1
|
Wahl A, Yao W, Liao B, Chateau M, Richardson C, Ling L, Franks A, Senthil K, Doyon G, Li F, Frost J, Whitehurst CB, Pagano JS, Fletcher CA, Azcarate-Peril MA, Hudgens MG, Rogala AR, Tucker JD, McGowan I, Sartor RB, Garcia JV. A germ-free humanized mouse model shows the contribution of resident microbiota to human-specific pathogen infection. Nat Biotechnol 2024; 42:905-915. [PMID: 37563299 PMCID: PMC11073568 DOI: 10.1038/s41587-023-01906-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 07/10/2023] [Indexed: 08/12/2023]
Abstract
Germ-free (GF) mice, which are depleted of their resident microbiota, are the gold standard for exploring the role of the microbiome in health and disease; however, they are of limited value in the study of human-specific pathogens because they do not support their replication. Here, we develop GF mice systemically reconstituted with human immune cells and use them to evaluate the role of the resident microbiome in the acquisition, replication and pathogenesis of two human-specific pathogens, Epstein-Barr virus (EBV) and human immunodeficiency virus (HIV). Comparison with conventional (CV) humanized mice showed that resident microbiota enhance the establishment of EBV infection and EBV-induced tumorigenesis and increase mucosal HIV acquisition and replication. HIV RNA levels were higher in plasma and tissues of CV humanized mice compared with GF humanized mice. The frequency of CCR5+ CD4+ T cells throughout the intestine was also higher in CV humanized mice, indicating that resident microbiota govern levels of HIV target cells. Thus, resident microbiota promote the acquisition and pathogenesis of two clinically relevant human-specific pathogens.
Collapse
Affiliation(s)
- Angela Wahl
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Wenbo Yao
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Baolin Liao
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Morgan Chateau
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Cara Richardson
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lijun Ling
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adrienne Franks
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Krithika Senthil
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Genevieve Doyon
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Fengling Li
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Josh Frost
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Comparative Medicine, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christopher B Whitehurst
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, NY, USA
| | - Joseph S Pagano
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Craig A Fletcher
- Division of Comparative Medicine, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M Andrea Azcarate-Peril
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Microbiome Core, University of North Carolina, Chapel Hill, NC, USA
| | - Michael G Hudgens
- Department of Biostatistics, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Allison R Rogala
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Comparative Medicine, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joseph D Tucker
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Clinical Research Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Ian McGowan
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
- Orion Biotechnology, Ottawa, Ontario, Canada
| | - R Balfour Sartor
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J Victor Garcia
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Gillespie SW, Reddy AS, Burris DM, Naqvi SH, Byrareddy SN, Lorson CL, Singh K. Islatravir: evaluation of clinical development for HIV and HBV. Expert Opin Investig Drugs 2024; 33:85-93. [PMID: 38235744 DOI: 10.1080/13543784.2024.2305130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
INTRODUCTION Islatravir (ISL) is a nucleoside reverse transcriptase translocation inhibitor (NRTTI) that inhibits HIV RT through multiple mechanisms. Contrary to all approved NtRTIs, islatravir retains a 3'OH group. In vitro and clinical data show that ISL is an ultrapotent investigational drug with high tolerability. AREAS COVERED The historical development of islatravir and its mechanisms of HIV and HBV inhibition and resistance are covered. Additionally, the outcomes of Phase I and Phase II clinical trials are discussed. EXPERT OPINION Current first-line antiretroviral therapy, preexposure, and postexposure prophylactic interventions are highly effective in maintaining low or undetectable viral load. Despite these measures, an unusually high rate of new infections every year warrants developing novel antivirals that can suppress drug-resistant HIV and improve compliance. ISL, an NRTTI once deemed a long-acting drug, was placed on a clinical hold. The outcome of ongoing clinical trials with a reduced ISL dose will decide its future clinical application. Additionally, MK-8527, which inhibits HIV via same mechanism as that of ISL may supersede ISL. Data on ISL inhibition of HBV are scarce, and preclinical data show dramatically lower ISL efficacy against HBV than currently preferred nucleos(t)ide drugs, indicating that ISL may not be a potent anti-HBV drug.
Collapse
Affiliation(s)
| | - Athreya S Reddy
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Dana M Burris
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - S Hasan Naqvi
- Department of Medicine, University of Missouri, Columbia, MO, USA
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Christian L Lorson
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Kamal Singh
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
3
|
Kovarova M, Wessel SE, Johnson CE, Anderson SV, Cottrell ML, Sykes C, Cohen MS, Garcia JV. EFdA efficiently suppresses HIV replication in the male genital tract and prevents penile HIV acquisition. mBio 2023; 14:e0222422. [PMID: 37306625 PMCID: PMC10470584 DOI: 10.1128/mbio.02224-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/12/2023] [Indexed: 06/13/2023] Open
Abstract
Sexually transmitted HIV infections in heterosexual men are acquired through the penis. Low adherence to condom usage and the fact that 40% of circumcised men are not protected indicate the need for additional prevention strategies. Here, we describe a new approach to evaluate the prevention of penile HIV transmission. We demonstrated that the entire male genital tract (MGT) of bone marrow/liver/thymus (BLT) humanized mice is repopulated with human T and myeloid cells. The majority of the human T cells in the MGT express CD4 and CCR5. Direct penile exposure to HIV leads to systemic infection including all tissues of the MGT. HIV replication throughout the MGT was reduced 100-1,000-fold by treatment with 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA), resulting in the restoration of CD4+ T cell levels. Importantly, systemic preexposure prophylaxis with EFdA effectively protects from penile HIV acquisition. IMPORTANCE Over 84.2 million people have been infected by the human immunodeficiency virus type 1 (HIV-1) during the past 40 years, most through sexual transmission. Men comprise approximately half of the HIV-infected population worldwide. Sexually transmitted HIV infections in exclusively heterosexual men are acquired through the penis. However, direct evaluation of HIV infection throughout the human male genital tract (MGT) is not possible. Here, we developed a new in vivo model that permits, for the first time, the detail analysis of HIV infection. Using BLT humanized mice, we showed that productive HIV infection occurs throughout the entire MGT and induces a dramatic reduction in human CD4 T cells compromising immune responses in this organ. Antiretroviral treatment with novel drug EFdA suppresses HIV replication in all tissues of the MGT, restores normal levels of CD4 T cells and is highly efficient at preventing penile transmission.
Collapse
Affiliation(s)
- Martina Kovarova
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sarah E. Wessel
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Claire E. Johnson
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shelby V. Anderson
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Craig Sykes
- UNC Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Myron S. Cohen
- Institute for Global Health and Infectious Diseases, University of North Carolina, Chapel Hill, North Carolina, USA
| | - J. Victor Garcia
- International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
4
|
Development of Human Immunodeficiency Virus Type 1 Resistance to 4'-Ethynyl-2-Fluoro-2'-Deoxyadenosine (EFdA) Starting with Wild-Type or Nucleoside Reverse Transcriptase Inhibitor Resistant-Strains. Antimicrob Agents Chemother 2021; 65:e0116721. [PMID: 34516245 DOI: 10.1128/aac.01167-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA, MK-8591, islatravir) is a nucleoside reverse transcriptase translocation inhibitor (NRTTI) with exceptional potency against WT and drug-resistant HIV-1, in Phase III clinical trials. EFdA resistance is not well characterized. To study EFdA-resistance patterns as it may emerge in naïve or tenofovir- (TFV), emtricitabine/lamivudine- (FTC/3TC), or zidovudine- (AZT) treated patients we performed viral passaging experiments starting with wild-type, K65R, M184V, or D67N/K70R/T215F/K219Q HIV-1. Regardless the starting viral sequence, all selected EFdA-resistant variants included the M184V RT mutation. Using recombinant viruses, we validated the role for M184V as the primary determinant of EFdA resistance; none of the observed connection subdomain (R358K and E399K) or RNase H domain (A502V) mutations significantly contributed to EFdA resistance. A novel EFdA resistance mutational pattern that included A114S was identified in the background of M184V. A114S/M184V exhibited higher EFdA resistance (∼24-fold) than M184V (∼8-fold) or A114S alone (∼2-fold). Remarkably, A114S/M184V and A114S/M184V/A502V resistance mutations were up to 50-fold more sensitive to tenofovir than WT HIV-1. These mutants also had significantly lower specific infectivity than WT. Biochemical experiments confirmed decreases in the enzymatic efficiency (kcat/Km) of WT vs. A114S (2.1-fold) and A114S/M184V/A502V (6.5-fold) RTs, with no effect of A502V on enzymatic efficiency or specific infectivity. The rather modest EFdA resistance of M184V or A114S/M184V (8- and 24-fold), their hypersusceptibility to tenofovir, and strong published in vitro and in vivo data, suggest that EFdA is an excellent therapeutic candidate for naïve, AZT-, FTC/3TC, and especially tenofovir-treated patients.
Collapse
|
5
|
Gillgrass A, Wessels JM, Yang JX, Kaushic C. Advances in Humanized Mouse Models to Improve Understanding of HIV-1 Pathogenesis and Immune Responses. Front Immunol 2021; 11:617516. [PMID: 33746940 PMCID: PMC7973037 DOI: 10.3389/fimmu.2020.617516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022] Open
Abstract
Although antiretroviral therapy has transformed human immunodeficiency virus-type 1 (HIV-1) from a deadly infection into a chronic disease, it does not clear the viral reservoir, leaving HIV-1 as an uncurable infection. Currently, 1.2 million new HIV-1 infections occur globally each year, with little decrease over many years. Therefore, additional research is required to advance the current state of HIV management, find potential therapeutic strategies, and further understand the mechanisms of HIV pathogenesis and prevention strategies. Non-human primates (NHP) have been used extensively in HIV research and have provided critical advances within the field, but there are several issues that limit their use. Humanized mouse (Hu-mouse) models, or immunodeficient mice engrafted with human immune cells and/or tissues, provide a cost-effective and practical approach to create models for HIV research. Hu-mice closely parallel multiple aspects of human HIV infection and disease progression. Here, we highlight how innovations in Hu-mouse models have advanced HIV-1 research in the past decade. We discuss the effect of different background strains of mice, of modifications on the reconstitution of the immune cells, and the pros and cons of different human cells and/or tissue engraftment methods, on the ability to examine HIV-1 infection and immune response. Finally, we consider the newest advances in the Hu-mouse models and their potential to advance research in emerging areas of mucosal infections, understand the role of microbiota and the complex issues in HIV-TB co-infection. These innovations in Hu-mouse models hold the potential to significantly enhance mechanistic research to develop novel strategies for HIV prevention and therapeutics.
Collapse
Affiliation(s)
- Amy Gillgrass
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Jocelyn M. Wessels
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, ON, Canada
| | - Jack X. Yang
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Charu Kaushic
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
6
|
Agarwal Y, Beatty C, Biradar S, Castronova I, Ho S, Melody K, Bility MT. Moving beyond the mousetrap: current and emerging humanized mouse and rat models for investigating prevention and cure strategies against HIV infection and associated pathologies. Retrovirology 2020; 17:8. [PMID: 32276640 PMCID: PMC7149862 DOI: 10.1186/s12977-020-00515-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/31/2020] [Indexed: 12/22/2022] Open
Abstract
The development of safe and effective combination antiretroviral therapies for human immunodeficiency virus (HIV) infection over the past several decades has significantly reduced HIV-associated morbidity and mortality. Additionally, antiretroviral drugs have provided an effective means of protection against HIV transmission. Despite these advances, significant limitations exist; namely, the inability to eliminate HIV reservoirs, the inability to reverse lymphoid tissues damage, and the lack of an effective vaccine for preventing HIV transmission. Evaluation of the safety and efficacy of therapeutics and vaccines for eliminating HIV reservoirs and preventing HIV transmission requires robust in vivo models. Since HIV is a human-specific pathogen, that targets hematopoietic lineage cells and lymphoid tissues, in vivo animal models for HIV-host interactions require incorporation of human hematopoietic lineage cells and lymphoid tissues. In this review, we will discuss the construction of mouse models with human lymphoid tissues and/or hematopoietic lineage cells, termed, human immune system (HIS)-humanized mice. These HIS-humanized mouse models can support the development of functional human innate and adaptive immune cells, along with primary (thymus) and secondary (spleen) lymphoid tissues. We will discuss applications of HIS-humanized mouse models in evaluating the safety and efficacy of therapeutics against HIV reservoirs and associated immunopathology, and delineate the human immune response elicited by candidate HIV vaccines. In addition to focusing on how these HIS-humanized mouse models have already furthered our understanding of HIV and contributed to HIV therapeutics development, we discuss how emerging HIS-humanized rat models could address the limitations of HIS-mouse models.
Collapse
Affiliation(s)
- Yash Agarwal
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cole Beatty
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shivkumar Biradar
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Isabella Castronova
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sara Ho
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin Melody
- Galveston National Laboratory and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Moses Turkle Bility
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Pham HT, Yoo S, Mesplède T. Combination therapies currently under investigation in phase I and phase II clinical trials for HIV-1. Expert Opin Investig Drugs 2020; 29:273-283. [PMID: 31994943 DOI: 10.1080/13543784.2020.1724281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: HIV infection is manageable through the use of antiretroviral drugs. However, HIV reservoirs that are constituted early during infection are resistant to treatment. HIV persistence under treatment necessitates life-long treatment and is associated with various co-morbidities. Two significant research avenues are explored through the development of either new antiretroviral drugs or interventions aimed at stimulating the immune system to eradicate HIV reservoirs.Areas covered: This report provides a review of investigational drugs and cell-based interventions against HIV infection that are currently under Phase I or Phase II clinical trials. We report on new antiretroviral drugs, antibodies directed against viral or host targets, reactivating agents, immune modulators and immune checkpoint inhibitors, and cell-based interventions. These new therapies are often tested in combination, including with current antiretroviral drugs.Expert opinion: Islatravir and GS-6207 are promising antiretroviral drugs that are expected to perform well in phase III trials. Whether the host immune system can be activated sufficiently to reduce HIV reservoirs remains unknown. Additional research is needed to identify surrogate markers of success for curative interventions. Given the current safety and efficacy of antiretroviral treatment, risk-benefits should be carefully evaluated before interventions that risk triggering high levels of immune stimulation.
Collapse
Affiliation(s)
- Hanh Thi Pham
- McGill AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Subin Yoo
- McGill AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Thibault Mesplède
- McGill AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Québec, Canada.,Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
8
|
Cranston RD, Dezzutti CS, Siegel A, Engstrom J, Shetler C, Richardson-Harman N, Abebe KZ, Back D, Else L, Egan D, Khoo S, Egan JE, Stall R, Williams P, Brand RM, Parikh UM, McGowan I. A Multiple Dose Phase 1 Assessment of Rilpivirine Long Acting in a Model of Preexposure Prophylaxis Against HIV. AIDS Res Hum Retroviruses 2019; 35:794-804. [PMID: 31146534 DOI: 10.1089/aid.2018.0265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The MWRI-01 study characterized the safety, acceptability, pharmacokinetic (PK), and pharmacodynamic (PD) profile of rilpivirine (RPV) long acting (LA) in a model of preexposure prophylaxis (PrEP). Prospective, open-label Phase 1 study. The safety and acceptability of three repeated doses of RPV LA were monitored. Blood, tissue (rectal, cervical, and vaginal), and biological fluids (vaginal and endocervical) were collected at baseline and at 1- to 2-month intervals throughout the study for PK and PD assessment. Eight women and four men received three intramuscular doses of 1,200 mg of RPV LA given 8 weeks apart. There were a total of 195 adverse events (AEs) reported, of which 138 (70.8%) were Grade 1 and 55 (28.2%) were Grade 2. The most common AE was injection site pain. Geometric mean (90% confidence interval) plasma RPV concentrations at 56 days after the first and third doses were 39 (33-45) ng/mL (female)/29 (17-40) ng/mL (male) and 59 (45-62) ng/mL (female)/40 (30-51) ng/mL (male), respectively. Exposure to RPV LA was associated with significant inhibition of HIV-1BaL viral replication in the ex vivo rectal explant model (p < .0001) that persisted for up to 4 months after the third dose of RPV LA. In contrast, no viral suppression was seen in cervicovaginal tissue. Multiple dose administration of RPV LA was safe and well tolerated, and was associated with prolonged suppression of viral replication in rectal explant tissue.
Collapse
Affiliation(s)
- Ross D. Cranston
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Charlene S. Dezzutti
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Magee Women Research Institute, Pittsburgh, Pennsylvania
| | - Aaron Siegel
- Magee Women Research Institute, Pittsburgh, Pennsylvania
| | | | - Cory Shetler
- Magee Women Research Institute, Pittsburgh, Pennsylvania
| | | | - Kaleab Z. Abebe
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - David Back
- University of Liverpool, Liverpool, United Kingdom
| | - Laura Else
- University of Liverpool, Liverpool, United Kingdom
| | - Deidre Egan
- University of Liverpool, Liverpool, United Kingdom
| | - Saye Khoo
- University of Liverpool, Liverpool, United Kingdom
| | - James E. Egan
- University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| | - Ronald Stall
- University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| | | | - Rhonda M. Brand
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Urvi M. Parikh
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ian McGowan
- Orion Biotechnology, Ottawa, Canada
- University of Miami, Miller School of Medicine, Miami, Florida
| |
Collapse
|
9
|
4'-Ethynyl-2-fluoro-2'-deoxyadenosine, MK-8591: a novel HIV-1 reverse transcriptase translocation inhibitor. Curr Opin HIV AIDS 2019; 13:294-299. [PMID: 29697468 DOI: 10.1097/coh.0000000000000467] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW 4'-Ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) is a nucleoside reverse transcriptase inhibitor (NRTI) with a novel mechanism of action, unique structure, and amongst NRTIs, unparalleled anti-HIV-1 activity. We will summarize its structure and function, antiviral activity, resistance profile, and potential as an antiretroviral for use in the treatment and preexposure prophylaxis of HIV-1 infection. RECENT FINDINGS EFdA is active against wild-type (EC50 as low as 50 pmol/l) and most highly NRTI-resistant viruses. The active metabolite, EFdA-triphosphate, has been shown to have a prolonged intracellular half-life in human and rhesus (Rh) blood cells. As a result, single drug doses tested in simian immunodeficiency virus mac251-infected Rh macaques and HIV-1-infected individuals exhibited robust antiviral activity of 7-10 days duration. Preclinical studies of EFdA as preexposure prophylaxis in the Rh macaque/simian/human immunodeficiency virus low-dose intrarectal challenge model have shown complete protection when given in clinically relevant doses. SUMMARY EFdA is a novel antiretroviral with activity against both wild-type and NRTI-resistant viruses. As a result of the prolonged intracellular half-life of its active moiety, it is amenable to flexibility in dosing of at least daily to weekly and perhaps longer.
Collapse
|
10
|
Cellular HIV Reservoirs and Viral Rebound from the Lymphoid Compartments of 4'-Ethynyl-2-Fluoro-2'-Deoxyadenosine (EFdA)-Suppressed Humanized Mice. Viruses 2019; 11:v11030256. [PMID: 30871222 PMCID: PMC6466357 DOI: 10.3390/v11030256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/02/2019] [Accepted: 03/06/2019] [Indexed: 12/28/2022] Open
Abstract
Although antiretroviral therapy (ART) greatly suppresses HIV replication, lymphoid tissues remain a sanctuary site where the virus may replicate. Tracking the earliest steps of HIV spread from these cellular reservoirs after drug cessation is pivotal for elucidating how infection can be prevented. In this study, we developed an in vivo model of HIV persistence in which viral replication in the lymphoid compartments of humanized mice was inhibited by the HIV reverse transcriptase inhibitor 4′-ethynyl-2-fluoro-2′-deoxyadenosine (EFdA) to very low levels, which recapitulated ART-suppression in HIV-infected individuals. Using a combination of RNAscope in situ hybridization (ISH) and immunohistochemistry (IHC), we quantitatively investigated the distribution of HIV in the lymphoid tissues of humanized mice during active infection, EFdA suppression, and after drug cessation. The lymphoid compartments of EFdA-suppressed humanized mice harbored very rare transcription/translation-competent HIV reservoirs that enable viral rebound. Our data provided the visualization and direct measurement of the early steps of HIV reservoir expansion within anatomically intact lymphoid tissues soon after EFdA cessation and suggest a strategy to enhance therapeutic approaches aimed at eliminating the HIV reservoir.
Collapse
|
11
|
Oliveira M, Brenner BG, Xu H, Ibanescu RI, Mesplède T, Wainberg MA. M184I/V substitutions and E138K/M184I/V double substitutions in HIV reverse transcriptase do not significantly affect the antiviral activity of EFdA. J Antimicrob Chemother 2018; 72:3008-3011. [PMID: 28961903 DOI: 10.1093/jac/dkx280] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/11/2017] [Indexed: 11/13/2022] Open
Abstract
Background 4'-Ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) is a potent nucleoside analogue inhibitor of HIV that has an unusually long half-life. Cell culture selections with either EFdA or lamivudine using both subtype B and non-B clinical isolates selected the M184I/V substitutions in reverse transcriptase (RT). Unlike lamivudine, however, EFdA retained significant activity against viruses containing the M184I/V substitutions. In other clinical trials that evaluated rilpivirine together with emtricitabine in first-line therapy, the emergence of both the M184I/V and E138K mutations in RT was demonstrated. Moreover, the M184I/V and E138K substitutions were shown to be compensatory for each other with regard to both efficiency of RT activity and viral replicative capacity. This creates concern that E138K might emerge as a compensatory mutation for M184I/V in the aftermath of the use of EFdA. Objectives We wished to determine whether the E138K mutation in HIV RT together with M184I/V would compromise the activity of EFdA. Methods Recombinant viruses containing the M184I/V and/or E138K substitutions were generated by site-directed mutagenesis and evaluated in tissue culture for susceptibility to various nucleoside compounds, including EFdA. Results Susceptibility to EFdA was retained in M184I/V viruses that also contained the E138K substitution. Moreover, the E138K substitution was not generated in these studies under selection pressure with EFdA. Conclusions These findings help to alleviate concern that EFdA may not be active against viruses that contain both the M184I/V and E138K substitutions in RT.
Collapse
Affiliation(s)
- Maureen Oliveira
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Bluma G Brenner
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Hongtao Xu
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Ruxandra-Ilinca Ibanescu
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Thibault Mesplède
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Mark A Wainberg
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| |
Collapse
|
12
|
HIV Replication and Latency in a Humanized NSG Mouse Model during Suppressive Oral Combinational Antiretroviral Therapy. J Virol 2018; 92:JVI.02118-17. [PMID: 29343582 DOI: 10.1128/jvi.02118-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/08/2018] [Indexed: 11/20/2022] Open
Abstract
Although current combinatorial antiretroviral therapy (cART) is therapeutically effective in the majority of HIV patients, interruption of therapy can cause a rapid rebound in viremia, demonstrating the existence of a stable reservoir of latently infected cells. HIV latency is therefore considered a primary barrier to HIV eradication. Identifying, quantifying, and purging the HIV reservoir is crucial to effectively curing patients and relieving them from the lifelong requirement for therapy. Latently infected transformed cell models have been used to investigate HIV latency; however, these models cannot accurately represent the quiescent cellular environment of primary latently infected cells in vivo For this reason, in vivo humanized murine models have been developed for screening antiviral agents, identifying latently infected T cells, and establishing treatment approaches for HIV research. Such models include humanized bone marrow/liver/thymus mice and SCID-hu-thy/liv mice, which are repopulated with human immune cells and implanted human tissues through laborious surgical manipulation. However, no one has utilized the human hematopoietic stem cell-engrafted NOD/SCID/IL2rγnull (NSG) model (hu-NSG) for this purpose. Therefore, in the present study, we used the HIV-infected hu-NSG mouse to recapitulate the key aspects of HIV infection and pathogenesis in vivo Moreover, we evaluated the ability of HIV-infected human cells isolated from HIV-infected hu-NSG mice on suppressive cART to act as a latent HIV reservoir. Our results demonstrate that the hu-NSG model is an effective surgery-free in vivo system in which to efficiently evaluate HIV replication, antiretroviral therapy, latency and persistence, and eradication interventions.IMPORTANCE HIV can establish a stably integrated, nonproductive state of infection at the level of individual cells, known as HIV latency, which is considered a primary barrier to curing HIV. A complete understanding of the establishment and role of HIV latency in vivo would greatly enhance attempts to develop novel HIV purging strategies. An ideal animal model for this purpose should be easy to work with, should have a shortened disease course so that efficacy testing can be completed in a reasonable time, and should have immune correlates that are easily translatable to humans. We therefore describe a novel application of the hematopoietic stem cell-transplanted humanized NSG model for dynamically testing antiretroviral treatment, supporting HIV infection, establishing HIV latency in vivo The hu-NSG model could be a facile alternative to humanized bone marrow/liver/thymus or SCID-hu-thy/liv mice in which laborious surgical manipulation and time-consuming human cell reconstitution is required.
Collapse
|
13
|
Humanized mouse models to study pathophysiology and treatment of HIV infection. Curr Opin HIV AIDS 2018; 13:143-151. [DOI: 10.1097/coh.0000000000000440] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Abstract
Human immunodeficiency virus (HIV) remains a significant source of morbidity and mortality worldwide. No effective vaccine is available to prevent HIV transmission, and although antiretroviral therapy can prevent disease progression, it does not cure HIV infection. Substantial effort is therefore currently directed toward basic research on HIV pathogenesis and persistence and developing methods to stop the spread of the HIV epidemic and cure those individuals already infected with HIV. Humanized mice are versatile tools for the study of HIV and its interaction with the human immune system. These models generally consist of immunodeficient mice transplanted with human cells or reconstituted with a near-complete human immune system. Here, we describe the major humanized mouse models currently in use, and some recent advances that have been made in HIV research/therapeutics using these models.
Collapse
Affiliation(s)
- Matthew D Marsden
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, California 90095;
| | - Jerome A Zack
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, California 90095; .,Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095;
| |
Collapse
|
15
|
MK-8591 (4'-Ethynyl-2-Fluoro-2'-Deoxyadenosine) Exhibits Potent Activity against HIV-2 Isolates and Drug-Resistant HIV-2 Mutants in Culture. Antimicrob Agents Chemother 2017; 61:AAC.00744-17. [PMID: 28559249 DOI: 10.1128/aac.00744-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/19/2017] [Indexed: 11/20/2022] Open
Abstract
There is a pressing need to identify more effective antiretroviral drugs for HIV-2 treatment. Here, we show that the investigational compound MK-8591 (4'-ethynyl-2-fluoro-2'-deoxyadenosine [EFdA]) is highly active against group A and B isolates of HIV-2; 50% effective concentrations [EC50] for HIV-2 were, on average, 4.8-fold lower than those observed for HIV-1. MK-8591 also retains potent activity against multinucleoside-resistant HIV-2 mutants (EC50 ≤ 11 nM). These data suggest that MK-8591 may have antiviral activity in HIV-2-infected individuals.
Collapse
|
16
|
Wahl A, Ho PT, Denton PW, Garrett KL, Hudgens MG, Swartz G, O'Neill C, Veronese F, Kashuba AD, Garcia JV. Predicting HIV Pre-exposure Prophylaxis Efficacy for Women using a Preclinical Pharmacokinetic-Pharmacodynamic In Vivo Model. Sci Rep 2017; 7:41098. [PMID: 28145472 PMCID: PMC5286499 DOI: 10.1038/srep41098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/12/2016] [Indexed: 12/11/2022] Open
Abstract
The efficacy of HIV pre-exposure prophylaxis (PrEP) relies on adherence and may also depend on the route of HIV acquisition. Clinical studies of systemic tenofovir disoproxil fumarate (TDF) PrEP revealed reduced efficacy in women compared to men with similar degrees of adherence. To select the most effective PrEP strategies, preclinical studies are critically needed to establish correlations between drug concentrations (pharmacokinetics [PK]) and protective efficacy (pharmacodynamics [PD]). We utilized an in vivo preclinical model to perform a PK-PD analysis of systemic TDF PrEP for vaginal HIV acquisition. TDF PrEP prevented vaginal HIV acquisition in a dose-dependent manner. PK-PD modeling of tenofovir (TFV) in plasma, female reproductive tract tissue, cervicovaginal lavage fluid and its intracellular metabolite (TFV diphosphate) revealed that TDF PrEP efficacy was best described by plasma TFV levels. When administered at 50 mg/kg, TDF achieved plasma TFV concentrations (370 ng/ml) that closely mimicked those observed in humans and demonstrated the same risk reduction (70%) previously attained in women with high adherence. This PK-PD model mimics the human condition and can be applied to other PrEP approaches and routes of HIV acquisition, accelerating clinical implementation of the most efficacious PrEP strategies.
Collapse
Affiliation(s)
- Angela Wahl
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, 27599, United States of America
| | - Phong T Ho
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, 27599, United States of America
| | - Paul W Denton
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, 27599, United States of America
| | - Katy L Garrett
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, 27599, United States of America
| | - Michael G Hudgens
- Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, 27599, United States of America
| | - Glenn Swartz
- Advanced Bioscience Laboratories, Rockville, 20850, United States of America
| | - Cynthia O'Neill
- Advanced Bioscience Laboratories, Rockville, 20850, United States of America
| | - Fulvia Veronese
- Prevention Sciences Program, Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20852, United States of America
| | - Angela D Kashuba
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, 27599, United States of America
| | - J Victor Garcia
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, 27599, United States of America
| |
Collapse
|