment during inflammatory episodes in the human FRT to maintain protection and tissue homeostasis, which are required to ensure reproductive fitness.
Collapse
Affiliation(s)
- Jennifer M Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
- Department of Global Health, University of Washington, Seattle, WA, 98195
| | - Florian Hladik
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, 98195
- Department of Medicine, University of Washington, Seattle, WA, 98195
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
- Department of Global Health, University of Washington, Seattle, WA, 98195
- Department of Immunology, University of Washington, Seattle, WA, 98109
| |
Collapse
|
3
|
Hernandez JL, Park J, Hughes SM, Hladik F, Woodrow KA. Characterization of Immune Cells in Oral Tissues of Non-human Primates. FRONTIERS IN ORAL HEALTH 2022; 2:821812. [PMID: 35224539 PMCID: PMC8873106 DOI: 10.3389/froh.2021.821812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
The oral mucosa contains distinct tissue sites with immune niches capable of either immunogenic or tolerogenic responses. However, immune cell compositions within oral mucosal tissues at homeostasis have not been well-characterized in human relevant tissues. Non-human primates (NHP) are a major model for the human immune system and oral anatomy, and therefore improved understanding of NHP oral immune cell populations can provide important insights for studying disease pathologies and developing therapies. Herein, we characterize immune cell types of three sites within the oral cavity (buccal, sublingual, lingual tonsil) sampled by biopsy and cytobrush in pigtail macaques. Tonsil biopsies had more T-cells, dendritic cells (DCs), DC subtypes, and CD4+ T-cells than buccal or sublingual biopsies when normalized by tissue mass. Biopsy proved to collect more immune cells than cytobrushes, however frequencies of CD45+ subpopulations were comparable between methods. Live cells isolated from biopsied tonsils had greater CD45+ leukocyte frequencies (mean 31.6 ± SD 20.4%) than buccal (13.8 ± 4.6%) or sublingual (10.0 ± 5.1%) tissues. T-cells composed more than half of the CD45+ population in sublingual tissue (60.1 ± 9.6%) and the tonsil (54.6 ± 7.5%), but only 31.9 ± 7.2% in buccal samples. CD20+ B-cells composed a greater percentage of CD45+ leukocytes in the tonsil (12.8 ± 9.1%) than buccal (1.2 ± 1.0%) or sublingual tissues (0.8 ± 1.2%). Immune population comparisons are also made between sex and age. These results present an important step for understanding the oral immune environment, oral disease, and site-specific therapy development.
Collapse
Affiliation(s)
- Jamie L. Hernandez
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Jaehyung Park
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Sean M. Hughes
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, United States
| | - Florian Hladik
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, United States
- Department of Medicine, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Kim A. Woodrow
- Department of Bioengineering, University of Washington, Seattle, WA, United States
- *Correspondence: Kim A. Woodrow
| |
Collapse
|
4
|
Schmitz T, Hoffmann V, Olliges E, Bobinger A, Popovici R, Nößner E, Meissner K. Reduced frequency of perforin-positive CD8+ T cells in menstrual effluent of endometriosis patients. J Reprod Immunol 2021; 148:103424. [PMID: 34563756 DOI: 10.1016/j.jri.2021.103424] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/20/2021] [Accepted: 09/15/2021] [Indexed: 01/21/2023]
Abstract
Endometriosis is a widespread disease and commonly reduces the life quality of those affected. Scientific literature indicates different underlying immunological changes. Frequently examined tissues are peripheral blood, endometrial tissue and peritoneal fluid. Yet, knowledge on immunological differences in menstrual effluent (ME) is scarce. In this study, between January 2018 and August 2019, 12 women with endometriosis (rASRM classification: stages I-IV) and 11 healthy controls were included. ME was collected using menstrual cups and venous blood samples (PB) were taken. Mononuclear cells were obtained from ME (MMC) and PB (PBMC) and analyzed using flow cytometry. Concentrations of cell adhesion molecules (ICAM-I and VCAM-I) and cytokines (IL-6, IL-8 and TNF-α) were measured using ELISA. CD8 + T cells obtained from ME were significantly less often perforin-positive in women with endometriosis compared to healthy controls. A comparison between MMC and PBMC revealed that MMC contained significantly less T cells and more B cells. The CD4/CD8 ratio was significantly higher in MMC, and Tregs were significantly less frequently in MMC. In ME, T cells and NK cells expressed significantly more CD69. NK cells obtained from ME were predominantly CD56bright/CD16dim and had a lower frequency of perforin + cells compared to PBMC NK cells. Moreover, ICAM-1 plasma levels were significantly reduced in women with endometriosis compared to healthy controls. In conclusion, CD8 + T cells obtained from the ME were significantly less perforin-positive in endometriosis patients indicating a reduced cytotoxic potential. MMC are distinctively different from PBMC and, thus, seem to be of endometrial origin.
Collapse
Affiliation(s)
- Timo Schmitz
- Institute of Medical Psychology, Medical Faculty, LMU Munich, Germany; Chair of Epidemiology, University of Augsburg, University Hospital Augsburg, Augsburg, Germany.
| | - Verena Hoffmann
- Institute of Medical Psychology, Medical Faculty, LMU Munich, Germany
| | - Elisabeth Olliges
- Institute of Medical Psychology, Medical Faculty, LMU Munich, Germany; Division of Health Promotion, Coburg University of Applied Sciences, Coburg, Germany
| | - Alina Bobinger
- Institute of Medical Psychology, Medical Faculty, LMU Munich, Germany; Division of Health Promotion, Coburg University of Applied Sciences, Coburg, Germany
| | - Roxana Popovici
- kïz, Munich, Germany; Department of Gynecologic Endocrinology and Fertility Disorders, Heidelberg University Women's Hospital, Heidelberg, Germany
| | - Elfriede Nößner
- Immunoanalytics Research Group Tissue Control of Immunocytes, Helmholtz Zentrum München, Munich, Germany
| | - Karin Meissner
- Institute of Medical Psychology, Medical Faculty, LMU Munich, Germany; Division of Health Promotion, Coburg University of Applied Sciences, Coburg, Germany.
| |
Collapse
|
5
|
Grabarek AD, Jiskoot W, Hawe A, Pike-Overzet K, Menzen T. Forced degradation of cell-based medicinal products guided by flow imaging microscopy: Explorative studies with Jurkat cells. Eur J Pharm Biopharm 2021; 167:38-47. [PMID: 34274457 DOI: 10.1016/j.ejpb.2021.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/30/2021] [Accepted: 07/10/2021] [Indexed: 01/01/2023]
Abstract
Cell-based medicinal products (CBMPs) offer ground-breaking opportunities to treat diseases with limited or no therapeutic options. However, the intrinsic complexity of CBMPs results in great challenges with respect to analytical characterization and stability assessment. In our study, we submitted Jurkat cell suspensions to forced degradation studies mimicking conditions to which CBMPs might be exposed from procurement of cells to administration of the product. Flow imaging microscopy assisted by machine learning was applied for determination of cell viability and concentration, and quantification of debris particles. Additionally, orthogonal cell characterization techniques were used. Thawing of cells at 5 °C was detrimental to cell viability and resulted in high numbers of debris particles, in contrast to thawing at 37 °C or 20 °C which resulted in better stability. After freezing of cell suspensions at -18 °C in presence of dimethyl sulfoxide (DMSO), a DMSO concentration of 2.5% (v/v) showed low stabilizing properties, whereas 5% or 10% was protective. Horizontal shaking of cell suspensions did not affect cell viability, but led to a reduction in cell concentration. Fetal bovine serum (10% [v/v]) protected the cells during shaking. In conclusion, forced degradation studies with application of orthogonal analytical characterization methods allow for CBMP stability assessment and formulation screening.
Collapse
Affiliation(s)
- A D Grabarek
- Coriolis Pharma, Fraunhoferstraße 18 b, 82152 Martinsried, Germany; Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - W Jiskoot
- Coriolis Pharma, Fraunhoferstraße 18 b, 82152 Martinsried, Germany; Leiden Academic Centre for Drug Research, Leiden University, the Netherlands.
| | - A Hawe
- Leiden Academic Centre for Drug Research, Leiden University, the Netherlands
| | - K Pike-Overzet
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - T Menzen
- Leiden Academic Centre for Drug Research, Leiden University, the Netherlands.
| |
Collapse
|
6
|
Levy CN, Hughes SM, Roychoudhury P, Reeves DB, Amstuz C, Zhu H, Huang ML, Wei Y, Bull ME, Cassidy NA, McClure J, Frenkel LM, Stone M, Bakkour S, Wonderlich ER, Busch MP, Deeks SG, Schiffer JT, Coombs RW, Lehman DA, Jerome KR, Hladik F. A highly multiplexed droplet digital PCR assay to measure the intact HIV-1 proviral reservoir. Cell Rep Med 2021; 2:100243. [PMID: 33948574 PMCID: PMC8080125 DOI: 10.1016/j.xcrm.2021.100243] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/05/2021] [Accepted: 03/16/2021] [Indexed: 01/16/2023]
Abstract
Quantifying the replication-competent HIV reservoir is essential for evaluating curative strategies. Viral outgrowth assays (VOAs) underestimate the reservoir because they fail to induce all replication-competent proviruses. Single- or double-region HIV DNA assays overestimate it because they fail to exclude many defective proviruses. We designed two triplex droplet digital PCR assays, each with 2 unique targets and 1 in common, and normalize the results to PCR-based T cell counts. Both HIV assays are specific, sensitive, and reproducible. Together, they estimate the number of proviruses containing all five primer-probe regions. Our 5-target results are on average 12.1-fold higher than and correlate with paired quantitative VOA (Spearman's ρ = 0.48) but estimate a markedly smaller reservoir than previous DNA assays. In patients on antiretroviral therapy, decay rates in blood CD4+ T cells are faster for intact than for defective proviruses, and intact provirus frequencies are similar in mucosal and circulating T cells.
Collapse
Affiliation(s)
- Claire N. Levy
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
| | - Sean M. Hughes
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
| | - Pavitra Roychoudhury
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Daniel B. Reeves
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Chelsea Amstuz
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Haiying Zhu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Meei-Li Huang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Yulun Wei
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Marta E. Bull
- Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Noah A.J. Cassidy
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jan McClure
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Lisa M. Frenkel
- Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Mars Stone
- Vitalent Research Institute, San Francisco, CA, USA
- Department of Laboratory Medicine, University of San Francisco, San Francisco, CA, USA
- School of Medicine, University of San Francisco, San Francisco, CA, USA
| | - Sonia Bakkour
- Vitalent Research Institute, San Francisco, CA, USA
- Department of Laboratory Medicine, University of San Francisco, San Francisco, CA, USA
- School of Medicine, University of San Francisco, San Francisco, CA, USA
| | - Elizabeth R. Wonderlich
- Department of Infectious Disease Research, Southern Research, 431 Aviation Way, Frederick, MD, USA
| | - Michael P. Busch
- Vitalent Research Institute, San Francisco, CA, USA
- Department of Laboratory Medicine, University of San Francisco, San Francisco, CA, USA
| | - Steven G. Deeks
- School of Medicine, University of San Francisco, San Francisco, CA, USA
- Division of HIV, Infectious Diseases and Global Medicine, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA
| | - Joshua T. Schiffer
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Robert W. Coombs
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Dara A. Lehman
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Keith R. Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Florian Hladik
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
7
|
Li QY, Zou T, Gong Y, Chen SY, Zeng YX, Gao LX, Weng CH, Xu HW, Yin ZQ. Functional assessment of cryopreserved clinical grade hESC-RPE cells as a qualified cell source for stem cell therapy of retinal degenerative diseases. Exp Eye Res 2020; 202:108305. [PMID: 33080300 DOI: 10.1016/j.exer.2020.108305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/29/2020] [Accepted: 10/13/2020] [Indexed: 01/04/2023]
Abstract
The biosafety and efficiency of transplanting retinal pigment epithelial (RPE) cells derived from both human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) have been evaluated in phase I and phase II clinical trials. For further large-scale application, cryopreserved RPE cells must be used; thus, it is highly important to investigate the influence of cryopreservation and thawing on the biological characteristics of hESC-RPE cells and their post-transplantation vision-restoring function. Here, via immunofluorescence, qPCR, transmission electron microscopy, transepithelial electrical resistance, and enzyme-linked immunosorbent assays (ELISAs), we showed that cryopreserved hESC-RPE cells retained the specific gene expression profile, morphology, ultrastructure, and maturity-related functions of induced RPE cells. Additionally, cryopreserved hESC-RPE cells exhibited a polarized monolayer, tight junction, and gap junction structure and an in vitro nanoparticle phagocytosis capability similar to those of induced hESC-RPE cells. However, the level of pigment epithelium-derived factor (PEDF) secretion was significantly decreased in cryopreserved hESC-RPE cells. Royal College of Surgeons rats with cryopreserved hESC-RPE cells engrafted into the subretinal space exhibited a significant decrease in the b-wave amplitude compared with rats engrafted with induced hESC-RPE cells at 4 weeks post transplantation. However, the difference disappeared at 8 weeks and 12 weeks post operation. No significant difference in the outer nuclear layer (ONL) thickness was observed between the two groups. Our data showed that even after cryopreservation and thawing, cryopreserved hESC-RPE cells are still qualified as a donor cell source for cell-based therapy of retinal degenerative diseases.
Collapse
Affiliation(s)
- Qi-You Li
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, PR China
| | - Ting Zou
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, PR China
| | - Yu Gong
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, PR China
| | - Si-Yu Chen
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, PR China
| | - Yu-Xiao Zeng
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, PR China
| | - Li-Xiong Gao
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, PR China; Department of Ophthalmology, The 6th Medical Center of PLA General Hospital, Beijing, China
| | - Chuan-Huang Weng
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, PR China
| | - Hai-Wei Xu
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, PR China.
| | - Zheng-Qin Yin
- Southwest Hospital/ Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, 400038, PR China.
| |
Collapse
|
8
|
Su T, Ying Z, Lu XA, He T, Song Y, Wang X, Ping L, Xie Y, Tu M, Liu G, Qi F, Ding Y, Jing H, Zhu J. The clinical outcomes of fresh versus cryopreserved CD19-directed chimeric antigen receptor T cells in non-Hodgkin lymphoma patients. Cryobiology 2020; 96:106-113. [PMID: 32721392 DOI: 10.1016/j.cryobiol.2020.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/18/2020] [Accepted: 07/21/2020] [Indexed: 12/22/2022]
Abstract
CD19-directed chimeric antigen receptor T (CAR-T) cells have been widely reported in the therapy of relapsed/refractory non-Hodgkin lymphoma (NHL). Both cryopreserved and fresh formulations of CAR-T have been used in previous studies. However, quite a few studies investigated the effects of cryopreservation on the clinical outcomes of CAR-T cells. Here we retrospectively analyzed a phase I/II clinical trial of CD19-directed CAR-T cells in NHL patients, and compared the safety and efficacy of cryopreserved and fresh CAR-T products. All CAR-T cells were prepared using the same manufacturing process except the formulation step. Fifteen patients were infused with cryopreserved/thawed CAR-T cells, and 8 patients were treated with fresh CAR-T cells. Comparative overall response rates and in vivo expansion kinetics of CAR-T cells were observed between the cryopreserved cohort and fresh cohort. The occurrence rates of cytokine release syndrome and neurotoxicity were also similar in both groups. Patients in the fresh cohort showed higher incidence of acute hematological toxicity including anemia, hypoleukemia, and thrombocytopenia. This study demonstrated that cryopreservation showed negligible effects on the efficacy of CD19-directed CAR-T cells, but endowed CAR-T cells with higher safety in NHL patients, supporting the application of cryopreserved CAR-T products for NHL therapy.
Collapse
Affiliation(s)
- Tong Su
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Haidian District, Beijing, 100191, China
| | - Zhitao Ying
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Haidian District, Beijing, 100142, China
| | - Xin-An Lu
- Immunochina Pharmaceuticals Co, Ltd, Haidian District, Beijing, 100089, China
| | - Ting He
- Immunochina Pharmaceuticals Co, Ltd, Haidian District, Beijing, 100089, China
| | - Yuqin Song
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Haidian District, Beijing, 100142, China
| | - Xiaopei Wang
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Haidian District, Beijing, 100142, China
| | - Lingyan Ping
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Haidian District, Beijing, 100142, China
| | - Yan Xie
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Haidian District, Beijing, 100142, China
| | - Meifeng Tu
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Haidian District, Beijing, 100142, China
| | - Guanghua Liu
- Immunochina Pharmaceuticals Co, Ltd, Haidian District, Beijing, 100089, China
| | - Feifei Qi
- Immunochina Pharmaceuticals Co, Ltd, Haidian District, Beijing, 100089, China
| | - Yanping Ding
- Immunochina Pharmaceuticals Co, Ltd, Haidian District, Beijing, 100089, China.
| | - Hongmei Jing
- Department of Hematology and Lymphoma Research Center, Peking University Third Hospital, Haidian District, Beijing, 100191, China.
| | - Jun Zhu
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Haidian District, Beijing, 100142, China.
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW This review summarizes our current understanding of HIV-1-specific T-cell responses in mucosal tissues, emphasizing recent work and specifically highlighting papers published over the past 18 months. RECENT FINDINGS Recent work has improved the standardization of tissue sampling approaches and provided new insights on the abundance, phenotype and distribution of HIV-1-specific T-cell populations in mucosal tissues. In addition, it has recently been established that some lymphocytes exist in tissues as "permanent resident" memory cells that differ from their counterparts in blood. SUMMARY HIV-1-specific T-cell responses have been extensively characterized; however, the vast majority of reports have focused on T-cells isolated from peripheral blood. Mucosal tissues of the genitourinary and gastrointestinal tracts serve as the primary sites of HIV-1 transmission, and provide "front line" barrier defenses against HIV-1 and other pathogens. In addition, the gastrointestinal tract remains a significant viral reservoir throughout the chronic phase of infection. Tissue-based immune responses may be critical in fighting infection, and understanding these defenses may lead to improved vaccines and immunotherapeutic strategies.
Collapse
|
10
|
High-dimensional immune phenotyping and transcriptional analyses reveal robust recovery of viable human immune and epithelial cells from frozen gastrointestinal tissue. Mucosal Immunol 2018; 11:1684-1693. [PMID: 30111863 PMCID: PMC6512331 DOI: 10.1038/s41385-018-0047-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/01/2018] [Accepted: 03/29/2018] [Indexed: 02/04/2023]
Abstract
Simultaneous analyses of peripheral and mucosal immune compartments can yield insight into the pathogenesis of mucosal-associated diseases. Although methods to preserve peripheral immune cells are well established, studies involving mucosal immune cells have been hampered by lack of simple storage techniques. We provide a cryopreservation protocol allowing for storage of gastrointestinal (GI) tissue with preservation of viability and functionality of both immune and epithelial cells. These methods will facilitate translational studies allowing for batch analysis of mucosal tissue to investigate disease pathogenesis, biomarker discovery and treatment responsiveness.
Collapse
|
11
|
Abstract
Background Cryopreservation of leukocytes isolated from the cervicovaginal and colorectal mucosa is useful for the study of cellular immunity (see Hughes SM et al. PLOS ONE 2016). However, some questions about mucosal biology and sexually transmitted infections are better addressed with intact mucosal tissue, for which there is no standard cryopreservation protocol. Methods and findings To find an optimal preservation protocol for mucosal tissues, we tested slow cooling (1°C/min) with 10% dimethylsulfoxide (designated “cryopreservation”) and fast cooling (plunge in liquid nitrogen) with 20% dimethylsulfoxide and 20% ethylene glycol (“vitrification”). We compared fresh and preserved human cervicovaginal and colorectal tissues in a range of assays, including metabolic activity, human immunodeficiency virus infection, cell phenotype, tissue structure by hematoxylin-and-eosin staining, cell number and viability, production of cytokines, and microbicide drug concentrations. Metabolic activity, HIV infectability, and tissue structure were similar in cryopreserved and vitrified vaginal tissues. However, vitrification led to poor cell recovery from the colorectal mucosa, with 90% fewer cells recovered after isolation from vitrified colorectal tissues than from cryopreserved. HIV infection rates were similar for fresh and cryopreserved ectocervical tissues, whereas cryopreserved colorectal tissues were less easily infected than fresh tissues (hazard ratio 0.7 [95% confidence interval 0.4, 1.2]). Finally, we compared isolation of cells before and after cryopreservation. Cell recoveries were higher when cells were isolated after freezing and thawing (71% [59–84%]) than before (50% [38–62%]). Cellular function was similar to fresh tissue in both cases. Microbicide drug concentrations were lower in cryopreserved explants compared to fresh ones. Conclusions Cryopreservation of intact cervicovaginal and colorectal tissues with dimethylsulfoxide works well in a range of assays, while the utility of vitrification is more limited. Cell yields are higher from cryopreserved intact tissue pieces than from thawed cryopreserved single cell suspensions isolated before freezing, but T cell functions are similar.
Collapse
|
12
|
Wildenberg ME, Duijvestein M, Westera L, van Viegen T, Buskens CJ, van der Bilt JDW, Stitt L, Jairath V, Feagan BG, Vande Casteele N. Evaluation of the effect of storage condition on cell extraction and flow cytometric analysis from intestinal biopsies. J Immunol Methods 2018; 459:50-54. [PMID: 29772249 DOI: 10.1016/j.jim.2018.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/30/2018] [Accepted: 05/09/2018] [Indexed: 01/28/2023]
Abstract
BACKGROUND Flow cytometric (FC) analysis of intestinal tissue biopsies requires prompt cell isolation and processing to prevent cell death and generate valid data. We examined the effect of storage conditions prior to cell isolation and FC on viable cell yield and the proportions of immune cell phenotypes from intestinal biopsies. METHODS Biopsies (N = 224) from inflamed or non-inflamed ileal and/or colonic tissue from three patients with Crohn's disease were processed and analyzed immediately in duplicate, or stored under different conditions. Cells were isolated and stained for specific markers, followed by FC. RESULTS Decreased mean live CD45+ cell counts were observed after storage of biopsies at -80 °C dimethyl sulfoxide (DMSO)/citrate buffer compared with immediate processing (1794.3 vs. 19,672.7; p = 0.006]). A non-significant decrease in CD45+ live cell count occurred after storage at -20 °C in DMSO/citrate buffer and cell yield was adequate for subsequent analysis. CD3+ cell proportions were significantly lower after storage at 4 °C in complete medium for 48 h compared with immediate analysis. Mean CD14+ cell proportions were significantly higher after storage of biopsies at -80 °C in DMSO/citrate buffer compared with immediate analysis (2.61% vs. 1.31%, p = 0.007). CD4+, CD8+ and CD4+/CD8+ cell proportions were unaffected by storage condition. CONCLUSION Storage of intestinal tissue biopsies at -20 °C in DMSO/citrate buffer for up to 48 h resulted in sufficient viable cell yield for FC analysis without affecting subsequent marker-positive cell proportions. These findings support the potential shipping and storage of intestinal biopsies for centralized FC analysis in multicenter clinical trials.
Collapse
Affiliation(s)
- Manon E Wildenberg
- Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands; Academic Medical Center, Department of Gastroenterology and Hepatology, Amsterdam, The Netherlands
| | - Marjolijn Duijvestein
- Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands; Academic Medical Center, Department of Gastroenterology and Hepatology, Amsterdam, The Netherlands
| | - Liset Westera
- Tytgat Institute for Liver and Intestinal Research, Amsterdam, The Netherlands
| | | | | | | | - Larry Stitt
- Robarts Clinical Trials, Inc., London, Canada
| | - Vipul Jairath
- Robarts Clinical Trials, Inc., London, Canada; University of Western Ontario, Department of Medicine, London, Canada; University of Western Ontario, Department of Epidemiology and Biostatistics, London, Canada
| | - Brian G Feagan
- Robarts Clinical Trials, Inc., London, Canada; University of Western Ontario, Department of Medicine, London, Canada; University of Western Ontario, Department of Epidemiology and Biostatistics, London, Canada
| | - Niels Vande Casteele
- Robarts Clinical Trials, Inc., London, Canada; Univeristy of California San Diego, Department of Medicine, La Jolla, CA, United States.
| |
Collapse
|