1
|
Schliefsteiner C, Wadsack C, Allerkamp HH. Exploring the Lifeline: Unpacking the Complexities of Placental Vascular Function in Normal and Preeclamptic Pregnancies. Compr Physiol 2024; 14:5763-5787. [PMID: 39699084 DOI: 10.1002/cphy.c230020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The proper development and function of the placenta are essential for the success of pregnancy and the well-being of both the fetus and the mother. Placental vascular function facilitates efficient fetal development during pregnancy by ensuring adequate gas exchange with low vascular resistance. This review focuses on how placental vascular function can be compromised in the pregnancy pathology preeclampsia, and conversely, how placental vascular dysfunction might contribute to this condition. While the maternal endothelium is widely recognized as a key focus in preeclampsia research, this review emphasizes the importance of understanding how this condition affects the development and function of the fetal placental vasculature. The placental vascular bed, consisting of microvasculature and macrovasculature, is discussed in detail, as well as structural and functional changes associated with preeclampsia. The complexity of placental vascular reactivity and function, its mediators, its impact on placental exchange and blood distribution, and how these factors are most affected in early-onset preeclampsia are further explored. These factors include foremost lipoproteins and their cargo, oxygen levels and oxidative stress, biomechanics, and shear stress. Challenges in studying placental pathophysiology are discussed, highlighting the necessity of innovative research methodologies, including ex vivo experiments, in vivo imaging tools, and computational modeling. Finally, an outlook on the potential of drug interventions targeting the placental endothelium to improve placental vascular function in preeclampsia is provided. Overall, this review highlights the need for further research and the development of models and tools to better understand and address the challenges posed by preeclampsia and its effects on placental vascular function to improve short- and long-term outcomes for the offspring of preeclamptic pregnancies. © 2024 American Physiological Society. Compr Physiol 14:5763-5787, 2024.
Collapse
Affiliation(s)
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| | - Hanna H Allerkamp
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria
| |
Collapse
|
2
|
Golden TN, Mani S, Linn RL, Leite R, Trigg NA, Wilson A, Anton L, Mainigi M, Conine CC, Kaufman BA, Strauss JF, Parry S, Simmons RA. Extracellular vesicles alter trophoblast function in pregnancies complicated by COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.17.580824. [PMID: 38464046 PMCID: PMC10925147 DOI: 10.1101/2024.02.17.580824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and resulting coronavirus disease (COVID-19) causes placental dysfunction, which increases the risk of adverse pregnancy outcomes. While abnormal placental pathology resulting from COVID-19 is common, direct infection of the placenta is rare. This suggests that pathophysiology associated with maternal COVID-19, rather than direct placental infection, is responsible for placental dysfunction and alteration of the placental transcriptome. We hypothesized that maternal circulating extracellular vesicles (EVs), altered by COVID-19 during pregnancy, contribute to placental dysfunction. To examine this hypothesis, we characterized maternal circulating EVs from pregnancies complicated by COVID-19 and tested their effects on trophoblast cell physiology in vitro . We found that the gestational timing of COVID-19 is a major determinant of circulating EV function and cargo. In vitro trophoblast exposure to EVs isolated from patients with an active infection at the time of delivery, but not EVs isolated from Controls, altered key trophoblast functions including hormone production and invasion. Thus, circulating EVs from participants with an active infection, both symptomatic and asymptomatic cases, can disrupt vital trophoblast functions. EV cargo differed between participants with COVID-19 and Controls, which may contribute to the disruption of the placental transcriptome and morphology. Our findings show that COVID-19 can have effects throughout pregnancy on circulating EVs and circulating EVs are likely to participate in placental dysfunction induced by COVID-19.
Collapse
|
3
|
Marrufo-Gallegos KC, Villafán-Bernal JR, Espino-y-Sosa S, Estrada-Gutierrez G, Guzmán-Guzmán IP, Martinez-Portilla RJ, Torres-Torres J. Influential Serum Kinases (Non-sFlt-1) and Phosphatases in Preeclampsia-Systemic Review and Metanalysis. Int J Mol Sci 2023; 24:12842. [PMID: 37629025 PMCID: PMC10454832 DOI: 10.3390/ijms241612842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The early identification of women with an increased risk of preeclampsia (PE) is desirable, but apart from soluble fms-like tyrosine kinase-1 (sFlt-1), few biomarkers have previously been identified as relevant for predicting preeclampsia. Since kinases and phosphatases regulate critical biological processes and previous evidence suggests a potential role of these molecules in preeclampsia, we performed this systematic review and metanalysis. The objective was to determine if there are kinases and phosphatases whose serum levels are different between women with and without PE, being relevant biomarkers of PE. We followed the recommendations of Cochrane and the Preferred Reported Items for Systematic Reviews and Metanalysis (PRISMA) to perform this study. The MESH terms preeclampsia, kinases, phosphatases, angiopoietins, soluble tyrosine protein kinase receptor (sTIE2), and cellular-mesenchymal-epithelial transition factor (c-MET) were combined to find relevant articles in the PubMed, PROSPERO, and Cochrane databases. Then, a qualitative and quantitative analysis was performed in R Studio software. From 580 abstracts identified, 37 were included in the final analysis, which comprised 24,211 pregnant women (2879 with PE and 21,332 women without PE [HP]. The pooled analysis showed that serum creatine kinase (CK) (SMD: 2.43, CI 95% 0.25-4.62) was significantly higher in PE, whereas sTIE2 and anti-angiogenic factor soluble c-Met (sMet)were significantly lower in PE than in HP (SMD: -0.23, CI95% -0.37 to -0.09; and SMD:0.24, CI95% 0.01-0.47, respectively). Adenosine monophosphate-activated protein kinase (AMPK), angiopoietin-1 (ANG-1), angiopoietin-2 (ANG-2), the ratio angiopoietin-1/angiopoietin-2, acid phosphatase, and alkaline phosphatase were not different between women with PE and HP. In summary CK, sTIE2, and c-MET are relevant biomarkers of PE. It is desirable to incorporate them into current models for PE prediction to evaluate their utility as biomarkers.
Collapse
Affiliation(s)
| | | | - Salvador Espino-y-Sosa
- Clinical Research Branch, Instituto Nacional de Perinatologia, Mexico City 11000, Mexico; (S.E.-y.-S.); (G.E.-G.); (R.J.M.-P.)
- Centro de Investigacion en Ciencias de la Salud, Universidad Anahuac, Mexico City 52786, Mexico
- American British Cowdray Medical Center IAP, Ob/Gyn Department, Mexico City 01120, Mexico
| | - Guadalupe Estrada-Gutierrez
- Clinical Research Branch, Instituto Nacional de Perinatologia, Mexico City 11000, Mexico; (S.E.-y.-S.); (G.E.-G.); (R.J.M.-P.)
| | - Iris Paola Guzmán-Guzmán
- Faculty of Chemical-Biological Sciences, Universidad Autónoma de Guerrero, Chilpancingo 39030, Mexico;
| | - Raigam Jafet Martinez-Portilla
- Clinical Research Branch, Instituto Nacional de Perinatologia, Mexico City 11000, Mexico; (S.E.-y.-S.); (G.E.-G.); (R.J.M.-P.)
| | - Johnatan Torres-Torres
- Obstetrics and Gynecology Department, Hospital General de Mexico, Mexico City 06720, Mexico;
- Clinical Research Branch, Instituto Nacional de Perinatologia, Mexico City 11000, Mexico; (S.E.-y.-S.); (G.E.-G.); (R.J.M.-P.)
- American British Cowdray Medical Center IAP, Ob/Gyn Department, Mexico City 01120, Mexico
| |
Collapse
|
4
|
Lyssy F, Guettler J, Brugger BA, Stern C, Forstner D, Nonn O, Fischer C, Herse F, Wernitznig S, Hirschmugl B, Wadsack C, Gauster M. Platelet-derived factors dysregulate placental sphingosine-1-phosphate receptor 2 in human trophoblasts. Reprod Biomed Online 2023; 47:103215. [PMID: 37301709 DOI: 10.1016/j.rbmo.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/22/2023] [Accepted: 04/11/2023] [Indexed: 06/12/2023]
Abstract
RESEARCH QUESTION Sphingosine-1-phosphate (S1P) is an essential and bioactive sphingolipid with various functions, which acts through five different G-protein-coupled receptors (S1PR1-5). What is the localization of S1PR1-S1PR3 in the human placenta and what is the effect of different flow rates, various oxygen concentrations and platelet-derived factors on the expression profile of S1PR in trophoblasts? DESIGN Expression dynamics of placental S1PR1-S1PR3 were determined in human first trimester (n = 10), pre-term (n = 9) and term (n = 10) cases. Furthermore, the study investigated the expression of these receptors in different primary cell types isolated from human placenta, verified the findings with publicly available single-cell RNA-Seq data from first trimester and immunostaining of human first trimester and term placentas. The study also tested whether the placental S1PR subtypes are dysregulated in differentiated BeWo cells under different flow rates, different oxygen concentrations or in the presence of platelet-derived factors. RESULTS Quantitative polymerase chain reaction revealed that S1PR2 is the predominant placental S1PR in the first trimester and reduces towards term (P < 0.0001). S1PR1 and S1PR3 increased from first trimester towards term (P < 0.0001). S1PR1 was localized in endothelial cells, whereas S1PR2 and S1PR3 were predominantly found in villous trophoblasts. Furthermore, S1PR2 was found to be significantly down-regulated in BeWo cells when co-incubated with platelet-derived factors (P = 0.0055). CONCLUSION This study suggests that the placental S1PR repertoire is differentially expressed across gestation. S1PR2 expression in villous trophoblasts is negatively influenced by platelet-derived factors, which could contribute to down-regulation of placental S1PR2 over time of gestation as platelet presence and activation in the intervillous space increases from the middle of the first trimester onwards.
Collapse
Affiliation(s)
- Freya Lyssy
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Jacqueline Guettler
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria.
| | - Beatrice A Brugger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Christina Stern
- Department of Obstetrics and Gynaecology, Medical University of Graz, Austria
| | - Désirée Forstner
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Olivia Nonn
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria; Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Experimental Clinical Research Centre, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association and Charité Berlin, Germany; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Cornelius Fischer
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Florian Herse
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Wernitznig
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | - Birgit Hirschmugl
- Department of Obstetrics and Gynaecology, Medical University of Graz, Austria
| | - Christian Wadsack
- Department of Obstetrics and Gynaecology, Medical University of Graz, Austria
| | - Martin Gauster
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Austria
| |
Collapse
|
5
|
Ontsouka E, Schroeder M, Albrecht C. Revisited role of the placenta in bile acid homeostasis. Front Physiol 2023; 14:1213757. [PMID: 37546542 PMCID: PMC10402276 DOI: 10.3389/fphys.2023.1213757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
To date, the discussion concerning bile acids (BAs) during gestation is almost exclusively linked to pregnancy complications such as intrahepatic cholestasis of pregnancy (ICP) when maternal serum BA levels reach very high concentrations (>100 μM). Generally, the placenta is believed to serve as a protective barrier avoiding exposure of the growing fetus to excessive amounts of maternal BAs that might cause detrimental effects (e.g., intrauterine growth restriction and/or increased vulnerability to metabolic diseases). However, little is known about the precise role of the placenta in BA biosynthesis, transport, and metabolism in healthy pregnancies when serum BAs are at physiological levels (i.e., low maternal and high fetal BA concentrations). It is well known that primary BAs are synthesized from cholesterol in the liver and are later modified to secondary BA species by colonic bacteria. Besides the liver, BA synthesis in extrahepatic sites such as the brain elicits neuroprotective actions through inhibition of apoptosis as well as oxidative and endoplasmic reticulum stress. Even though historically BAs were thought to be only "detergent molecules" required for intestinal absorption of dietary fats, they are nowadays acknowledged as full signaling molecules. They modulate a myriad of signaling pathways with functional consequences on essential processes such as gluconeogenesis -one of the principal energy sources of the fetus- and cellular proliferation. The current manuscript discusses the potential multipotent roles of physiologically circulating BAs on developmental processes during gestation and provides a novel perspective in terms of the importance of the placenta as a previously unknown source of BAs. Since the principle "not too much, not too little" applicable to other signaling molecules may be also true for BAs, the risks associated with fetal exposure to excessive levels of BAs are discussed.
Collapse
|
6
|
Serudji J, Irawati N, Mose JC, Ali H, Yusrawati Y. Serum HIF-1α Levels, miR-210 Expressions, and Reactive Oxygen Species Levels in Early Abortion and Normal Pregnancy. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: The blastocyst implants in a relatively hypoxic state. Hypoxic state triggers hypoxia-inducible factor-1α (HIF-1ɑ) production, upregulates the transcription factor miR-210, and stimulates reactive oxygen species (ROS) production by trophoblast cells. HIF-1α also increases the expression of miR-210. High expression of micro-RNA 210 (miR-210) suppresses mitochondrial respiration, increasing ROS production. High level of ROS may result in DNA damage or cell disfunction, thereby impaired trophoblast invasion, leading to early abortion. This study aims to determine the differences of serum HIF-1ɑ levels, miR-210 expressions, and ROS levels between early abortion and normal pregnancy.
Method: This cross-sectional comparative study was conducted in Dr. M. Djamil Hospital Padang, Andalas University Hospital, and 5 Public Health Centers in Padang. Fifty-patients with gestational age less than 12 weeks (25 early abortions and 25 normal pregnancies) were included in this study. All samples were tested for HIF-1ɑ and ROS level using enzyme-linked immunosorbent assay (ELISA) method, and miR-210 expression using real-time polymerase chain reaction (PCR) technique. Spearman correlation and Mann Whitney test. was used in this study.
Results: Both study groups were equivalent in terms of age, gestational age, and gravidity (p = 0.51, 0.453 and 1.00). The median of HIF-1ɑ level, miR-210 expression, and ROS level were higher in early abortions than normal pregnancies i.e (3.73 vs 3.42) ng/mL (p = 0.016), (43.55 vs 17.85) copies/ng (p = 0.027), and (1.36 vs 1.20) ng/mL (p = 0.003). The coefficient correlations were 0.16 between HIF-1ɑ level and miR-210 expression (p=0.267), 0.46 between HIF-1ɑ level and ROS level (p=0.001), and 0.18 between miR-210 expression and ROS level (p=0.207).
Conclusion: HIF-1ɑ level, miR-210 expression, and ROS level were associated with early abortion. HIF-1ɑ level has a correlation with ROS level.
Collapse
|
7
|
Fakhr Y, Koshti S, Habibyan YB, Webster K, Hemmings DG. Tumor Necrosis Factor-α Induces a Preeclamptic-like Phenotype in Placental Villi via Sphingosine Kinase 1 Activation. Int J Mol Sci 2022; 23:ijms23073750. [PMID: 35409108 PMCID: PMC8998215 DOI: 10.3390/ijms23073750] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
Preeclampsia (PE) involves inadequate placental function. This can occur due to elevated pro-inflammatory tumor necrosis factor-α (TNF-α). In other tissues, TNF-α signals via sphingosine kinase 1 (SphK1). SphK1 hinders syncytial formation. Whether this occurs downstream of TNF-α signaling is unclear. We hypothesized that placental SphK1 levels are higher in PE and elevated TNF-α decreases syncytial function, increases syncytial shedding, and increases cytokine/factor release via SphK1 activity. Term placental biopsies were analyzed for SphK1 using immunofluorescence and qRT-PCR. Term placental explants were treated after 4 days of culture, at the start of syncytial regeneration, with TNF-α and/or SphK1 inhibitors, PF-543. Syncytialization was assessed by measuring fusion and chorionic gonadotropin release. Cell death and shedding were measured by lactate dehydrogenase release and placental alkaline phosphatase-positive shed particles. Forty-two cytokines were measured using multiplex assays. Placental SphK1 was increased in PE. Increased cell death, shedding, interferon-α2, IFN-γ-induced protein 10, fibroblast growth factor 2, and platelet-derived growth factor-AA release induced by TNF-α were reversed upon SphK1 inhibition. TNF-α increased the release of 26 cytokines independently of SphK1. TNF-α decreased IL-10 release and inhibiting SphK1 reversed this effect. Inhibiting SphK1 alone decreased TNF-α release. Hence, SphK1 partially mediates the TNF-α-induced PE placental phenotype, primarily through cell damage, shedding, and specific cytokine release.
Collapse
Affiliation(s)
- Yuliya Fakhr
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T5H 3V9, Canada; (Y.F.); (S.K.); (Y.B.H.); (K.W.)
- Women and Children’s Health Research Institute, Edmonton, AB T6G 1C9, Canada
| | - Saloni Koshti
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T5H 3V9, Canada; (Y.F.); (S.K.); (Y.B.H.); (K.W.)
- Women and Children’s Health Research Institute, Edmonton, AB T6G 1C9, Canada
| | - Yasaman Bahojb Habibyan
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T5H 3V9, Canada; (Y.F.); (S.K.); (Y.B.H.); (K.W.)
- Women and Children’s Health Research Institute, Edmonton, AB T6G 1C9, Canada
| | - Kirsten Webster
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T5H 3V9, Canada; (Y.F.); (S.K.); (Y.B.H.); (K.W.)
- Women and Children’s Health Research Institute, Edmonton, AB T6G 1C9, Canada
| | - Denise G. Hemmings
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T5H 3V9, Canada; (Y.F.); (S.K.); (Y.B.H.); (K.W.)
- Women and Children’s Health Research Institute, Edmonton, AB T6G 1C9, Canada
- Department of Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Correspondence: ; Tel.: +1-(780)-492-2098
| |
Collapse
|
8
|
Patanapirunhakit P, Karlsson H, Mulder M, Ljunggren S, Graham D, Freeman D. Sphingolipids in HDL - Potential markers for adaptation to pregnancy? Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158955. [PMID: 33933650 DOI: 10.1016/j.bbalip.2021.158955] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/15/2022]
Abstract
Plasma high density lipoprotein (HDL) exhibits many functions that render it an effective endothelial protective agent and may underlie its potential role in protecting the maternal vascular endothelium during pregnancy. In non-pregnant individuals, the HDL lipidome is altered in metabolic disease compared to healthy individuals and is linked to reduced cholesterol efflux, an effect that can be reversed by lifestyle management. Specific sphingolipids such as sphingosine-1-phosphate (S1P) have been shown to mediate the vaso-dilatory effects of plasma HDL via interaction with the endothelial nitric oxide synthase pathway. This review describes the relationship between plasma HDL and vascular function during healthy pregnancy and details how this is lost in pre-eclampsia, a disorder of pregnancy associated with widespread endothelial dysfunction. Evidence of a role for HDL sphingolipids, in particular S1P and ceramide, in cardiovascular disease and in healthy pregnancy and pre-eclampsia is discussed. Available data suggest that HDL-S1P and HDL-ceramide can mediate vascular protection in healthy pregnancy but not in preeclampsia. HDL sphingolipids thus are of potential importance in the healthy maternal adaptation to pregnancy.
Collapse
Affiliation(s)
- Patamat Patanapirunhakit
- Faculty of Medicine, Siriraj Hospital, Mahidol University, Thailand; Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.
| | - Helen Karlsson
- Occupational and Environmental Medicine Center, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Monique Mulder
- Division of Pharmacology, Vascular and Metabolic Diseases, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands.
| | - Stefan Ljunggren
- Occupational and Environmental Medicine Center, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.
| | - Delyth Graham
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.
| | - Dilys Freeman
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
9
|
Chahar KR, Kumar V, Sharma PK, Brünnert D, Kaushik V, Gehlot P, Shekhawat I, Kumar S, Sharma AK, Kumari S, Goyal P. Sphingosine kinases negatively regulate the expression of matrix metalloproteases ( MMP1 and MMP3) and their inhibitor TIMP3 genes via sphingosine 1-phosphate in extravillous trophoblasts. Reprod Med Biol 2021; 20:267-276. [PMID: 34262394 PMCID: PMC8254167 DOI: 10.1002/rmb2.12379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/02/2021] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Extracellular matrix remodeling is essential for extravillous trophoblast (EVT) cell migration and invasion during placental development and regulated by matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteases (TIMPs). Sphingosine kinases (SPHK1 and SPHK2) synthesize sphingosine-1-phosphate (S1P), which works either intracellularly or extracellularly via its receptors S1PR1-5 in an autocrine or paracrine manner. The role of SPHKs/S1P in regulating the expression of MMPs and TIMPs in EVT is mostly unknown and forms the primary objective of the study. METHODS HTR-8/SVneo cells were used as a model of EVT. To inhibit the expression of SPHKs, cells were treated with specific inhibitors, SK1-I and SKI-II, or gene-specific siRNAs. The expressions of MMPs and TIMPs were estimated by qPCR. RESULTS We demonstrated that SPHK1, MMP1-3, and TIMP1-3 were highly expressed in HTR-8/SVneo cells. We found that treatment of cells with SK1-I, SKI-II, and knockdown of SPHK1 or SPHK2 increased the expression of MMP1, MMP3, and TIMP3. The addition of extracellular S1P inhibits the upregulation of MMPs and TIMPs in treated cells. CONCLUSIONS SPHKs negatively regulate the expression of MMP1, MMP3, and TIMP3. The level of intracellular S1P acts as a negative feedback switch for MMP1, MMP3, and TIMP3 expression in EVT cells.
Collapse
Affiliation(s)
- Kirti R. Chahar
- Department of BiotechnologySchool of Life SciencesCentral University of RajasthanAjmerIndia
| | - Vijay Kumar
- Department of BiotechnologySchool of Life SciencesCentral University of RajasthanAjmerIndia
| | - Phulwanti K. Sharma
- Department of BiotechnologySchool of Life SciencesCentral University of RajasthanAjmerIndia
| | - Daniela Brünnert
- Comprehensive Cancer Center MainfrankenTranslational OncologyUniversity Hospital of WürzburgWürzburgGermany
| | - Vibha Kaushik
- Department of BiotechnologySchool of Life SciencesCentral University of RajasthanAjmerIndia
| | - Pragya Gehlot
- Department of BiotechnologySchool of Life SciencesCentral University of RajasthanAjmerIndia
| | - Indu Shekhawat
- Department of BiotechnologySchool of Life SciencesCentral University of RajasthanAjmerIndia
| | - Suman Kumar
- Department of BiotechnologySchool of Life SciencesCentral University of RajasthanAjmerIndia
| | - Ajay Kumar Sharma
- Department of Obstetrics & GynecologyJ. L. N. Medical CollegeAjmerIndia
| | - Sandhya Kumari
- Department of Obstetrics & GynecologyJ. L. N. Medical CollegeAjmerIndia
| | - Pankaj Goyal
- Department of BiotechnologySchool of Life SciencesCentral University of RajasthanAjmerIndia
| |
Collapse
|
10
|
Ziegler AC, Gräler MH. Barrier maintenance by S1P during inflammation and sepsis. Tissue Barriers 2021; 9:1940069. [PMID: 34152926 DOI: 10.1080/21688370.2021.1940069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) is a multifaceted lipid signaling molecule that activates five specific G protein-coupled S1P receptors. Despite the fact that S1P is known as one of the strongest barrier-enhancing molecules for two decades, no medical application is available yet. The reason for this lack of translation into clinical practice may be the complex regulatory network of S1P signaling, metabolism and transportation.In this review, we will provide an overview about the physiology and the network of S1P signaling with the focus on endothelial barrier maintenance in inflammation. We briefly describe the physiological role of S1P and the underlying S1P signaling in barrier maintenance, outline differences of S1P signaling and metabolism in inflammatory diseases, discuss potential targets and compounds for medical intervention, and summarize our current knowledge regarding the role of S1P in the maintenance of specialized barriers like the blood-brain barrier and the placenta.
Collapse
Affiliation(s)
- Anke C Ziegler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.,Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany
| | - Markus H Gräler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.,Center for Molecular Biomedicine, Jena University Hospital, Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| |
Collapse
|
11
|
Huang X, Wang L, Zhao S, Liu H, Chen S, Wu L, Liu L, Ding J, Yang H, Maxwell A, Yin Z, Mor G, Liao A. Pregnancy Induces an Immunological Memory Characterized by Maternal Immune Alterations Through Specific Genes Methylation. Front Immunol 2021; 12:686676. [PMID: 34163485 PMCID: PMC8215664 DOI: 10.3389/fimmu.2021.686676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/19/2021] [Indexed: 01/20/2023] Open
Abstract
During pregnancy, the maternal immune system undergoes major adaptive modifications that are necessary for the acceptance and protection of the fetus. It has been postulated that these modifications are temporary and limited to the time of pregnancy. Growing evidence suggests that pregnancy has a long-term impact on maternal health, especially among women with pregnancy complications, such as preeclampsia (PE). In addition, the presence of multiple immunological-associated changes in women that remain long after delivery has been reported. To explain these long-term modifications, we hypothesized that pregnancy induces long-term immunological memory with effects on maternal well-being. To test this hypothesis, we evaluated the immunological phenotype of circulating immune cells in women at least 1 year after a normal pregnancy and after pregnancy complicated by PE. Using multiparameter flow cytometry (FCM) and whole-genome bisulfite sequencing (WGBS), we demonstrate that pregnancy has a long-term effect on the maternal immune cell populations and that this effect differs between normal pregnancy and pregnancy complicated by PE; furthermore, these modifications are due to changes in the maternal methylation status of genes that are associated with T cell and NK cell differentiation and function. We propose the existence of an "immunological memory of pregnancy (IMOP)" as an evolutionary advantage for the success of future pregnancies and the proper adaptation to the microchimeric status established during pregnancy. Our findings demonstrate that the type of immune cell populations modified during pregnancy may have an impact on subsequent pregnancy and future maternal health.
Collapse
Affiliation(s)
- Xiaobo Huang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liling Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sijia Zhao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Liu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Si Chen
- Hubei Province Engineering Research Center of Healthy Food, School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Li Wu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Anhui Province Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Liping Liu
- Wuhan Women and Children Medical Care Center, Wuhan, China
| | - Jiahui Ding
- C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States
| | - Hengwen Yang
- Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated With Jinan University, Jinan University, Zhuhai, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Anthony Maxwell
- C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States
| | - Zhinan Yin
- Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated With Jinan University, Jinan University, Zhuhai, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Gil Mor
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, United States
| | - Aihua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Fakhr Y, Brindley DN, Hemmings DG. Physiological and pathological functions of sphingolipids in pregnancy. Cell Signal 2021; 85:110041. [PMID: 33991614 DOI: 10.1016/j.cellsig.2021.110041] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 01/12/2023]
Abstract
Signaling by the bioactive sphingolipid, sphingosine 1-phosphate (S1P), and its precursors are emerging areas in pregnancy research. S1P and ceramide levels increase towards end of gestation, suggesting a physiological role in parturition. However, high levels of circulating S1P and ceramide are correlated with pregnancy disorders such as preeclampsia, gestational diabetes mellitus and intrauterine growth restriction. Expression of placental and decidual enzymes that metabolize S1P and S1P receptors are also dysregulated during pregnancy complications. In this review, we provide an in-depth examination of the signaling mechanism of S1P and ceramide in various reproductive tissues during gestation. These factors determine implantation and early pregnancy success by modulating corpus luteum function from progesterone production to luteolysis through to apoptosis. We also highlight the role of S1P through receptor signaling in inducing decidualization and angiogenesis in the decidua, as well as regulating extravillous trophoblast migration to anchor the placenta into the uterine wall. Recent advances on the role of the S1P:ceramide rheostat in controlling the fate of villous trophoblasts and the role of S1P as a negative regulator of trophoblast syncytialization to a multinucleated placental barrier are discussed. This review also explores the role of S1P in anti-inflammatory and pro-inflammatory signaling, its role as a vasoconstrictor, and the effects of S1P metabolizing enzymes and receptors in pregnancy.
Collapse
Affiliation(s)
- Yuliya Fakhr
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2S2, Canada; Women and Children's Health Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - David N Brindley
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada; Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2S2, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Denise G Hemmings
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB T6G 2S2, Canada; Women and Children's Health Research Institute, University of Alberta, Edmonton, AB T6G 1C9, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2S2, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2S2, Canada.
| |
Collapse
|
13
|
Del Gaudio I, Sasset L, Di Lorenzo A, Wadsack C. Sphingolipid Signature of Human Feto-Placental Vasculature in Preeclampsia. Int J Mol Sci 2020; 21:ijms21031019. [PMID: 32033121 PMCID: PMC7037072 DOI: 10.3390/ijms21031019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 01/22/2023] Open
Abstract
Bioactive sphingolipids are emerging as key regulators of vascular function and homeostasis. While most of the clinical studies have been devoted to profile circulating sphingolipids in maternal plasma, little is known about the role of the sphingolipid at the feto-placental vasculature, which is in direct contact with the offspring circulation. Our study aims to compare the sphingolipid profile of normal with preeclamptic (PE) placental chorionic arteries and isolated endothelial cells, with the goal of unveiling potential underlying pathomechanisms in the vasculature. Dihydrosphingosine and sphingomyelin (SM) concentrations (C16:0-, C18:0-, and C24:0- sphingomyelin) were significantly increased in chorionic arteries of preeclamptic placentas, whereas total ceramide, although showing a downward trend, were not statistically different. Moreover, RNA and immunofluorescence analysis showed impaired sphingosine-1-phosphate (S1P) synthesis and signaling in PE vessels. Our data reveal that the exposure to a deranged maternal intrauterine environment during PE alters the sphingolipid signature and gene expression on the fetal side of the placental vasculature. This pathological remodeling consists in increased serine palmitoyltransferase (SPT) activity and SM accrual in PE chorionic arteries, with concomitance impairment endothelial S1P signaling in the endothelium of these vessels. The increase of endothelial S1P phosphatase, lyase and S1PR2, and blunted S1PR1 expression support the onset of the pathological phenotype in chorionic arteries.
Collapse
Affiliation(s)
- Ilaria Del Gaudio
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria;
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Linda Sasset
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - Annarita Di Lorenzo
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
- Correspondence: (C.W.); (A.D.L.); Tel.: +43-316-385-81074 (C.W.); +1-212-746-6476 (A.D.L.)
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria;
- Correspondence: (C.W.); (A.D.L.); Tel.: +43-316-385-81074 (C.W.); +1-212-746-6476 (A.D.L.)
| |
Collapse
|
14
|
Brodowski L, Zindler T, von Hardenberg S, Schröder-Heurich B, von Kaisenberg CS, Frieling H, Hubel CA, Dörk T, von Versen-Höynck F. Preeclampsia-Associated Alteration of DNA Methylation in Fetal Endothelial Progenitor Cells. Front Cell Dev Biol 2019; 7:32. [PMID: 30949477 PMCID: PMC6436196 DOI: 10.3389/fcell.2019.00032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 02/25/2019] [Indexed: 01/06/2023] Open
Abstract
Objective The pregnancy complication preeclampsia represents an independent risk factor for cardiovascular disease. Our previous research shows a diminished function of fetal endothelial colony-forming cells (ECFC), a proliferative subgroup of endothelial progenitor cells (EPC) in preeclampsia. The aim of this study was to further investigate whether DNA methylation of fetal EPC is affected in preeclampsia. Methods The genomic methylation pattern of fetal ECFC from uncomplicated and preeclamptic pregnancies was compared for 865918 CpG sites, and genes were classified into gene networks. Low and advanced cell culture passages were compared to explore whether expansion of fetal ECFC in cell culture leads to changes in global methylation status and if methylation characteristics in preeclampsia are maintained with increasing passage. Results A differential methylation pattern of fetal ECFC from preeclampsia compared to uncomplicated pregnancy was detected for a total of 1266 CpG sites in passage 3, and for 2362 sites in passage 5. Key features of primary networks implicated by methylation differences included cell metabolism, cell cycle and transcription and, more specifically, genes involved in cell-cell interaction and Wnt signaling. We identified an overlap between differentially regulated pathways in preeclampsia and cardiovascular system development and function. Cell culture passages 3 and 5 showed similar gene network profiles, and 1260 out of 1266 preeclampsia-associated methylation changes detected in passage 3 were confirmed in passage 5. Conclusion Methylation modification caused by preeclampsia is stable and detectable even in higher cell culture passages. An epigenetically modified endothelial precursor may influence both normal morphogenesis and postnatal vascular repair capacity. Further studies on epigenetic modifications in complicated pregnancies are needed to facilitate development of EPC based therapies for cardiovascular alterations.
Collapse
Affiliation(s)
- Lars Brodowski
- Department of Obstetrics and Gynecology, Hannover Medical School, Hanover, Germany
| | - Tristan Zindler
- Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | | | | | | | - Helge Frieling
- Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hanover, Germany
| | - Carl A Hubel
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Thilo Dörk
- Department of Obstetrics and Gynecology, Hannover Medical School, Hanover, Germany
| | | |
Collapse
|
15
|
De Francesco EM, Sotgia F, Clarke RB, Lisanti MP, Maggiolini M. G Protein-Coupled Receptors at the Crossroad between Physiologic and Pathologic Angiogenesis: Old Paradigms and Emerging Concepts. Int J Mol Sci 2017; 18:ijms18122713. [PMID: 29240722 PMCID: PMC5751314 DOI: 10.3390/ijms18122713] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 12/14/2022] Open
Abstract
G protein-coupled receptors (GPCRs) have been implicated in transmitting signals across the extra- and intra-cellular compartments, thus allowing environmental stimuli to elicit critical biological responses. As GPCRs can be activated by an extensive range of factors including hormones, neurotransmitters, phospholipids and other stimuli, their involvement in a plethora of physiological functions is not surprising. Aberrant GPCR signaling has been regarded as a major contributor to diverse pathologic conditions, such as inflammatory, cardiovascular and neoplastic diseases. In this regard, solid tumors have been demonstrated to activate an angiogenic program that relies on GPCR action to support cancer growth and metastatic dissemination. Therefore, the manipulation of aberrant GPCR signaling could represent a promising target in anticancer therapy. Here, we highlight the GPCR-mediated angiogenic function focusing on the molecular mechanisms and transduction effectors driving the patho-physiological vasculogenesis. Specifically, we describe evidence for the role of heptahelic receptors and associated G proteins in promoting angiogenic responses in pathologic conditions, especially tumor angiogenesis and progression. Likewise, we discuss opportunities to manipulate aberrant GPCR-mediated angiogenic signaling for therapeutic benefit using innovative GPCR-targeted and patient-tailored pharmacological strategies.
Collapse
Affiliation(s)
- Ernestina M De Francesco
- Department of Pharmacy, Health and Nutrition Sciences, University of Calabria via Savinio, 87036 Rende, Italy.
- Breast Cancer Now Research Unit, Division of Cancer Sciences, Manchester Cancer Research Centre, University of Manchester, Wilmslow Road, Manchester M20 4GJ, UK.
| | - Federica Sotgia
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre, University of Salford, Greater Manchester M5 4WT, UK.
| | - Robert B Clarke
- Breast Cancer Now Research Unit, Division of Cancer Sciences, Manchester Cancer Research Centre, University of Manchester, Wilmslow Road, Manchester M20 4GJ, UK.
| | - Michael P Lisanti
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre, University of Salford, Greater Manchester M5 4WT, UK.
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutrition Sciences, University of Calabria via Savinio, 87036 Rende, Italy.
| |
Collapse
|
16
|
Mizugishi1 K, Yamashita K. Neutrophil extracellular traps are critical for pregnancy loss in sphingosine kinase–deficient mice on 129Sv/C57BL/6 background. FASEB J 2017; 31:5577-5591. [DOI: 10.1096/fj.201700399rr] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/07/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Kiyomi Mizugishi1
- Department of Hematology and OncologyKyoto University HospitalKyotoJapan
| | - Kouhei Yamashita
- Department of Hematology and OncologyKyoto University HospitalKyotoJapan
| |
Collapse
|
17
|
Plasma cross-gestational sphingolipidomic analyses reveal potential first trimester biomarkers of preeclampsia. PLoS One 2017; 12:e0175118. [PMID: 28384202 PMCID: PMC5383057 DOI: 10.1371/journal.pone.0175118] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/21/2017] [Indexed: 01/01/2023] Open
Abstract
Introduction Preeclampsia (PE) is a gestational disorder, manifested in the second half of pregnancy by maternal hypertension, proteinuria and generalized edema. PE is a major cause of maternal and fetal morbidity and mortality, accounting for nearly 40% of all premature births worldwide. Bioactive sphingolipids are emerging as key molecules involved in etiopathogenesis of PE, characterized by maternal angiogenic imbalance and symptoms of metabolic syndrome. The aim of this study was to compare the cross-gestational profile of circulating bioactive sphingolipids in maternal plasma from preeclamptic (PE) versus normotensive control (CTL) subjects with the goal of identifying sphingolipids as candidate first trimester biomarkers of PE for early prediction of the disease. Methods A prospective cohort of patients was sampled at the first, second and third trimester of pregnancy for each patient (11–14, 22–24, and 32–36 weeks´ gestation). A retrospective stratified study design was used to quantify different classes of sphingolipids in maternal plasma. We used a reverse-phase high-performance liquid chromatography-tandem mass spectrometry (HPLC-ESI-MS/MS) approach for determining different sphingolipid molecular species (sphingosine-1-phosphate (S1P), dihydro-sphingosine-1-phosphate (DH-S1P), sphingomyelins (SM) and ceramides (Cer)) in cross-gestational samples of human plasma from PE (n = 7, 21 plasma samples across pregnancy) and CTL (n = 7, 21 plasma samples across pregnancy) patients. Results Plasma levels of angiogenic S1P did not change significantly in control and in preeclamptic patients´ group across gestation. DH-S1P was significantly decreased in second trimester plasma of PE patients in comparison to their first trimester, which could contribute to reduced endothelial barrier observed in PE. The major ceramide species (Cer 16:0 and Cer 24:0) tended to be up-regulated in plasma of control and PE subjects across gestation. The levels of a less abundant plasma ceramide species (Cer 14:0) were significantly lower in first trimester plasma of PE patients when compared with their gestational-matched control samples (p = 0.009). Major plasma sphingomyelin species (SM 16:0, SM 18:1 and SM 24:0) tended to be higher in control pregnancies across gestation. However, in PE patients, SM 16:0, SM 18:0 and SM 18:1 showed significant up-regulation across gestation, pointing to atherogenic properties of the sphingomyelins and particularly the potential contribution of SM 18:0 to the disease development. In addition, two major sphingomyelins, SM 16:0 and SM 18:0, were significantly lower in first trimester plasma of PE patients versus first trimester samples of respective controls (p = 0.007 and p = 0.002, respectively). Conclusions Cross-gestational analysis of maternal plasma of preeclamptic and normotensive women identifies differences in the biochemical profile of major sphingolipids (DH-S1P, sphingomyelins and ceramides) between these two groups. In addition, first trimester maternal plasma sphingolipids (Cer 14:0, SM 16:0 and SM 18:0) may serve in the future as early biomarkers of PE occurrence and development.
Collapse
|