1
|
Zhang M, Wen H, Sun Q, Zhang D, Li Y, Xi A, Zheng X, Wu Y, Cao J, Bouyer J, Xi Z. Early attainment of 20-hydroxyecdysone threshold shapes mosquito sexual dimorphism in developmental timing. Nat Commun 2025; 16:821. [PMID: 39827175 PMCID: PMC11743200 DOI: 10.1038/s41467-025-56224-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
In holometabolous insects, critical weight (CW) attainment triggers pupation and metamorphosis, but its mechanism remains unclear in non-model organisms like mosquitoes. Here, we investigate the role of 20-hydroxyecdysone (20E) in CW assessment and pupation timing in Aedes albopictus and Ae. aegypti, vectors of arboviruses including dengue and Zika. Our results show that the attainment of CW is contingent upon surpassing a critical 20E threshold, which results in entrance into a constant 22 h interval and the subsequent 20E pulse responsible for larval-pupal ecdysis. Sexual dimorphism in pupation time arises from higher basal 20E levels in males, enabling earlier CW attainment. Administering 20E at 50% of L3/L4 molt, when most of males but not females pass the pulse, results in female-specific lethality. These findings highlight the pivotal role of 20E thresholds in CW, pupation timing, and sexual dimorphism, suggesting that manipulating 20E levels can skew populations male, offering a potential mosquito sex separation strategy.
Collapse
Affiliation(s)
- Meichun Zhang
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI, USA
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Han Wen
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI, USA
| | - Qiang Sun
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI, USA
| | - Dongjing Zhang
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yongjun Li
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, China
| | - Andrew Xi
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI, USA
| | - Xiaoying Zheng
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yu Wu
- Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Key Laboratory of Tropical Disease Control of the Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Jun Cao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
| | - Jeremy Bouyer
- Insect Pest Control Sub-programme, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna, Austria
- ASTRE, CIRAD, F34398, Montpellier, France
- ASTRE, Cirad, INRAE, Univ. Montpellier, Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
| | - Zhiyong Xi
- Department of Microbiology, Genetics, & Immunology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
2
|
Wang L, Wei DD, Wang GQ, Huang HQ, Wang JJ. High-Sucrose Diet Exposure on Larvae Contributes to Adult Fecundity and Insecticide Tolerance in the Oriental Fruit Fly, Bactrocera dorsalis (Hendel). INSECTS 2023; 14:insects14050407. [PMID: 37233035 DOI: 10.3390/insects14050407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023]
Abstract
Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) is one of the broad host ranges and economically-important insect pests in tropical and subtropical areas. A wide range of hosts means they have strong adaptation ability to changes in dietary macronutrients (e.g., sucrose and protein). However, the effects of dietary conditions on the phenotypes and genotypes of B. dorsalis are still unclear. In this study, we aimed to investigate the effects of larval dietary sucrose on the life history traits and stress tolerance of B. dorsalis, and its defense response at the molecular level. The results showed that low-sucrose (LS) induced decreased body size, shortened developmental duration, and enhanced sensitivity to beta-cypermethrin. Otherwise, high-sucrose (HS) diet increased developmental duration, adult fecundity, and tolerance to malathion. Based on transcriptome data, 258 and 904 differentially expressed genes (DEGs) were identified in the NS (control) versus LS groups, and NS versus HS groups, respectively. These yielded DEGs were relevant to multiple specific metabolisms, hormone synthesis and signaling, and immune-related pathways. Our study will provide biological and molecular perspective to understand phenotypic adjustments to diets and the strong host adaptability in oriental fruit flies.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Dan-Dan Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| | - Gui-Qiang Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Han-Qin Huang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China
| |
Collapse
|
3
|
Doll PC, Uthicke S, Caballes CF, Diaz-Pulido G, Abdul Wahab MA, Lang BJ, Jeong SY, Pratchett MS. Settlement cue selectivity by larvae of the destructive crown-of-thorns starfish. Biol Lett 2023; 19:20220399. [PMID: 36693424 PMCID: PMC9873471 DOI: 10.1098/rsbl.2022.0399] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
Population irruptions of crown-of-thorns starfish (COTS) cause extensive degradation of coral reefs, threatening the structure and function of these important ecosystems. For population irruptions to initiate and spread, large numbers of planktonic larvae have to successfully transition into their benthic life-history stage (i.e. settlement), whereby larval behaviour and the presence of settlement cues may shape spatial patterns of recruitment and adult densities. Our results demonstrate that a wide range of coralline algae species induce COTS larvae to settle; however, the capacity to promote settlement success varied manyfold among algal species, ranging from greater than 90% in Melyvonnea cf. madagascariensis to less than 2% in Lithophyllum cf. kotschyanum and two Porolithon species at 24 h. Because many coralline algae species that promote high settlement success are prevalent in shallow reef habitats, our findings challenge the hypothesis that COTS larvae predominantly settle in deep water. Considering both larval behaviour and algal ecology, this study highlights the ecological significance of coralline algae communities in driving recruitment patterns of COTS. More specifically, the local abundance of highly inductive coralline algae (especially, Melyvonnea cf. madagascariensis) may explain some of the marked spatial heterogeneity of COTS populations and the incidence of population irruptions.
Collapse
Affiliation(s)
- Peter C. Doll
- Australian Research Council (ARC) Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
- Australian Institute of Marine Science, Townsville, Queensland 4810, Australia
| | - Sven Uthicke
- Australian Institute of Marine Science, Townsville, Queensland 4810, Australia
| | - Ciemon F. Caballes
- Australian Research Council (ARC) Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
- National Science Foundation Established Program to Stimulate Competitive Research (NSF EPSCoR) - Guam Ecosystems Collaboratorium for Corals and Oceans, University of Guam – Marine Laboratory, Mangilao, Guam 96923, USA
| | - Guillermo Diaz-Pulido
- Australian Institute of Marine Science, Townsville, Queensland 4810, Australia
- School of Environment and Science, Coastal and Marine Research Centre, and Australian Rivers Institute, Griffith University, Nathan, Queensland 4111, Australia
| | | | - Bethan J. Lang
- Australian Research Council (ARC) Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
- Australian Institute of Marine Science, Townsville, Queensland 4810, Australia
| | - So Young Jeong
- School of Environment and Science, Coastal and Marine Research Centre, and Australian Rivers Institute, Griffith University, Nathan, Queensland 4111, Australia
| | - Morgan S. Pratchett
- Australian Research Council (ARC) Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
4
|
Zhang L, Zhuang T, Hu M, Liu S, Wu D, Ji B. Gut microbiota contributes to lignocellulose deconstruction and nitrogen fixation of the larva of Apriona swainsoni. Front Physiol 2022; 13:1072893. [PMID: 36620205 PMCID: PMC9816477 DOI: 10.3389/fphys.2022.1072893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022] Open
Abstract
Apriona swainsoni is a vital forest pest prevalent in China. The larvae of A. swainsoni live solely in the branches of trees and rely entirely on the xylem for nutrition. However, there is still a lack of in-depth research on the gut microbiota's use of almost nitrogen-free wood components to provide bio-organic macromolecular components needed for their growth. Thus, in this study, the metagenome, metaproteome, and metabolome of the A. swainsoni larvae in four gut segments (foregut; midgut; anterior hindgut; posterior hindgut) were analyzed by the multi-omics combined technology, to explore the metabolic utilization mechanism of the corresponding gut microbiota of A. swainsoni. Firstly, we found that the metagenome of different gut segments was not significantly different in general, but there were different combinations of dominant bacteria and genes in different gut segments, and the metaproteome and metabolome of four gut segments were significantly different in general. Secondly, the multi-omics results showed that there were significant gradient differences in the contents of cellulose and hemicellulose in different segments of A. swainsoni, and the expression of corresponding metabolic proteins was the highest in the midgut, suggesting the metabolic characteristics of these lignocellulose components in A. swainsoni gut segments. Finally, we found that the C/N ratio of woody food was significantly lower than that of frass, and metagenomic results showed that nitrogen fixation genes mainly existed in the foregut and two hindgut segments. The expression of the key nitrogen fixing gene nifH occurred in two hindgut parts, indicating the feature of nitrogen fixation of A. swainsoni. In conclusion, our results provide direct evidence that the larvae of A. swainsoni can adapt to the relatively harsh niche conditions through the highly organized gut microbiome in four gut segments, and may play a major role in their growth.
Collapse
Affiliation(s)
- Lei Zhang
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Tian Zhuang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Mengxue Hu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Shuwen Liu
- The Administration Bureau of Dr. Sun Yat-sen’s Mausoleum, Nanjing, China
| | - Daqiang Wu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Baozhong Ji
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
5
|
Suzuki Y, Toh L. Constraints and Opportunities for the Evolution of Metamorphic Organisms in a Changing Climate. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.734031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We argue that developmental hormones facilitate the evolution of novel phenotypic innovations and timing of life history events by genetic accommodation. Within an individual’s life cycle, metamorphic hormones respond readily to environmental conditions and alter adult phenotypes. Across generations, the many effects of hormones can bias and at times constrain the evolution of traits during metamorphosis; yet, hormonal systems can overcome constraints through shifts in timing of, and acquisition of tissue specific responses to, endocrine regulation. Because of these actions of hormones, metamorphic hormones can shape the evolution of metamorphic organisms. We present a model called a developmental goblet, which provides a visual representation of how metamorphic organisms might evolve. In addition, because developmental hormones often respond to environmental changes, we discuss how endocrine regulation of postembryonic development may impact how organisms evolve in response to climate change. Thus, we propose that developmental hormones may provide a mechanistic link between climate change and organismal adaptation.
Collapse
|
6
|
Lowe WH, Martin TE, Skelly DK, Woods HA. Metamorphosis in an Era of Increasing Climate Variability. Trends Ecol Evol 2021; 36:360-375. [PMID: 33414021 DOI: 10.1016/j.tree.2020.11.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022]
Abstract
Most animals have complex life cycles including metamorphosis or other discrete life stage transitions, during which individuals may be particularly vulnerable to environmental stressors. With climate change, individuals will be exposed to increasing thermal and hydrologic variability during metamorphosis, which may affect survival and performance through physiological, behavioral, and ecological mechanisms. Furthermore, because metamorphosis entails changes in traits and vital rates, it is likely to play an important role in how populations respond to increasing climate variability. To identify mechanisms underlying population responses and associated trait and life history evolution, we need new approaches to estimating changes in individual traits and performance throughout metamorphosis, and we need to integrate metamorphosis as an explicit life stage in analytical models.
Collapse
Affiliation(s)
- Winsor H Lowe
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA.
| | - Thomas E Martin
- US Geological Survey, Montana Cooperative Wildlife Research Unit, University of Montana, Missoula, MT 59812, USA
| | - David K Skelly
- School of the Environment, Yale University, New Haven, CT 06520, USA
| | - H Arthur Woods
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
7
|
He LL, Shin SH, Wang Z, Yuan I, Weschler R, Chiou A, Koyama T, Nijhout HF, Suzuki Y. Mechanism of threshold size assessment: Metamorphosis is triggered by the TGF-beta/Activin ligand Myoglianin. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 126:103452. [PMID: 32822817 DOI: 10.1016/j.ibmb.2020.103452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/02/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
Although the mechanisms that control growth are now well understood, the mechanism by which animals assess their body size remains one of the great puzzles in biology. The final larval instar of holometabolous insects, after which growth stops and metamorphosis begins, is specified by a threshold size. We investigated the mechanism of threshold size assessment in the tobacco hornworm, Manduca sexta. The threshold size was found to change depending on the amount of exposure to poor nutrient conditions whereas hypoxia treatment consistently led to a lower threshold size. Under these various conditions, the mass of the muscles plus integuments was correlated with the threshold size. Furthermore, the expression of myoglianin (myo) increased at the threshold size in both M. sexta and Tribolium castaneum. Knockdown of myo in T. castaneum led to larvae that underwent supernumerary larval molts and stayed in the larval stage permanently even after passing the threshold size. We propose that increasing levels of Myo produced by the growing tissues allow larvae to assess their body size and trigger metamorphosis at the threshold size.
Collapse
Affiliation(s)
- Lorrie L He
- Department of Biological Sciences, 106 Central St., Wellesley College, Wellesley, MA, 02481, USA
| | - Sara H Shin
- Department of Biological Sciences, 106 Central St., Wellesley College, Wellesley, MA, 02481, USA
| | - Zhou Wang
- Department of Biological Sciences, 106 Central St., Wellesley College, Wellesley, MA, 02481, USA
| | - Isabelle Yuan
- Department of Biological Sciences, 106 Central St., Wellesley College, Wellesley, MA, 02481, USA
| | - Ruthie Weschler
- Department of Biological Sciences, 106 Central St., Wellesley College, Wellesley, MA, 02481, USA
| | - Allison Chiou
- Department of Biological Sciences, 106 Central St., Wellesley College, Wellesley, MA, 02481, USA
| | - Takashi Koyama
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal; Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | | | - Yuichiro Suzuki
- Department of Biological Sciences, 106 Central St., Wellesley College, Wellesley, MA, 02481, USA.
| |
Collapse
|
8
|
Optimal Scaling of Critical Size for Metamorphosis in the Genus Drosophila. iScience 2019; 20:348-358. [PMID: 31610371 PMCID: PMC6817650 DOI: 10.1016/j.isci.2019.09.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/19/2019] [Accepted: 09/23/2019] [Indexed: 12/19/2022] Open
Abstract
Juveniles must reach a critical body size to become a mature adult. Molecular determinants of critical size have been studied, but the evolutionary importance of critical size is still unclear. Here, using nine fly species, we show that interspecific variation in organism size can be explained solely by species-specific critical size. The observed variation in critical size quantitatively agrees with the interspecific scaling relationship predicted by the life history model, which hypothesizes that critical size mediates an energy allocation switch between juvenile and adult tissues. The mechanism underlying critical size scaling is explained by an inverse relationship between growth duration and growth rate, which cancels out their contributions to the final size. Finally, we show that evolutionary changes in growth duration can be traced back to the scaling of ecdysteroid hormone dynamics. We conclude that critical size adaptively optimizes energy allocation, and has a central role in organism size determination.
Collapse
|
9
|
Nagamine K, Kusakabe Y, Tsuchida T, Horiuchi Y, Nemoto Y, Sato Y, Shintani Y. Life-History Traits of a Subtropical Cerambycid Beetle, Ropica honesta (Coleoptera: Cerambycidae). ENVIRONMENTAL ENTOMOLOGY 2019; 48:923-928. [PMID: 31242298 DOI: 10.1093/ee/nvz080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Indexed: 06/09/2023]
Abstract
Ropica honesta Pascoe is a small-sized cerambycid that has been recorded in tropical to subtropical Asia. In this study, life-history traits were examined for a local population collected from Iriomote Island (24.3°N, 123.8°E), Okinawa, Japan, by rearing insects on artificial diet as larval food. The egg period was 5.9 ± 0.3 d at 25°C. There was no significant difference in the duration of the larval, pupal, and adult preoviposition periods between long-day (14:10 [L:D]) and short-day (12:12 [L:D]) photoperiods at both 20 and 25°C. These periods at 25°C (14:10 [L:D]) were 28.5 ± 1.4, 8.4 ± 0.5, and 9.6 ± 1.9 d (mean ± SD), respectively. The relationship between the developmental rate and temperature followed the law of total effective temperature; thus, the developmental threshold temperature and thermal constant were estimated based on these data. Together with the finding that R. honesta may not have diapause in the egg stage, it is suggested that this beetle does not have diapause in the life cycle. Furthermore, when larvae were reared on natural food (dead twigs of hardwoods) adults emerged from the twigs 47.6 ± 2.9 d after oviposition, and this value was close to the total duration of the egg to pupal periods. Together with the data for annual temperature of the habitat and the fact that food resources for the species (dead twigs and leaves of hardwoods) are available throughout the year, we conclude that R. honesta develops and reproduces all year round, with five generations at maximum.
Collapse
Affiliation(s)
- Keisuke Nagamine
- Laboratory of Entomology, Department of Environmental and Horticultural Sciences, Minami Kyushu University, Tateno, Miyakonojo, Miyazaki, Japan
| | | | - Takashi Tsuchida
- Hamamatsu University of Medicine, Handayama, Higashi-ku, Hamamatsu, Shizuoka, Japan
| | - Yuya Horiuchi
- Laboratory of Entomology, Department of Environmental and Horticultural Sciences, Minami Kyushu University, Tateno, Miyakonojo, Miyazaki, Japan
| | - Yuya Nemoto
- Laboratory of Entomology, Department of Environmental and Horticultural Sciences, Minami Kyushu University, Tateno, Miyakonojo, Miyazaki, Japan
| | - Yoshiki Sato
- Laboratory of Entomology, Department of Environmental and Horticultural Sciences, Minami Kyushu University, Tateno, Miyakonojo, Miyazaki, Japan
| | - Yoshinori Shintani
- Laboratory of Entomology, Department of Environmental and Horticultural Sciences, Minami Kyushu University, Tateno, Miyakonojo, Miyazaki, Japan
| |
Collapse
|
10
|
Nagamine K, Hojoh K, Nagata S, Shintani Y. Rearing Theretra oldenlandiae (Lepidoptera: Sphingidae) Larvae on an Artificial Diet. JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:5494807. [PMID: 31115474 PMCID: PMC6529896 DOI: 10.1093/jisesa/iez043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Indexed: 06/09/2023]
Abstract
The hawk moth Theretra oldenlandiae (Fabricius) is an important insect pest because in the larval stage it feeds on agricultural crops and ornamental plants such as the eddoe and garden balsam. In this study, we established methods for rearing T. oldenlandiae in the laboratory using an artificial diet containing dry powder of a wild grass Cayratia japonica (Thunb.) Gagnep. Several artificial diets were tested with different ratios of a commercial diet, Insecta LFM, and the dry leaf powder, and including different antibiotics, and the composition of the standard diet on which larvae performed best was determined. The standard diet contains 20 g of Insecta LFM, 4 g of leaf powder, 100 ml of water, 75 mg of chloramphenicol, and 200 μl of propionic acid. Larvae reared on the standard diet became larger pupae than those reared on C. japonica leaves. This result suggests that the larvae have growth potential that is masked on C. japonica leaves, and that C. japonica may not be the most suitable host species for T. oldenlandiae larvae in terms of nutrient level.
Collapse
Affiliation(s)
- Keisuke Nagamine
- Laboratory of Entomology, Department of Environmental and Horticultural Sciences, Minami Kyushu University, Miyakonojo, Miyazaki, Japan
| | - Keiich Hojoh
- Laboratory of Entomology, Department of Environmental and Horticultural Sciences, Minami Kyushu University, Miyakonojo, Miyazaki, Japan
| | - Suzuka Nagata
- Laboratory of Entomology, Department of Environmental and Horticultural Sciences, Minami Kyushu University, Miyakonojo, Miyazaki, Japan
| | - Yoshinori Shintani
- Laboratory of Entomology, Department of Environmental and Horticultural Sciences, Minami Kyushu University, Miyakonojo, Miyazaki, Japan
| |
Collapse
|
11
|
Koyama T, Mirth CK. Unravelling the diversity of mechanisms through which nutrition regulates body size in insects. CURRENT OPINION IN INSECT SCIENCE 2018; 25:1-8. [PMID: 29602355 DOI: 10.1016/j.cois.2017.11.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 06/08/2023]
Abstract
Insects show impressive diversity in adult body size across species, and within species adult body size is sensitive to numerous environmental conditions, particularly to changes in nutrition. Body size in adult insects correlates with a number of important fitness-related traits such as fecundity, longevity, stress resistance, and mating success. Over the past few decades, the field of insect body size regulation has made impressive progress towards understanding the signalling pathways that regulate body size in response to nutrition. These studies have shown that conserved nutrition-sensitive signalling pathways act in animals from insects to vertebrates to regulate growth. In particular, pathways like the insulin/insulin-like growth factor signalling (IIS) pathway and the Target of rapamycin (TOR) pathway respond to the levels of dietary nutrients to adjust both the rate of growth and the duration of the growth period. They do this not only by regulating organ growth, but also by modifying the rates of synthesis and circulating concentrations of key developmental hormones. Although the mechanisms through which this occurs have been well documented in one insect, the fruit fly Drosophila melanogaster, it is becoming increasingly clear that the downstream mechanisms through which IIS and TOR signalling alter size in response to nutrition differ between organs and across species. In this review, we highlight how understanding the organ-specific effects of IIS/TOR signalling are key to revealing the diversity of size control mechanisms across insects.
Collapse
Affiliation(s)
- Takashi Koyama
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, Oeiras 2780-156, Portugal.
| | - Christen K Mirth
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, Oeiras 2780-156, Portugal; School of Biological Sciences, 25 Rainforest Walk, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
12
|
Correction: Insights into How Longicorn Beetle Larvae Determine the Timing of Metamorphosis: Starvation-Induced Mechanism Revisited. PLoS One 2016; 11:e0162213. [PMID: 27560379 PMCID: PMC4999300 DOI: 10.1371/journal.pone.0162213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|