1
|
Kundu D, Acharya S, Wang S, Kim KM. Unveiling the intracellular dynamics of α4β2 nAChR-mediated ERK activation through the interplay of arrestin, Gβγ, and PKCβII. Life Sci 2024; 355:122994. [PMID: 39163903 DOI: 10.1016/j.lfs.2024.122994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024]
Abstract
AIMS In contrast to G protein-coupled receptors or receptor tyrosine kinases, the mechanism underlying ERK activation through nicotine acetylcholine receptors (nAChRs), members of the ligand-gated ion channel family, remains poorly elucidated. This study aimed to delineate the signaling pathway responsible for ERK activation by the α4β2 nAChR subtype, which is implicated in nicotine addiction and various mental disorders. MATERIALS AND METHODS Loss-of-function strategies and mutants of arrestin2/PKCβII with distinct functional characteristics were employed to identify the cellular components and processes involved in ERK activation. KEY FINDINGS ERK activation via α4β2 nAChR was observed within the nucleus and necessitated the nuclear translocation of arrestin2 and PKCβII, which exhibited mutual augmentation. Activation of PKCβII by α4β2 nAChR stimulation facilitated the nuclear translocation of arrestin2 by enhancing its interaction with importin β1. Apart from scaffolding ERK activation in the nucleus, arrestin2, in cooperation with GRK2, facilitated the activation of the Src/Syk/PKCβII signaling cascade, leading to the nuclear entry of PKCβII in a Gβγ-dependent manner. Upon nuclear localization, PKCβII underwent ubiquitination by Mdm2 and interacted with MEK1, resulting in ERK activation. In summary, α4β2 nAChR-mediated ERK activation in the nucleus involves the nuclear translocation of arrestin2 and PKCβII, which is reciprocally facilitated via positive feedback augmentation. SIGNIFICANCE As α4β2 nAChRs play a pivotal role in various cellular processes including drug addiction and mental disorders, our findings will offer insights into understanding the pathogenesis of α4β2 nAChR-related disorders and may facilitate the development of targeted therapeutic interventions.
Collapse
Affiliation(s)
- Dooti Kundu
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Srijan Acharya
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Shujie Wang
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kyeong-Man Kim
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
2
|
Bai M, Lu K, Che Y, Fu L. CacyBP promotes the development of lung adenocarcinoma by regulating OTUD5. Carcinogenesis 2024; 45:595-606. [PMID: 38558058 DOI: 10.1093/carcin/bgae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/18/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024] Open
Abstract
Lung cancer is the most common and lethal malignancy, with lung adenocarcinoma accounting for approximately 40% of all cases. Despite some progress in understanding the pathogenesis of this disease and developing new therapeutic approaches, the current treatments for lung adenocarcinoma remain ineffective due to factors such as high tumour heterogeneity and drug resistance. Therefore, there is an urgent need to identify novel therapeutic targets. Calcyclin-binding protein (CacyBP) can regulate a variety of physiological processes by binding to different proteins, but its function in lung adenocarcinoma is unknown. Here, we show that CacyBP is highly expressed in lung adenocarcinoma tissues, and high CacyBP expression correlates with poorer patient survival. Moreover, overexpression of CacyBP promoted the proliferation, migration and invasion of lung adenocarcinoma cell lines. Further mechanistic studies revealed that CacyBP interacts with the tumour suppressor ovarian tumour (OTU) deubiquitinase 5 (OTUD5), enhances the ubiquitination and proteasomal degradation of OTUD5 and regulates tumourigenesis via OTUD5. In conclusion, our study reveals a novel mechanism by which CacyBP promotes tumourigenesis by increasing the ubiquitination level and proteasome-dependent degradation of OTUD5, providing a potential target for the treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Mixue Bai
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Kun Lu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yingying Che
- School of Basic Medicine, Qingdao University, Qingdao, China
- Weihai Ocean Vocational College, Weihai, China
| | - Lin Fu
- School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Martínez-Rivera FJ, Yim YY, Godino A, Minier-Toribio A, Tofani S, Holt LM, Torres-Berrío A, Futamura R, Browne CJ, Markovic T, Hamilton PJ, Neve RL, Nestler EJ. Cell-Type-Specific Regulation of Cocaine Reward by the E2F3a Transcription Factor in Nucleus Accumbens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602609. [PMID: 39026727 PMCID: PMC11257579 DOI: 10.1101/2024.07.08.602609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The development of drug addiction is characterized by molecular changes in brain reward regions that lead to the transition from recreational to compulsive drug use. These neurobiological processes in brain reward regions, such as the nucleus accumbens (NAc), are orchestrated in large part by transcriptional regulation. Our group recently identified the transcription factor E2F3a as a novel regulator of cocaine's rewarding effects and gene expression regulation in the NAc of male mice. Despite this progress, no information is available about the role of E2F3a in regulating cocaine reward at the sex- and cell-specific levels. Here, we used male and female mice expressing Cre-recombinase in either D1- or D2-type medium spiny neurons (MSNs) combined with viral-mediated gene transfer to bidirectionally control levels of E2F3a in a cell-type-specific manner in the NAc during conditioned place preference (CPP) to cocaine. Our findings show that selective overexpression of E2F3a in D1-MSNs increased cocaine CPP in both male and female mice, whereas opposite effects were observed under knockdown conditions. In contrast, equivalent E2F3a manipulations in D2-MSNs had no significant effects. To further explore the role of E2F3a in sophisticated operant and motivated behaviors, we performed viral manipulations of all NAc neurons in combination with cocaine self-administration and behavioral economics procedures in rats and demonstrated that E2F3a regulates sensitivity aspects of cocaine seeking and taking. These results confirm E2F3a as a central substrate of cocaine reward and demonstrate that this effect is mediated in D1-MSNs, thereby providing increased knowledge of cocaine action at the transcriptional level.
Collapse
|
4
|
Joukhan A, Kononenko V, Bele T, Sollner Dolenc M, Peigneur S, Pinheiro-Junior EL, Tytgat J, Turk T, Križaj I, Drobne D. Attenuation of Nicotine Effects on A549 Lung Cancer Cells by Synthetic α7 nAChR Antagonists APS7-2 and APS8-2. Mar Drugs 2024; 22:147. [PMID: 38667764 PMCID: PMC11051029 DOI: 10.3390/md22040147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Nicotine binds to nicotinic acetylcholine receptors (nAChRs) that are overexpressed in different cancer cells, promoting tumor growth and resistance to chemotherapy. In this study, we aimed to investigate the potential of APS7-2 and APS8-2, synthetic analogs of a marine sponge toxin, to inhibit nicotine-mediated effects on A549 human lung cancer cells. Our electrophysiological measurements confirmed that APS7-2 and APS8-2 act as α7 nAChR antagonists. APS8-2 showed no cytotoxicity in A549 cells, while APS7-2 showed concentration-dependent cytotoxicity in A549 cells. The different cytotoxic responses of APS7-2 and APS8-2 emphasize the importance of the chemical structure in determining their cytotoxicity on cancer cells. Nicotine-mediated effects include increased cell viability and proliferation, elevated intracellular calcium levels, and reduced cisplatin-induced cytotoxicity and reactive oxygen species production (ROS) in A549 cells. These effects of nicotine were effectively attenuated by APS8-2, whereas APS7-2 was less effective. Our results suggest that APS8-2 is a promising new therapeutic agent in the chemotherapy of lung cancer.
Collapse
Affiliation(s)
- Ahmad Joukhan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia;
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (V.K.); (T.T.)
| | - Veno Kononenko
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (V.K.); (T.T.)
| | - Tadeja Bele
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (T.B.); (I.K.)
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Marija Sollner Dolenc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Steve Peigneur
- Laboratory of Toxicology and Pharmacology, KU Leuven, 3000 Leuven, Belgium; (S.P.); (E.L.P.-J.); (J.T.)
| | | | - Jan Tytgat
- Laboratory of Toxicology and Pharmacology, KU Leuven, 3000 Leuven, Belgium; (S.P.); (E.L.P.-J.); (J.T.)
| | - Tom Turk
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (V.K.); (T.T.)
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, 1000 Ljubljana, Slovenia; (T.B.); (I.K.)
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia; (V.K.); (T.T.)
| |
Collapse
|
5
|
Arunrungvichian K, Vajragupta O, Hayakawa Y, Pongrakhananon V. Targeting Alpha7 Nicotinic Acetylcholine Receptors in Lung Cancer: Insights, Challenges, and Therapeutic Strategies. ACS Pharmacol Transl Sci 2024; 7:28-41. [PMID: 38230275 PMCID: PMC10789132 DOI: 10.1021/acsptsci.3c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 01/18/2024]
Abstract
Alpha7 nicotinic acetylcholine receptor (α7 nAChR) is an ion-gated calcium channel that plays a significant role in various aspects of cancer pathogenesis, particularly in lung cancer. Preclinical studies have elucidated the molecular mechanism underlying α7 nAChR-associated lung cancer proliferation, chemotherapy resistance, and metastasis. Understanding and targeting this mechanism are crucial for developing therapeutic interventions aimed at disrupting α7 nAChR-mediated cancer progression and improving treatment outcomes. Drug research and discovery have determined natural compounds and synthesized chemical antagonists that specifically target α7 nAChR. However, approved α7 nAChR antagonists for clinical use are lacking, primarily due to challenges related to achieving the desired selectivity, efficacy, and safety profiles required for effective therapeutic intervention. This comprehensive review provided insights into the molecular mechanisms associated with α7 nAChR and its role in cancer progression, particularly in lung cancer. Furthermore, it presents an update on recent evidence about α7 nAChR antagonists and addresses the challenges encountered in drug research and discovery in this field.
Collapse
Affiliation(s)
- Kuntarat Arunrungvichian
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Unit
of Compounds Library for Drug Discovery, Mahidol University, Bangkok 10400, Thailand
| | - Opa Vajragupta
- Research
Affairs, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yoshihiro Hayakawa
- Institute
of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Varisa Pongrakhananon
- Department
of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Preclinical
Toxicity and Efficacy Assessment of Medicines and Chemicals Research
Unit, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
6
|
Bele T, Turk T, Križaj I. Nicotinic acetylcholine receptors in cancer: Limitations and prospects. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166875. [PMID: 37673358 DOI: 10.1016/j.bbadis.2023.166875] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) have long been considered to solely mediate neurotransmission. However, their widespread distribution in the human body suggests a more diverse physiological role. Additionally, the expression of nAChRs is increased in certain cancers, such as lung cancer, and has been associated with cell proliferation, epithelial-to-mesenchymal cell transition, angiogenesis and apoptosis prevention. Several compounds that interact with these receptors have been identified as potential therapeutic agents. They have been tested as drugs for treating nicotine addiction, alcoholism, depression, pain and Alzheimer's disease. This review focuses on nAChR-mediated signalling in cancer, presenting opportunities for the development of innovative nAChR-based anticancer drugs. It displays the differences in expression of each nAChR subunit between normal and cancer cells for selected cancer types, highlighting their possible involvement in specific cases. Antagonists of nAChRs that could complement existing cancer therapies are summarised and critically discussed. We hope that this review will stimulate further research on the role of nAChRs in cancer potentially leading to innovative cancer therapies.
Collapse
Affiliation(s)
- T Bele
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia.
| | - T Turk
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia.
| | - I Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
7
|
Wu M, Wu Z, Yan J, Zeng J, Kuang J, Zhong C, Zhu X, Mo Y, Guo Q, Li D, Tan J, Zhang T, Zhang J. Integrated analysis of single-cell and Bulk RNA sequencing reveals a malignancy-related signature in lung adenocarcinoma. Front Oncol 2023; 13:1198746. [PMID: 37427142 PMCID: PMC10327591 DOI: 10.3389/fonc.2023.1198746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
Background Lung adenocarcinoma (LUAD), the most common histotype of lung cancer, may have variable prognosis due to molecular variations. The research strived to establish a prognostic model based on malignancy-related risk score (MRRS) in LUAD. Methods We applied the single-cell RNA sequencing (scRNA-seq) data from Tumor Immune Single Cell Hub database to recognize malignancy-related geneset. Meanwhile, we extracted RNA-seq data from The Cancer Genome Atlas database. The GSE68465 and GSE72094 datasets from the Gene Expression Omnibus database were downloaded to validate the prognostic signature. Random survival forest analysis screened MRRS with prognostic significance. Multivariate Cox analysis was leveraged to establish the MRRS. Furthermore, the biological functions, gene mutations, and immune landscape were investigated to uncover the underlying mechanisms of the malignancy-related signature. In addition, we used qRT-PCR to explore the expression profile of MRRS-constructed genes in LUAD cells. Results The scRNA-seq analysis revealed the markers genes of malignant celltype. The MRRS composed of 7 malignancy-related genes was constructed for each patient, which was shown to be an independent prognostic factor. The results of the GSE68465 and GSE72094 datasets validated MRRS's prognostic value. Further analysis demonstrated that MRRS was involved in oncogenic pathways, genetic mutations, and immune functions. Moreover, the results of qRT-PCR were consistent with bioinformatics analysis. Conclusion Our research recognized a novel malignancy-related signature for predicting the prognosis of LUAD patients and highlighted a promising prognostic and treatment marker for LUAD patients.
Collapse
Affiliation(s)
- Mengxi Wu
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Zhenyu Wu
- Department of Urology, The First People’s Hospital of Foshan, Foshan, China
| | - Jun Yan
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jie Zeng
- Department of Thoracic Surgery, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| | - Jun Kuang
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Chenghua Zhong
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xiaojia Zhu
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yijun Mo
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Quanwei Guo
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Dongfang Li
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jianfeng Tan
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Tao Zhang
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jianhua Zhang
- Department of Thoracic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
8
|
Leonard S, Benfante R. Unanswered questions in the regulation and function of the duplicated α7 nicotinic receptor gene CHRFAM7A. Pharmacol Res 2023; 192:106783. [PMID: 37164281 DOI: 10.1016/j.phrs.2023.106783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/20/2023] [Accepted: 04/30/2023] [Indexed: 05/12/2023]
Abstract
The α7 nicotinic receptor (α7 nAChR) is an important entry point for Ca2+ into the cell, which has broad and important effects on gene expression and function. The gene (CHRNA7), mapping to chromosome (15q14), has been genetically linked to a large number of diseases, many of which involve defects in cognition. While numerous mutations in CHRNA7 are associated with mental illness and inflammation, an important control point may be the function of a recently discovered partial duplication CHRNA7, CHRFAM7A, that negatively regulates the function of the α7 receptor, through the formation of heteropentamers; other functions cannot be excluded. The deregulation of this human specific gene (CHRFAM7A) has been linked to neurodevelopmental, neurodegenerative, and inflammatory disorders and has important copy number variations. Much effort is being made to understand its function and regulation both in healthy and pathological conditions. However, many questions remain to be answered regarding its functional role, its regulation, and its role in the etiogenesis of neurological and inflammatory disorders. Missing knowledge on the pharmacology of the heteroreceptor has limited the discovery of new molecules capable of modulating its activity. Here we review the state of the art on the role of CHRFAM7A, highlighting unanswered questions to be addressed. A possible therapeutic approach based on genome editing protocols is also discussed.
Collapse
Affiliation(s)
- Sherry Leonard
- Department of Psychiatry - University of Colorado Anschutz, Aurora, Colorado, USA
| | - Roberta Benfante
- CNR - Institute of Neuroscience, Vedano al Lambro (MB), Italy; Dept. Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy; NeuroMI - Milan Center for Neuroscience, University of Milano Bicocca, Milan, Italy.
| |
Collapse
|
9
|
The Role of the Acetylcholine System in Common Respiratory Diseases and COVID-19. Molecules 2023; 28:molecules28031139. [PMID: 36770805 PMCID: PMC9920988 DOI: 10.3390/molecules28031139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/01/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
As an indispensable component in human beings, the acetylcholine system regulates multiple physiological processes not only in neuronal tissues but also in nonneuronal tissues. However, since the concept of the "Nonneuronal cholinergic system (NNCS)" has been proposed, the role of the acetylcholine system in nonneuronal tissues has received increasing attention. A growing body of research shows that the acetylcholine system also participates in modulating inflammatory responses, regulating contraction and mucus secretion of respiratory tracts, and influencing the metastasis and invasion of lung cancer. In addition, the susceptibility and severity of respiratory tract infections caused by pathogens such as Mycobacterium Tuberculosis and the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) can also correlate with the regulation of the acetylcholine system. In this review, we summarized the major roles of the acetylcholine system in respiratory diseases. Despite existing achievements in the field of the acetylcholine system, we hope that more in-depth investigations on this topic will be conducted to unearth more possible pharmaceutical applications for the treatment of diverse respiratory diseases.
Collapse
|
10
|
Insights into the Mechanisms of Action of Proanthocyanidins and Anthocyanins in the Treatment of Nicotine-Induced Non-Small Cell Lung Cancer. Int J Mol Sci 2022; 23:ijms23147905. [PMID: 35887251 PMCID: PMC9316101 DOI: 10.3390/ijms23147905] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 02/04/2023] Open
Abstract
In traditional medicine, different parts of plants, including fruits, have been used for their anti-inflammatory and anti-oxidative properties. Plant-based foods, such as fruits, seeds and vegetables, are used for therapeutic purposes due to the presence of flavonoid compounds. Proanthocyanidins (PCs) and anthocyanins (ACNs) are the major distributed flavonoid pigments in plants, which have therapeutic potential against certain chronic diseases. PCs and ACNs derived from plant-based foods and/or medicinal plants at different nontoxic concentrations have shown anti-non-small cell lung cancer (NSCLC) activity in vitro/in vivo models through inhibiting proliferation, invasion/migration, metastasis and angiogenesis and by activating apoptosis/autophagy-related mechanisms. However, the potential mechanisms by which these compounds exert efficacy against nicotine-induced NSCLC are not fully understood. Thus, this review aims to gain insights into the mechanisms of action and therapeutic potential of PCs and ACNs in nicotine-induced NSCLC.
Collapse
|
11
|
Khodabandeh Z, Valilo M, Velaei K, Pirpour Tazehkand A. The potential role of nicotine in breast cancer initiation, development, angiogenesis, invasion, metastasis, and resistance to therapy. Breast Cancer 2022; 29:778-789. [PMID: 35583594 DOI: 10.1007/s12282-022-01369-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/27/2022] [Indexed: 01/03/2023]
Abstract
A large body of research studying the relationship between tobacco and cancer has led to the knowledge that smoking cigarettes adversely affects cancer treatment while contributing to the development of various tobacco-related cancers. Nicotine is the main addictive component of tobacco smoke and promotes angiogenesis, proliferation, and epithelial-mesenchymal transition (EMT) while promoting growth and metastasis of tumors. Nicotine generally acts through the induction of the nicotinic acetylcholine receptors (nAChRs), although the contribution of other receptor subunits has also been reported. Nicotine contributes to the pathogenesis of a wide range of cancers including breast cancer through its carcinogens such as (4-methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N-nitrosonornicotine (NNN). Current study aims to review the mechanistic function of nicotine in the initiation, development, angiogenesis, invasion, metastasis, and apoptosis of breast cancer with the main focus on nicotine acetylcholine receptors (nAChRs) and nAChR-mediated signaling pathways as well as on its potential for the development of an effective treatment against breast cancer. Moreover, we will try to demonstrate how nicotine leads to poor treatment response in breast cancer by enhancing the population, proliferation, and self-renewal of cancer stem cells (CSCs) through the activation of α7-nAChR receptors.
Collapse
Affiliation(s)
- Zhila Khodabandeh
- Department of Biology, Faculty of Science, Urmia University, Urmia, Iran
| | - Mohammad Valilo
- Department of Clinical Biochemistry and Medical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Velaei
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Abbas Pirpour Tazehkand
- Department of Clinical Biochemistry and Medical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Reducing Chemotherapy-Induced DNA Damage via nAChR-Mediated Redox Reprograming-A New Mechanism for SCLC Chemoresistance Boosted by Nicotine. Cancers (Basel) 2022; 14:cancers14092272. [PMID: 35565402 PMCID: PMC9100082 DOI: 10.3390/cancers14092272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 02/01/2023] Open
Abstract
Up to 60% of patients with small cell lung cancer (SCLC) continue to smoke, which is associated with worse clinical outcomes. Platinum-based chemotherapies, in combination with topoisomerase inhibitors, are first-line therapies for SCLC, with rapid chemoresistance as a major barrier. We provided evidence in this study that nicotine and its major metabolite, cotinine, at physiologically relevant concentrations, reduced the efficacy of platinum-based chemotherapies and facilitated chemoresistance in SCLC cells. Mechanistically, nicotine or cotinine reduced chemotherapy-induced DNA damage by modulating cellular redox processes, with nAChRs as the upstream targets. Surprisingly, cisplatin treatment alone also increased the levels of nAChRs in SCLC cells, which served as a self-defense mechanism against platinum-based therapies. These discoveries were confirmed in long-term in vitro and in vivo studies. Collectively, our results depicted a novel and clinically important mechanism of chemoresistance in SCLC treatment: nicotine exposure significantly compromises the efficacy of platinum-based chemotherapies in SCLC treatment by reducing therapy-induced DNA damage and accelerating chemoresistance acquisition. The results also emphasized the urgent need for tobacco cessation and the control of NRT use for SCLC management.
Collapse
|
13
|
Zhang Q, Jia Y, Pan P, Zhang X, Jia Y, Zhu P, Chen X, Jiao Y, Kang G, Zhang L, Ma X. α5-nAChR associated with Ly6E modulates cell migration via TGF-β1/Smad signaling in non-small cell lung cancer. Carcinogenesis 2022; 43:393-404. [PMID: 34994389 DOI: 10.1093/carcin/bgac003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/21/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
The α5-nicotinic acetylcholine receptor (α5-nAChR) is closely associated with nicotine-related lung cancer, offering a novel perspective for investigating the molecular pathogenesis of this disease. However, the mechanism by which α5-nAChR functions in lung carcinogenesis remains to be elucidated. Lymphocyte antigen 6 (Ly6) proteins, like snake three-finger alpha toxins such as α-bungarotoxin, can modulate nAChR signaling. Ly6E, a member of the Ly6 family, is a biomarker of poor prognosis in smoking-induced lung carcinogenesis and is involved in the regulation of TGF-β1/Smad signaling. Here, we explored the underlying mechanisms linking α5-nAChR and Ly6E in non-small cell lung cancer (NSCLC). The expression of α5-nAChR was correlated with Ly6 expression, smoking status and lower survival in NSCLC tissues. In vitro, α5-nAChR mediated Ly6E, the phosphorylation of the TGF-β1 downstream molecule Smad3 (pSmad3, a key mediator of TGF-β1 signaling), the epithelial-mesenchymal transition (EMT) markers Zeb1, N-cadherin and vimentin expression in NSCLC cells. The downregulation of Ly6E reduced α5-nAChR, pSmad3, Zeb1, N-cadherin and vimentin expression. Functionally, silencing both α5-nAChR and Ly6E significantly inhibited cell migration compared to silencing α5-nAChR or Ly6E alone. Furthermore, the functional effects of α5-nAchR and Ly6E were confirmed in chicken embryo chorioallantoic membrane (CAM) and mouse xenograft models. Therefore, our findings uncover a new interaction between α5-nAChR and Ly6E that inhibits cancer cell migration by modulating the TGF-β1/Smad signaling pathway in NSCLC, which may serve as a novel target for therapeutic intervention.
Collapse
Affiliation(s)
- Qian Zhang
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ying Jia
- Department of Clinical Laboratory, Taian City Central Hospital, Taian, China
| | - Pan Pan
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiuping Zhang
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yanfei Jia
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ping Zhu
- Department of Medical Laboratory, Weifang Medical University, Weifang, China
| | - Xiaowei Chen
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yang Jiao
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guiyu Kang
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Clinical Laboratory, Taian City Central Hospital, Taian, China
| | - Lulu Zhang
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Medical Laboratory, Weifang Medical University, Weifang, China.,Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
14
|
Effect of Nicotine on STAT1 Pathway and Oxidative Stress in Rat Lungs. Rep Biochem Mol Biol 2022; 10:429-436. [PMID: 34981020 DOI: 10.52547/rbmb.10.3.429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 04/03/2021] [Indexed: 11/18/2022]
Abstract
Background Tobacco use is responsible for millions of preventable deaths due to cancer. Nicotine, an alkaloid chemical found in tobacco was proved to cause chronic inflammation and oxidative stress. The transcription factor STAT1 induces the expression of many proinflammatory genes and has been suggested to be a target for anti-inflammatory therapeutics. The following study investigated the effect of Nicotine on STAT1 pathway and oxidative stress in rat lung tissue. Methods Thirty rats were divided into 3 groups; group I considered as control, group II; its rats were daily injected with Nicotine at a dose of 0.4 mg/100 gm body for 8 successive weeks and group III; its rats were daily injected with Nicotine as group II, but the injection was stopped for another 4 weeks. STAT1α protein was assessed by immunohistochemistry, COX-2 and iNOS genes expression were evaluated by real time PCR and thiobarbituric acid reactive substances (TBARS) and total thiols were measured using spectrophotometric methods in the lung tissues of the rats. Results The results of the study revealed that group II rats had the highest expression of STAT1α protein and COX-2 and iNOS genes and oxidative stress in their lung tissues. Nicotine cessation for 4 weeks caused a marked reduction in the expression of STAT1α protein, COX-2 and iNOS genes and oxidative stress. Conclusion Induction of STAT1 pathway and the increase in oxidative stress may be the mechanisms through which Nicotine may induce its harmful effects.
Collapse
|
15
|
Hollenhorst MI, Krasteva-Christ G. Nicotinic Acetylcholine Receptors in the Respiratory Tract. Molecules 2021; 26:6097. [PMID: 34684676 PMCID: PMC8539672 DOI: 10.3390/molecules26206097] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023] Open
Abstract
Nicotinic acetylcholine receptors (nAChR) are widely distributed in neuronal and non-neuronal tissues, where they play diverse physiological roles. In this review, we highlight the recent findings regarding the role of nAChR in the respiratory tract with a special focus on the involvement of nAChR in the regulation of multiple processes in health and disease. We discuss the role of nAChR in mucociliary clearance, inflammation, and infection and in airway diseases such as asthma, chronic obstructive pulmonary disease, and cancer. The subtype diversity of nAChR enables differential regulation, making them a suitable pharmaceutical target in many diseases. The stimulation of the α3β4 nAChR could be beneficial in diseases accompanied by impaired mucociliary clearance, and the anti-inflammatory effect due to an α7 nAChR stimulation could alleviate symptoms in diseases with chronic inflammation such as chronic obstructive pulmonary disease and asthma, while the inhibition of the α5 nAChR could potentially be applied in non-small cell lung cancer treatment. However, while clinical studies targeting nAChR in the airways are still lacking, we suggest that more detailed research into this topic and possible pharmaceutical applications could represent a valuable tool to alleviate the symptoms of diverse airway diseases.
Collapse
|
16
|
Chien CY, Chen YC, Hsu CC, Chou YT, Shiah SG, Liu SY, Hsieh ACT, Yen CY, Lee CH, Shieh YS. YAP-Dependent BiP Induction Is Involved in Nicotine-Mediated Oral Cancer Malignancy. Cells 2021; 10:2080. [PMID: 34440849 PMCID: PMC8392082 DOI: 10.3390/cells10082080] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 01/18/2023] Open
Abstract
Cigarette smoking is a significant risk factor for the development and progression of oral cancer. Previous studies have reported an association between nicotine and malignancy in oral cancer. Recent studies have also demonstrated that nicotine can induce endoplasmic reticulum (ER) stress in tumor cells. Binding immunoglobulin protein (BiP) acts as a master regulator of ER stress and is frequently overexpressed in oral cancer cell lines and tissues. However, the effect of nicotine on BiP in oral cancer is unknown. Therefore, this study aimed to evaluate the role of BiP and its underlying regulatory mechanisms in nicotine-induced oral cancer progression. Our results showed that nicotine significantly induced the expression of BiP in time- and dose-dependent manners in oral squamous cell carcinoma (OSCC) cells. In addition, BiP was involved in nicotine-mediated OSCC malignancy, and depletion of BiP expression remarkably suppressed nicotine-induced malignant behaviors, including epithelial-mesenchymal transition (EMT) change, migration, and invasion. In vivo, BiP silencing abrogated nicotine-induced tumor growth and EMT switch in nude mice. Moreover, nicotine stimulated BiP expression through the activation of the YAP-TEAD transcriptional complex. Mechanistically, we observed that nicotine regulated YAP nuclear translocation and its interaction with TEAD through α7-nAChR-Akt signaling, subsequently resulting in increased TEAD occupancy on the HSPA5 promoter and elevated promoter activity. These observations suggest that BiP is involved in nicotine-induced oral cancer malignancy and may have therapeutic potential in tobacco-related oral cancer.
Collapse
Affiliation(s)
- Chu-Yen Chien
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan; (C.-Y.C.); (C.-C.H.)
| | - Ying-Chen Chen
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei 114, Taiwan;
| | - Chia-Chen Hsu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan; (C.-Y.C.); (C.-C.H.)
| | - Yu-Ting Chou
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan;
| | - Shine-Gwo Shiah
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 350, Taiwan;
| | - Shyun-Yeu Liu
- Department of Oral and Maxillofacial Surgery, Chi Mei Medical Center, Tainan 710, Taiwan;
| | | | - Ching-Yu Yen
- Department of Oral and Maxillofacial Surgery, Chi Mei Medical Center, Tainan 710, Taiwan;
- School of Dentistry, Taipei Medical University, Taipei 110, Taiwan
| | - Chien-Hsing Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Department and Graduate Institute of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan
| | - Yi-Shing Shieh
- Department and Graduate Institute of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan
- Department of Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
17
|
LINC00461/miR-4478/E2F1 feedback loop promotes non-small cell lung cancer cell proliferation and migration. Biosci Rep 2021; 40:221872. [PMID: 31934717 PMCID: PMC7042125 DOI: 10.1042/bsr20191345] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/21/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is a prevalent subtype of lung cancer, whose mortality is high. Long non-coding RNAs (lncRNAs) have caught rising attentions because of their intricate roles in regulating cancerization and cancer progression. Long intergenic non-protein coding RNA 461 (LINC00461) has recently shown oncogenic potential in several cancers, but the function of LINC00461 in NSCLC remains to be investigated. Our study planned to unveil the regulatory role of LINC00461 in NSCLC. It was validated that LINC00461 was highly expressed in NSCLC tissues and cell lines and exhibited prognostic significance. Furthermore, LINC00461 expression in advanced stage was much higher than in early stage. Loss-of-function experiments suggested that LINC00461 knockdown impaired cell proliferation, migration, and epithelial-to-mesenchymal transition (EMT). Subcellular fractionation revealed the predominant location of LINC00461 in cytoplasm. Mechanistically, LINC00461 up-regulated E2F transcription factor 1 (E2F1) expression through sponging miR-4478. Besides, E2F1 bound to the promoter of LINC00461 to induce its transcription. Finally, rescue experiments verified that LINC00461 aggravated proliferation, migration, and EMT through targeting miR-4478/E2F1 axis. In consequence, the present study illustrated that LINC00461/miR-4478/E2F1 feedback loop promoted NSCLC cell proliferation and migration, providing a new prognostic marker for NSCLC.
Collapse
|
18
|
Silva CP, Kamens HM. Cigarette smoke-induced alterations in blood: A review of research on DNA methylation and gene expression. Exp Clin Psychopharmacol 2021; 29:116-135. [PMID: 32658533 PMCID: PMC7854868 DOI: 10.1037/pha0000382] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Worldwide, smoking remains a threat to public health, causing preventable diseases and premature mortality. Cigarette smoke is a powerful inducer of DNA methylation and gene expression alterations, which have been associated with negative health consequences. Here, we review the current knowledge on smoking-related changes in DNA methylation and gene expression in human blood samples. We identified 30 studies focused on the association between active smoking, DNA methylation modifications, and gene expression alterations. Overall, we identified 1,758 genes with differentially methylated sites (DMS) and differentially expressed genes (DEG) between smokers and nonsmokers, of which 261 were detected in multiple studies (≥4). The most frequently (≥10 studies) reported genes were AHRR, GPR15, GFI1, and RARA. Functional enrichment analysis of the 261 genes identified the aryl hydrocarbon receptor repressor and T cell pathways (T helpers 1 and 2) as influenced by smoking status. These results highlight specific genes for future mechanistic and translational research that may be associated with cigarette smoke exposure and smoking-related diseases. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
Affiliation(s)
- Constanza P. Silva
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States of America
| | - Helen M. Kamens
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States of America.,Correspondence concerning this article should be addressed to Helen M. Kamens, 228 Biobehavioral Health Building, The Pennsylvania State University, University Park, PA 16802; ; Phone number: 814-865-1269; Fax number: 814-863-7525
| |
Collapse
|
19
|
Szukalska M, Szyfter K, Florek E, Rodrigo JP, Rinaldo A, Mäkitie AA, Strojan P, Takes RP, Suárez C, Saba NF, Braakhuis BJ, Ferlito A. Electronic Cigarettes and Head and Neck Cancer Risk-Current State of Art. Cancers (Basel) 2020; 12:E3274. [PMID: 33167393 PMCID: PMC7694366 DOI: 10.3390/cancers12113274] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/03/2020] [Indexed: 01/11/2023] Open
Abstract
E-cigarettes have become increasingly popular in the last decade and are considered less harmful than traditional tobacco products due to the lower content of toxic and carcinogenic compounds. However, this is still a controversial issue. This paper contains a review of previous reports on the composition of e-cigarettes and their impact on the pathogenesis and risk of head and neck cancer (HNC). The objective of the review was to compare the molecular and health effects of e-cigarette use in relation to the effects of traditional cigarette smoking in the upper respiratory tract, and to assess the safety and effect of e-cigarettes on HNC risk. A review for English language articles published until 31 August 2020 was made, using a PubMed (including MEDLINE), CINAHL Plus, Embase, Cochrane Library and Web of Science data. The authors reviewed articles on both toxic and carcinogenic compounds contained in e-cigarettes and their molecular and health effects on the upper respiratory tract in comparison to tobacco cigarettes. The risk of developing head and neck squamous cell carcinoma (HNSCC) remains lower in users of e-cigarettes compared with tobacco smokers. However, more long-term studies are needed to better address the safety of e-cigarettes.
Collapse
Affiliation(s)
- Marta Szukalska
- Laboratory of Environmental Research, Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
| | - Krzysztof Szyfter
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland;
| | - Ewa Florek
- Laboratory of Environmental Research, Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
| | - Juan P. Rodrigo
- Department of Otolaryngology, Hospital Universitario Central de Asturias-University of Oviedo, 33011 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias, Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, CIBERONC, 33011 Oviedo, Spain;
| | | | - Antti A. Mäkitie
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, 00029 HUS Helsinki, Finland;
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institute and Karolinska Hospital, 141 86 Stockholm, Sweden
| | - Primož Strojan
- Department of Radiation Oncology, Institute of Oncology, 1000 Ljubljana, Slovenia;
| | - Robert P. Takes
- Department of Otolaryngology-Head and Neck Surgery, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Carlos Suárez
- Instituto de Investigación Sanitaria del Principado de Asturias, Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, CIBERONC, 33011 Oviedo, Spain;
| | - Nabil F. Saba
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA;
| | | | - Alfio Ferlito
- Coordinator of the International Head and Neck Scientific Group, 35100 Padua, Italy;
| |
Collapse
|
20
|
Saravanakumar K, Sathiyaseelan A, Mariadoss AVA, Jeevithan E, Hu X, Shin S, Wang MH. Dual stimuli-responsive release of aptamer AS1411 decorated erlotinib loaded chitosan nanoparticles for non-small-cell lung carcinoma therapy. Carbohydr Polym 2020; 245:116407. [PMID: 32718591 DOI: 10.1016/j.carbpol.2020.116407] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/22/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022]
Abstract
The present work was developed the pH dependent-aptamer AS1411 (APT) decorated and erlotinib (En) loaded chitosan nanoparticles (CSNPs) for promising non-small-cell lung carcinoma (NSCLC) treatment. The characterization studies revealed that formulated APT-En-CSNPs were spherical in shape with size of 165.95 d. nm and PDI of 0.212. FTIR spectrum recorded molecular chemical interactions with composition of En or En-CSNPs. Cell viability assay, flow cytometry and fluorescent microscopy results revealed that APT-En-CSNPs triggered cancer cell death through pH-sensitive and nucleolin receptor-targeted release of En. The decoration of the APT improved the cellular uptake of En as evidenced by cellular sensing fluorescence and BioTEM assay. The APT-En-CSNPs induced the apoptosis through excessive ROS generation, nucleus damage and Δψm loss in the A549 cells. Hence, the present study revealed that the APT-En-CSNPs improved the therapeutic efficiency of En in NSCLC through the nucleolin targeted drug release.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Anbazhagan Sathiyaseelan
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Arokia Vijaya Anand Mariadoss
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Elango Jeevithan
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaowen Hu
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Sukjin Shin
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Myeong-Hyeon Wang
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, 200-701, South Korea.
| |
Collapse
|
21
|
Chen X, Jia Y, Zhang Y, Zhou D, Sun H, Ma X. α5-nAChR contributes to epithelial-mesenchymal transition and metastasis by regulating Jab1/Csn5 signalling in lung cancer. J Cell Mol Med 2020; 24:2497-2506. [PMID: 31930655 PMCID: PMC7028847 DOI: 10.1111/jcmm.14941] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 10/31/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022] Open
Abstract
Recent studies have showed that α5 nicotinic acetylcholine receptor (α5‐nAChR) is closely associated with nicotine‐related lung cancer. Our previous studies also demonstrated that α5‐nAChR mediates nicotine‐induced lung carcinogenesis. However, the mechanism by which α5‐nAChR functions in lung carcinogenesis remains to be elucidated. Jab1/Csn5 is a key regulatory factor in smoking‐induced lung cancer. In this study, we explored the underlying mechanisms linking the α5‐nAChR‐Jab1/Csn5 axis with lung cancer epithelial‐mesenchymal transition (EMT) and metastasis, which may provide potential therapeutic targets for future lung cancer treatments. Our results demonstrated that the expression of α5‐nAChR was correlated with the expression of Jab1/Csn5 in lung cancer tissues and lung cancer cells. α5‐nAChR expression is associated with Jab1/Csn5 expression in lung tumour xenografts in mice. In vitro, the expression of α5‐nAChR mediated Stat3 and Jab1/Csn5 expression, significantly regulating the expression of the EMT markers, N‐cadherin and Vimentin. In addition, the down‐regulation of α5‐nAChR or/and Stat3 reduced Jab1/Csn5 expression, while the silencing of α5‐nAChR or Jab1/Csn5 inhibited the migration and invasion of NSCLC cells. Mechanistically, α5‐nAChR contributes to EMT and metastasis by regulating Stat3‐Jab1/Csn5 signalling in NSCLC, suggesting that α5‐nAChR may be a potential target in NSCLC diagnosis and immunotherapy.
Collapse
Affiliation(s)
- Xiaowei Chen
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Yanfei Jia
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | | | - Dajie Zhou
- Weifang Medical University, Weifang, China
| | - Haiji Sun
- Key Laboratory of Animal Resistance Biology of Shandong Province, School of Life Science, Shandong Normal University, Jinan, China
| | - Xiaoli Ma
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
22
|
Cheng WL, Chen KY, Lee KY, Feng PH, Wu SM. Nicotinic-nAChR signaling mediates drug resistance in lung cancer. J Cancer 2020; 11:1125-1140. [PMID: 31956359 PMCID: PMC6959074 DOI: 10.7150/jca.36359] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 10/26/2019] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is the leading cause of cancer death worldwide. Cigarette smoking is the most common risk factor for lung carcinoma; other risks include genetic factors and exposure to radon gas, asbestos, secondhand smoke, and air pollution. Nicotine, the primary addictive constituent of cigarettes, contributes to cancer progression through activation of nicotinic acetylcholine receptors (nAChRs), which are membrane ligand-gated ion channels. Activation of nicotine/nAChR signaling is associated with lung cancer risk and drug resistance. We focused on nAChR pathways activated by nicotine and its downstream signaling involved in regulating apoptotic factors of mitochondria and drug resistance in lung cancer. Increasing evidence suggests that several sirtuins play a critical role in multiple aspects of cancer drug resistance. Thus, understanding the consequences of crosstalk between nicotine/nAChRs and sirtuin signaling pathways in the regulation of drug resistance could be a critical implication for cancer therapy.
Collapse
Affiliation(s)
- Wan-Li Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Kuan-Yuan Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Kang-Yun Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Po-Hao Feng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Sheng-Ming Wu
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
23
|
Santoro A, Tomino C, Prinzi G, Lamonaca P, Cardaci V, Fini M, Russo P. Tobacco Smoking: Risk to Develop Addiction, Chronic Obstructive Pulmonary Disease, and Lung Cancer. Recent Pat Anticancer Drug Discov 2019; 14:39-52. [PMID: 30605063 DOI: 10.2174/1574892814666190102122848] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/11/2018] [Accepted: 12/27/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND The morbidity and mortality associated with tobacco smoking is well established. Nicotine is the addictive component of tobacco. Nicotine, through the non-neuronal α7nicotinic receptor, induces cell proliferation, neo-angiogenesis, epithelial to mesenchymal transition, and inhibits drug-induced apoptosis. OBJECTIVE To understand the genetic, molecular and cellular biology of addiction, chronic obstructive pulmonary disease and lung cancer. METHODS The search for papers to be included in the review was performed during the months of July- September 2018 in the following databases: PubMed (http://www.ncbi.nlm.nih.gov), Scopus (http://www.scopus.com), EMBASE (http://www.elsevier.com/online-tools/embase), and ISI Web of Knowledge (http://apps.webofknowledge.com/). The following searching terms: "nicotine", "nicotinic receptor", and "addiction" or "COPD" or "lung cancer" were used. Patents were retrieved in clinicaltrials.gov (https://clinicaltrials.gov/). All papers written in English were evaluated. The reference list of retrieved articles was also reviewed to identify other eligible studies that were not indexed by the above-mentioned databases. New experimental data on the ability of nicotine to promote transformation of human bronchial epithelial cells, exposed for one hour to Benzo[a]pyrene-7,8-diol-9-10-epoxide, are reported. RESULTS Nicotinic receptors variants and nicotinic receptors upregulation are involved in addiction, chronic obstructive pulmonary disease and/or lung cancer. Nicotine through α7nicotinic receptor upregulation induces complete bronchial epithelial cells transformation. CONCLUSION Genetic studies highlight the involvement of nicotinic receptors variants in addiction, chronic obstructive pulmonary disease and/or lung cancer. A future important step will be to translate these genetic findings to clinical practice. Interventions able to help smoking cessation in nicotine dependence subjects, under patent, are reported.
Collapse
Affiliation(s)
- Alessia Santoro
- Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy
| | - Carlo Tomino
- Scientific Direction, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy
| | - Giulia Prinzi
- Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy
| | - Palma Lamonaca
- Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy
| | - Vittorio Cardaci
- Pulmonary Rehabilitation, IRCCS San Raffaele Pisana, Via della Pisana, 235, I-00163 Rome, Italy
| | - Massimo Fini
- Scientific Direction, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy
| | - Patrizia Russo
- Clinical and Molecular Epidemiology, IRCSS San Raffaele Pisana, Via di Valcannuta 247, I-00166 Rome, Italy
| |
Collapse
|
24
|
Friedman JR, Richbart SD, Merritt JC, Brown KC, Nolan NA, Akers AT, Lau JK, Robateau ZR, Miles SL, Dasgupta P. Acetylcholine signaling system in progression of lung cancers. Pharmacol Ther 2019; 194:222-254. [PMID: 30291908 PMCID: PMC6348061 DOI: 10.1016/j.pharmthera.2018.10.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The neurotransmitter acetylcholine (ACh) acts as an autocrine growth factor for human lung cancer. Several lines of evidence show that lung cancer cells express all of the proteins required for the uptake of choline (choline transporter 1, choline transporter-like proteins) synthesis of ACh (choline acetyltransferase, carnitine acetyltransferase), transport of ACh (vesicular acetylcholine transport, OCTs, OCTNs) and degradation of ACh (acetylcholinesterase, butyrylcholinesterase). The released ACh binds back to nicotinic (nAChRs) and muscarinic receptors on lung cancer cells to accelerate their proliferation, migration and invasion. Out of all components of the cholinergic pathway, the nAChR-signaling has been studied the most intensely. The reason for this trend is due to genome-wide data studies showing that nicotinic receptor subtypes are involved in lung cancer risk, the relationship between cigarette smoke and lung cancer risk as well as the rising popularity of electronic cigarettes considered by many as a "safe" alternative to smoking. There are a small number of articles which review the contribution of the other cholinergic proteins in the pathophysiology of lung cancer. The primary objective of this review article is to discuss the function of the acetylcholine-signaling proteins in the progression of lung cancer. The investigation of the role of cholinergic network in lung cancer will pave the way to novel molecular targets and drugs in this lethal malignancy.
Collapse
Affiliation(s)
- Jamie R Friedman
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Stephen D Richbart
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Justin C Merritt
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Kathleen C Brown
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Nicholas A Nolan
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Austin T Akers
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Jamie K Lau
- Biology Department, Center for the Sciences, Box 6931, Radford University, Radford, Virginia 24142
| | - Zachary R Robateau
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Sarah L Miles
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Piyali Dasgupta
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755.
| |
Collapse
|
25
|
Cedillo JL, Bordas A, Arnalich F, Esteban-Rodríguez I, Martín-Sánchez C, Extremera M, Atienza G, Rios JJ, Arribas RL, Montiel C. Anti-tumoral activity of the human-specific duplicated form of α7-nicotinic receptor subunit in tobacco-induced lung cancer progression. Lung Cancer 2018; 128:134-144. [PMID: 30642446 DOI: 10.1016/j.lungcan.2018.12.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/21/2018] [Accepted: 12/28/2018] [Indexed: 01/17/2023]
Abstract
OBJECTIVES Tobacco smoking is strongly correlated with the onset and progression of non-small cell lung cancer (NSCLC). By activating α7 nicotinic acetylcholine receptors (α7-nAChRs) in these tumors nicotine and its tobacco-derived nitrosamine, NNK, contribute to these oncogenic processes. Here, we investigated whether the human-specific duplicated form of the α7-nAChR subunit (dupα7) behaves as an endogenous negative regulator of α7-nAChR-mediated tumorigenic activity induced by tobacco in NSCLC cells, similarly to its influence on other α7-nAChR-controlled functions in non-tumor cells. METHODS Two human NSCLC cell lines, lung adenocarcinoma (A549) and squamous cell carcinoma of the lung (SK-MES-1), both wild-type or with stable overexpression of dupα7 (A549dupα7 or SK-MES-1dupα7), were used to investigate in vitro anti-tumor activity of dupα7 on nicotine- or NNK-induced tumor progression. For this purpose, migration, proliferation or epithelial-mesenchymal transition (EMT) were examined. The anti-tumor effect of dupα7 on nicotine-promoted tumor growth, proliferation or angiogenesis was also assessed in vivo in an athymic mouse model implanted with A549dupα7 or A549 xenografts. RESULTS Overexpression of dupα7 in both cell lines almost completely suppresses the in vitro tumor-promoting effects induced by nicotine (1 μM) or NNK (100 nM) in wild-type cells. Furthermore, in mice receiving nicotine, A549dupα7 xenografts show: (i) a significant reduction of tumor growth, and (ii) decreased expression of cell markers for proliferation (Ki67) or angiogenesis (VEGF) compared to A549 xenografts. CONCLUSION Our study demonstrates, for the first time, the in vitro and in vivo anti-tumor capacity of dupα7 to block the α7-nAChR-mediated tumorigenic effects of tobacco in NSCLC, suggesting that up-regulation of dupα7 expression in these tumors could offer a potential new therapeutic target in smoking-related cancers.
Collapse
Affiliation(s)
- José Luis Cedillo
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid-IdiPAZ, Madrid, Spain
| | - Anna Bordas
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid-IdiPAZ, Madrid, Spain
| | - Francisco Arnalich
- Internal Medicine Service, University Hospital La Paz of Madrid-IdiPAZ, Madrid, Spain.
| | | | - Carolina Martín-Sánchez
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid-IdiPAZ, Madrid, Spain
| | - María Extremera
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid-IdiPAZ, Madrid, Spain
| | - Gema Atienza
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid-IdiPAZ, Madrid, Spain
| | - Juan J Rios
- Internal Medicine Service, University Hospital La Paz of Madrid-IdiPAZ, Madrid, Spain
| | - Raquel L Arribas
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid-IdiPAZ, Madrid, Spain
| | - Carmen Montiel
- Department of Pharmacology and Therapeutics, School of Medicine, Universidad Autónoma de Madrid-IdiPAZ, Madrid, Spain.
| |
Collapse
|
26
|
Yamada M, Ichinose M. The Cholinergic Pathways in Inflammation: A Potential Pharmacotherapeutic Target for COPD. Front Pharmacol 2018; 9:1426. [PMID: 30559673 PMCID: PMC6287026 DOI: 10.3389/fphar.2018.01426] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/19/2018] [Indexed: 12/14/2022] Open
Abstract
In COPD, the activity of the cholinergic system is increased, which is one of the reasons for the airflow limitation caused by the contraction of airway smooth muscles. Therefore, blocking the contractive actions with anticholinergics is a useful therapeutic intervention to reduce the airflow limitation. In addition to the effects of bronchoconstriction and mucus secretion, accumulating evidence from animal models of COPD suggest acetylcholine has a role in inflammation. Experiments using muscarinic M3-receptor deficient mice or M3 selective antagonists revealed that M3-receptors on parenchymal cells, but not on hematopoietic cells, are involved in the pro-inflammatory effect of acetylcholine. Recently, combinations of long-acting β2 adrenergic agonists (LABAs) and long-acting muscarinic antagonists (LAMAs) have become available for COPD treatment. These dual long-acting bronchodilators may have synergistic anti-inflammatory effects because stimulation of β2 adrenergic receptors induces inhibitory effects in inflammatory cells via a different signaling pathway from that by antagonizing M3-receptor, though these anti-inflammatory effects have not been clearly demonstrated in COPD patients. In contrast to the pro-inflammatory effects by ACh via muscarinic receptors, it has been demonstrated that the cholinergic anti-inflammatory pathway, which involves the parasympathetic nervous systems, regulates excessive inflammatory responses to protect organs during tissue injury and infection. Stimulation of acetylcholine via the α7 nicotinic acetylcholine receptor (α7nAChR) exerts inhibitory effects on leukocytes including macrophages and type 2 innate lymphoid cells. Although it remains unclear whether the inhibitory effects of acetylcholine via α7nAChR in inflammatory cells can regulate inflammation in COPD, neuroimmune interactions including the cholinergic anti-inflammatory pathway might serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Mitsuhiro Yamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masakazu Ichinose
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
27
|
Schaal CM, Bora-Singhal N, Kumar DM, Chellappan SP. Regulation of Sox2 and stemness by nicotine and electronic-cigarettes in non-small cell lung cancer. Mol Cancer 2018; 17:149. [PMID: 30322398 PMCID: PMC6190543 DOI: 10.1186/s12943-018-0901-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/28/2018] [Indexed: 01/03/2023] Open
Abstract
Background Lung cancer is the leading cause of cancer related deaths and its incidence is highly correlated with cigarette smoking. Nicotine, the addictive component of tobacco smoke, cannot initiate tumors, but can promote proliferation, migration, and invasion of cells in vitro and promote tumor growth and metastasis in vivo. This nicotine-mediated tumor promotion is facilitated through the activation of nicotinic acetylcholine receptors (nAChRs), specifically the α7 subunit. More recently, nicotine has been implicated in promoting self-renewal of stem-like side-population cells from lung cancers. This subpopulation of cancer stem-like cells has been implicated in tumor initiation, generation of the heterogeneous tumor population, metastasis, dormancy, and drug resistance. Here we describe the molecular events driving nicotine and e-cigarette extract mediated stimulation of self-renewal of stem-like cells from non-small cell lung cancer. Methods Experiments were conducted using A549 and H1650 non-small cell lung cancer cell lines and human mesenchymal stem cells according to protocols described in this paper. 2 μM nicotine or e-cigarette extracts was used in all relevant experiments. Biochemical analysis using western blotting, transient transfections, RT-PCR and cell biological analysis using double immunofluorescence and confocal microscopy, as well as proximity ligation assays were conducted. Results Here we demonstrate that nicotine can induce the expression of embryonic stem cell factor Sox2, which is indispensable for self-renewal and maintenance of stem cell properties in non-small cell lung adenocarcinoma (NSCLC) cells. We further demonstrate that this occurs through a nAChR-Yap1-E2F1 signaling axis downstream of Src and Yes kinases. Our data suggests Oct4 may also play a role in this process. Over the past few years, electronic cigarettes (e-cigarettes) have been promoted as healthier alternatives to traditional cigarette smoking as they do not contain tobacco; however, they do still contain nicotine. Hence we have investigated whether e-cigarette extracts can enhance tumor promoting properties similar to nicotine; we find that they can induce expression of Sox2 as well as mesenchymal markers and enhance migration and stemness of NSCLC cells. Conclusions Our findings shed light on novel molecular mechanisms underlying the pathophysiology of smoking-related lung cancer in the context of cancer stem cell populations, and reveal new pathways involved that could potentially be exploited therapeutically. Electronic supplementary material The online version of this article (10.1186/s12943-018-0901-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Courtney M Schaal
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA.,The Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
| | - Namrata Bora-Singhal
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Durairaj Mohan Kumar
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA
| | - Srikumar P Chellappan
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL, 33612, USA.
| |
Collapse
|
28
|
Wang S, Hu Y. α7 nicotinic acetylcholine receptors in lung cancer. Oncol Lett 2018; 16:1375-1382. [PMID: 30008813 DOI: 10.3892/ol.2018.8841] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/27/2018] [Indexed: 12/18/2022] Open
Abstract
Lung cancer has one of the highest mortality rates among malignancies globally, and smoking has been documented as the main cause of lung cancer. Nicotinic acetylcholine receptors (nAChRs) were initially identified as notable regulators of the nervous system. In addition to their function in the brain, accumulating evidence indicates that nAChRs perform a host of diverse functions in almost all non-neuronal mammalian cells. The homomeric α7nAChR, a subtype of nAChRs, is responsible for the proliferative, pro-angiogenic and pro-metastatic effects of nicotine in lung cancer. Provided the association of cigarette smoking with several disease types such as cardiovascular disease, the α7nAChR-mediated signaling pathway has been implicated in the pathophysiology of lung cancer. Currently, strategies that target the α7nAChR including α7nAChR antagonists are considered to be potentially useful anticancer drugs for therapeutic purposes. Thus, the present review assesses current understanding of the function and underlying molecular mechanisms of α7nAChR in lung cancer and evaluates how targeting α7nAChR may result in novel therapeutic methods.
Collapse
Affiliation(s)
- Shengchao Wang
- Department of Gynecological Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Yue Hu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
29
|
Arias HR, Lykhmus O, Uspenska K, Skok M. Coronaridine congeners modulate mitochondrial α3β4* nicotinic acetylcholine receptors with different potency and through distinct intra-mitochondrial pathways. Neurochem Int 2017; 114:26-32. [PMID: 29277577 DOI: 10.1016/j.neuint.2017.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/08/2017] [Accepted: 12/21/2017] [Indexed: 12/24/2022]
Abstract
In contrast to plasma membrane-expressed nicotinic acetylcholine receptors (nAChRs), mitochondrial nAChRs function in an ion-independent manner by triggering intra-mitochondrial kinases that regulate the release of cytochrome c (Cyt c), an important step in cellular apoptosis. The aim of this study is to determine the structural requirements for mitochondrial α3β4* nAChR activation by measuring the modulatory effects of two noncompetitive antagonists of these receptors, (+)-catharanthine and (±)-18-methoxycoronaridine [(±)-18-MC], on Cyt c release from wild-type and α7-/- mice mitochondria. The sandwich ELISA results indicated that α3β4* nAChRs are present in liver mitochondria in higher amounts compared to that in brain mitochondria and that these receptors are up-regulated in α7-/- mice. Correspondingly, (±)-18-MC decreased Cyt c release from liver mitochondria of wild-type mice and from brain and liver mitochondria of α7-/- mice. The effect in wild-type mice mitochondria was mediated mainly by the Src-dependent pathway, regulating the apoptogenic activity of reactive oxygen species, while in α7-/- mice mitochondria, (±)-18-MC strongly affected the calcium-calmodulin kinase II-dependent pathway. In contrast, (+)-catharanthine was much less potent than (±)-18-MC and triggered several signaling pathways, suggesting the involvement of multiple nAChR subtypes. These results show for the first time that noncompetitive antagonists can induce mitochondrial α3β4* nAChR signaling, giving a more comprehensive understanding on the function of intracellular nAChR subtypes.
Collapse
Affiliation(s)
- Hugo R Arias
- Department of Basic Sciences, California Northstate University College of Medicine, Elk Grove, CA, USA.
| | - Olena Lykhmus
- Department of Molecular Immunology, Palladin Institute of Biochemistry NAS of Ukraine, 9, Leontovycha str., 01030 Kyiv, Ukraine
| | - Kateryna Uspenska
- Department of Molecular Immunology, Palladin Institute of Biochemistry NAS of Ukraine, 9, Leontovycha str., 01030 Kyiv, Ukraine
| | - Maryna Skok
- Department of Molecular Immunology, Palladin Institute of Biochemistry NAS of Ukraine, 9, Leontovycha str., 01030 Kyiv, Ukraine
| |
Collapse
|
30
|
Sun HJ, Jia YF, Ma XL. Alpha5 Nicotinic Acetylcholine Receptor Contributes to Nicotine-Induced Lung Cancer Development and Progression. Front Pharmacol 2017; 8:573. [PMID: 28878681 PMCID: PMC5572410 DOI: 10.3389/fphar.2017.00573] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 08/09/2017] [Indexed: 12/14/2022] Open
Abstract
Nicotine and nicotinic acetylcholine receptors (nAChRs) are considered to be involved in lung cancer risk, onset and progression, but their precise physiological roles in these contexts remain unclear. Our previous studies suggested that α5-nAChR mediates nicotine-induced lung cancer cell proliferation, migration, and invasion in vitro. In this study, we aimed to determine the role of α5-nAChR in the development and progression of non-small cell lung cancer (NSCLC). Our microarray results reveal that knockdown of the CHRNA5 gene encoding α5-nAChR significantly modulates key pathways including the cell cycle, DNA replication, pathway in cancer. α5-nAChR knockdown in cultured A549 cells affected cell cycle distribution, apoptosis, and cyclin expression. In vivo, α5-nAChR silencing inhibited the growth of lung tumors, especially in the context of nicotine exposure. Importantly, α5-nAChR expression in patient tumors correlated with the primary T stage, N stage, and reduced survival time. These results reveal that α5-nAChR silencing inhibits the progression of nicotine-related NSCLC, making this receptor a potential pharmacological target for the treatment of nicotine-related lung carcinogenesis.
Collapse
Affiliation(s)
- Hai-Ji Sun
- Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal UniversityJinan, China
| | - Yan-Fei Jia
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong UniversityJinan, China
| | - Xiao-Li Ma
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong UniversityJinan, China
| |
Collapse
|
31
|
Expression patterns for nicotinic acetylcholine receptor subunit genes in smoking-related lung cancers. Oncotarget 2017; 8:67878-67890. [PMID: 28978081 PMCID: PMC5620221 DOI: 10.18632/oncotarget.18948] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/17/2017] [Indexed: 01/03/2023] Open
Abstract
Cigarette smoking is associated with increased risk for all histologic types of lung cancer, but why the strength of this association is stronger for squamous cell carcinoma than adenocarcinoma of the lung (SQC-L, ADC-L) is not fully understood. Because nicotine and tobacco-specific nitrosamines contribute to carcinogenesis by activating nicotinic acetylcholine receptors (nAChRs) on lung tumors and epithelial cells, we investigated whether differential expression of nAChR subtypes in these tumors could explain their different association with smoking. Expression of nAChR subunit genes in paired tumor and non-tumor lung specimens from 40 SQC-L and 38 ADC-L patients was analyzed by quantitative PCR. Compared to normal lung, both tumors share: i) transcriptional dysregulation of CHRNA3/CHRNA5/CHRNB4 (α3, α5, β4 subunits) at the chromosomal locus that predisposes to lung cancer; and ii) decreased expression of CHRFAM7A (dupα7 subunit); this last subunit negatively modulates α7-nAChR activity in oocytes. In contrast, CHRNA7 (α7 subunit) expression was increased in SQC-L, particularly in smokers and non-survivors, while CHRNA4 (α4 subunit) expression was decreased in ADC-L. Thus, over-representation of cancer-stimulating α7-nAChR in SQC-L, also potentiated by smoking, and under-representation of cancer-inhibiting α4β2-nAChR in ADC-L could explain the different tobacco influences on the tumorigenic process in each cancer type.
Collapse
|
32
|
Fan Y, Wang K. Nicotine induces EP4 receptor expression in lung carcinoma cells by acting on AP-2α: The intersection between cholinergic and prostanoid signaling. Oncotarget 2017; 8:75854-75863. [PMID: 29100274 PMCID: PMC5652668 DOI: 10.18632/oncotarget.18023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/08/2017] [Indexed: 02/05/2023] Open
Abstract
It was demonstrated that nicotine increased non-small cell lung cancer cell proliferation through nicotinic acetylcholine receptor -mediated signals. However, the detailed mechanism remains incompletely understood. We evaluated whether nicotine increased EP4 receptor expression in lung carcinoma cells by activating on AP-2α. Methods: The non-small cell lung cancer cells of A549 and H1838 were cultured and treated with EP4 inhibitor AH23848, also with EP4 and control siRNAs. The extracellular signal-regulated kinases inhibitor PD98059, the p38 mitogen-activated protein kinase inhibitor SB239063, the α7 nicotinic acetylcholine receptor inhibitor α-bungarotoxin, the α4 nicotinic acetylcholine receptor inhibitor dihydro-β-erythroidine, the PI3K inhibitor wortmannin, the PKC inhibitor calphostin C, and the PKA inhibitor H89 have been used to evaluate the effects on proliferations. It indicates that nicotine increases EP4 expression through α7 nicotinic acetylcholine receptor-dependent activations of PI3-K, JNK and PKC pathways that leads to reduction of AP-2α-DNA binding. This, together with the elevated secretion of PGE2, further enhances the tumor promoting effects of nicotine. These studies suggest a novel molecular mechanism by which nicotine increases non-small cell lung cancer cell proliferation.
Collapse
Affiliation(s)
- Yu Fan
- Department of Radiotherapy, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, P.R. China 610041
| | - Ke Wang
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, P.R. China 610041.,Lung Cancer Centre, West China Hospital, Sichuan University, Chengdu, Sichuan Province, P.R. China 610041
| |
Collapse
|
33
|
Zucchet A, Schmaltz G. Electronic cigarettes—A review of the physiological health effects. Facets (Ott) 2017. [DOI: 10.1139/facets-2017-0014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Electronic cigarettes (ECs) are devices that are used recreationally or as smoking cessation tools, and have become increasingly popular in recent years. We conducted a review of the available literature to determine the health effects caused by the use of these devices. A heating element in the EC aerosolizes a solution of propylene glycol, glycerol, nicotine (optional), and flavouring (optional). These compounds are generally harmless on their own. However, upon heating, they produce various carcinogens and irritants. We found that concentrations of these toxicants vary significantly depending on the type of EC device, the type of EC liquid, and the smoking behaviour of the user. Exposure to these vapours can cause inflammation and oxidative damage to in vitro and in vivo cells. EC aerosol can also potentially affect organ systems and especially cardiovascular and lung function. We concluded that EC use causes acute effects on health but not as severe as those of conventional cigarettes (CCs). These devices could, therefore, be of use for smokers of CCs wishing to quit. However, as EC aerosol introduces new toxicants not found in CCs, long-term studies are needed to investigate possible chronic effects associated with EC use.
Collapse
Affiliation(s)
- Alyssa Zucchet
- Department of Biology, University of the Fraser Valley, Abbotsford, BC V2S 7M8, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Grégory Schmaltz
- Department of Biology, University of the Fraser Valley, Abbotsford, BC V2S 7M8, Canada
| |
Collapse
|
34
|
Zhang Y, Jia Y, Li P, Li H, Xiao D, Wang Y, Ma X. Reciprocal activation of α5-nAChR and STAT3 in nicotine-induced human lung cancer cell proliferation. J Genet Genomics 2017; 44:355-362. [PMID: 28750889 DOI: 10.1016/j.jgg.2017.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/02/2017] [Accepted: 03/17/2017] [Indexed: 01/26/2023]
Abstract
Cigarette smoking is the top environmental risk factor for lung cancer. Nicotine, the addictive component of cigarettes, induces lung cancer cell proliferation, invasion and migration via the activation of nicotinic acetylcholine receptors (nAChRs). Genome-wide association studies (GWAS) show that CHRNA5 gene encoding α5-nAChR is especially relevant to lung cancer. However, the mechanism of this subunit in lung cancer is not clear. In the present study, we demonstrate that the expression of α5-nAChR is correlated with phosphorylated STAT3 (pSTAT3) expression, smoking history and lower survival of non-small cell lung cancer (NSCLC) samples. Nicotine increased the levels of α5-nAChR mRNA and protein in NSCLC cell lines and activated the JAK2/STAT3 signaling cascade. Nicotine-induced activation of JAK2/STAT3 signaling was inhibited by the silencing of α5-nAChR. Characterization of the CHRNA5 promoter revealed four STAT3-response elements. ChIP assays confirmed that the CHRNA5 promoter contains STAT3 binding sites. By silencing STAT3 expression, nicotine-induced upregulation of α5-nAChR was suppressed. Downregulation of α5-nAChR and/or STAT3 expression inhibited nicotine-induced lung cancer cell proliferation. These results suggest that there is a feedback loop between α5-nAChR and STAT3 that contributes to the nicotine-induced tumor cell proliferation, which indicates that α5-nAChR is an important therapeutic target involved in tobacco-associated lung carcinogenesis.
Collapse
Affiliation(s)
- Yao Zhang
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250100, China
| | - Yanfei Jia
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250100, China
| | - Ping Li
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250100, China
| | - Huanjie Li
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250100, China; State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Dongjie Xiao
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250100, China
| | - Yunshan Wang
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250100, China
| | - Xiaoli Ma
- Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan 250100, China.
| |
Collapse
|
35
|
Glasser AM, Collins L, Pearson JL, Abudayyeh H, Niaura RS, Abrams DB, Villanti AC. Overview of Electronic Nicotine Delivery Systems: A Systematic Review. Am J Prev Med 2017; 52:e33-e66. [PMID: 27914771 PMCID: PMC5253272 DOI: 10.1016/j.amepre.2016.10.036] [Citation(s) in RCA: 333] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 10/07/2016] [Accepted: 10/26/2016] [Indexed: 12/20/2022]
Abstract
CONTEXT Rapid developments in e-cigarettes, or electronic nicotine delivery systems (ENDS), and the evolution of the overall tobacco product marketplace warrant frequent evaluation of the published literature. The purpose of this article is to report updated findings from a comprehensive review of the published scientific literature on ENDS. EVIDENCE ACQUISITION The authors conducted a systematic review of published empirical research literature on ENDS through May 31, 2016, using a detailed search strategy in the PubMed electronic database, expert review, and additional targeted searches. Included studies presented empirical findings and were coded to at least one of nine topics: (1) Product Features; (2) Health Effects; (3) Consumer Perceptions; (4) Patterns of Use; (5) Potential to Induce Dependence; (6) Smoking Cessation; (7) Marketing and Communication; (8) Sales; and (9) Policies; reviews and commentaries were excluded. Data from included studies were extracted by multiple coders (October 2015 to August 2016) into a standardized form and synthesized qualitatively by topic. EVIDENCE SYNTHESIS There were 687 articles included in this systematic review. The majority of studies assessed patterns of ENDS use and consumer perceptions of ENDS, followed by studies examining health effects of vaping and product features. CONCLUSIONS Studies indicate that ENDS are increasing in use, particularly among current smokers, pose substantially less harm to smokers than cigarettes, are being used to reduce/quit smoking, and are widely available. More longitudinal studies and controlled trials are needed to evaluate the impact of ENDS on population-level tobacco use and determine the health effects of longer-term vaping.
Collapse
Affiliation(s)
- Allison M Glasser
- The Schroeder Institute for Tobacco Research and Policy Studies at Truth Initiative, Washington, District of Columbia.
| | - Lauren Collins
- The Schroeder Institute for Tobacco Research and Policy Studies at Truth Initiative, Washington, District of Columbia
| | - Jennifer L Pearson
- The Schroeder Institute for Tobacco Research and Policy Studies at Truth Initiative, Washington, District of Columbia
| | - Haneen Abudayyeh
- The Schroeder Institute for Tobacco Research and Policy Studies at Truth Initiative, Washington, District of Columbia
| | - Raymond S Niaura
- The Schroeder Institute for Tobacco Research and Policy Studies at Truth Initiative, Washington, District of Columbia; Department of Health, Behavior and Society, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, District of Columbia
| | - David B Abrams
- The Schroeder Institute for Tobacco Research and Policy Studies at Truth Initiative, Washington, District of Columbia; Department of Health, Behavior and Society, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, District of Columbia
| | - Andrea C Villanti
- The Schroeder Institute for Tobacco Research and Policy Studies at Truth Initiative, Washington, District of Columbia; Department of Health, Behavior and Society, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
36
|
Wang DC, Shi L, Zhu Z, Gao D, Zhang Y. Genomic mechanisms of transformation from chronic obstructive pulmonary disease to lung cancer. Semin Cancer Biol 2017; 42:52-59. [DOI: 10.1016/j.semcancer.2016.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/08/2016] [Indexed: 01/17/2023]
|