1
|
Jaber M, Schmidt J, Kalkhof S, Gerstenfeld L, Duda GN, Checa S. OMIBONE: Omics-driven computer model of bone regeneration for personalized treatment. Bone 2024; 190:117288. [PMID: 39426580 DOI: 10.1016/j.bone.2024.117288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/02/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Treatment of bone fractures are standardized according to the AO classification, which mainly refers to the mechanical stabilization required in a given situation but neglect individual differences due to patient's healing potential or accompanying diseases. Specially in elderly or immune-compromised patients, the complexity of individual constrains on a biological as well as mechanical level are hard to account for. Here, we introduce a novel framework that allows to predict bone regeneration outcome using combined proteomic and mechanical analyses in a computer model. The framework uses Ingenuity Pathway Analysis (IPA) software to link protein changes to alterations in biological processes and integrates these in an Agent-Based Model (ABM) of bone regeneration. This combined framework allows to predict bone formation and the potential of an individual to heal a given fracture setting. The performance of the framework was evaluated by replicating the experimental setup of a mouse femur fracture stabilized with an intramedullary pin. The model was informed by serum derived proteomics data. The tissue formation patterns were compared against experimental data based on x-ray and histology images. The results indicate the framework potential in predicting an individual's bone formation potential and hold promise as a concept to enable personalized bone healing predictions for a chosen fracture fixation.
Collapse
Affiliation(s)
- Mahdi Jaber
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany
| | - Johannes Schmidt
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Stefan Kalkhof
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Louis Gerstenfeld
- Department of Orthopaedic Surgery, Boston University of Medicine, Boston, MA, United States of America
| | - Georg N Duda
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany; BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Germany
| | - Sara Checa
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany.
| |
Collapse
|
2
|
Nanoff C, Yang Q, Hellinger R, Hermann M. Activation of the Calcium-Sensing Receptor by a Subfraction of Amino Acids Contained in Thyroid Drainage Fluid. ACS Pharmacol Transl Sci 2024; 7:1937-1950. [PMID: 39022353 PMCID: PMC11249632 DOI: 10.1021/acsptsci.3c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024]
Abstract
Hypoparathyroidism is a common sequela of thyroid surgery; in this study, we aimed at exploring the pathogenesis behind it. The following premises suggest that wound fluid might be a causative agent. (i) Parathyroid hormone secretion is under feedback control by the calcium-sensing receptor, which responds to a diverse array of activating ligands. (ii) Postoperative hypoparathyroidism arises from a secretory deficiency of the parathyroid glands. Even in patients later unaffected by hypoparathyroidism, parathyroid hormone levels drop within hours after surgery. (iii) Wound fluid is bound to enter the tissue around the thyroid bed, where the parathyroid glands are located. Its composition is shaped by a series of proteolytic reactions triggered by wounding. Using thyroid drainage as a surrogate, we addressed the possibility that wound fluid contains compounds activating the calcium-sensing receptor. Drainage fluid ultrafiltrate was found to be rich in amino acids, and on separation by HPLC, compounds activating the calcium-sensing receptor partitioned with hydrophilic matter that rendered buffer acidic. The data show that glutamate and aspartate at millimolar concentrations supported activation of the calcium-sensing receptor, an effect contingent on low pH. In the presence of glutamate/aspartate, protons activated the calcium-sensing receptor with a pH50 of 6.1, and at pH 5, produced maximal activation. This synergistic mode of action was exclusive; glutamine/asparagine did not substitute for the acidic amino acids, nor did Ca2+ substitute for protons. NPS-2143, a negative allosteric receptor modulator completely blocked receptor activation by glutamate/aspartate and by fractionated drainage fluid. Thus, wound fluid may be involved in suppressing parathyroid hormone secretion.
Collapse
Affiliation(s)
- Christian Nanoff
- Centre
for Physiology and Pharmacology, Gaston H. Glock Laboratories for
Exploratory Drug Research, Medizinische
Universität Wien, Währinger Straße 13A, Vienna 1090, Austria
| | - Qiong Yang
- Centre
for Physiology and Pharmacology, Gaston H. Glock Laboratories for
Exploratory Drug Research, Medizinische
Universität Wien, Währinger Straße 13A, Vienna 1090, Austria
| | - Roland Hellinger
- Centre
for Physiology and Pharmacology, Gaston H. Glock Laboratories for
Exploratory Drug Research, Medizinische
Universität Wien, Währinger Straße 13A, Vienna 1090, Austria
| | - Michael Hermann
- Department
of Surgery, Vienna Hospital Association,
Klinik Landstraße, Juchgasse 25, Vienna 1030, Austria
| |
Collapse
|
3
|
Yu K, Wu H, Xiong H, Wang G, Wei X, Liang X, Chen R, Zhang Y, Zhang K, Wang Z. Ante- and Post-Mortem Fracture Identification Protocol Based on Low- and High-Level Fusion Using Fourier Transform Infrared Spectroscopy and Raman Spectroscopy Association. APPLIED SPECTROSCOPY 2024; 78:605-615. [PMID: 38404185 DOI: 10.1177/00037028241231994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
In this study, the application of low-level fusion (LLF) and high-level fusion (HLF) strategies using a combination of Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy in the identification of antemortem and postmortem fracture at different postmortem intervals (PMIs) was investigated. On a technical level, the same hard tissue sample can be detected using a mix of FT-IR and Raman techniques. At the method level, two cutting-edge chemometrics approaches (LLF and HLF) combining FT-IR and Raman spectroscopic data are explored. The models were ranked in accordance with their parametric quality as follows: HLF and LLF + HLF models > LLF single model > Raman single model > FT-IR single model. The LLF model performed marginally better than the Raman model, however, when compared to other models, the HLF model performed considerably better. The HLF model achieved the best performance, with both cross-validation accuracy and test data set accuracy of 0.88. The importance of the feature wavelengths in the model construction process was subsequently evaluated by intersection fusion, and it was found that the absorbance bands of amide I, PO43- ν1 ν3, and CH2 in FT-IR and phenylalanine, CO32- ν1- PO43- ν3, and amide III in Raman have outstanding contributions to the construction of antemortem and postmortem fractures identification models. Overall, the combination of FT-IR and Raman with the HLF strategy is a novel and promising approach for developing antemortem and postmortem fracture identification models at different PMIs.
Collapse
Affiliation(s)
- Kai Yu
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Hao Wu
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Hongli Xiong
- Department of Forensic Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Gongji Wang
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xin Wei
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xinggong Liang
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Run Chen
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, China
| | | | - Kai Zhang
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Zhenyuan Wang
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
4
|
Novak S, Tanigawa H, Singh V, Root SH, Schmidt TA, Hankenson KD, Kalajzic I. Endothelial to mesenchymal Notch signaling regulates skeletal repair. JCI Insight 2024; 9:e181073. [PMID: 38781018 PMCID: PMC11383173 DOI: 10.1172/jci.insight.181073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
We present a transcriptomic analysis that provides a better understanding of regulatory mechanisms within the healthy and injured periosteum. The focus of this work is on characterizing early events controlling bone healing during formation of periosteal callus on day 3 after fracture. Building on our previous findings showing that induced Notch1 signaling in osteoprogenitors leads to better healing, we compared samples in which the Notch 1 intracellular domain is overexpressed by periosteal stem/progenitor cells, with control intact and fractured periosteum. Molecular mechanisms and changes in skeletal stem/progenitor cells (SSPCs) and other cell populations within the callus, including hematopoietic lineages, were determined. Notably, Notch ligands were differentially expressed in endothelial and mesenchymal populations, with Dll4 restricted to endothelial cells, whereas Jag1 was expressed by mesenchymal populations. Targeted deletion of Dll4 in endothelial cells using Cdh5CreER resulted in negative effects on early fracture healing, while deletion in SSPCs using α-smooth muscle actin-CreER did not impact bone healing. Translating these observations into a clinically relevant model of bone healing revealed the beneficial effects of delivering Notch ligands alongside the osteogenic inducer, BMP2. These findings provide insights into the regulatory mechanisms within the healthy and injured periosteum, paving the way for novel translational approaches to bone healing.
Collapse
Affiliation(s)
- Sanja Novak
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, UConn Health, Farmington, Connecticut, USA
| | - Hitoshi Tanigawa
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, UConn Health, Farmington, Connecticut, USA
| | - Vijender Singh
- Institute for Systems Genomics, Computational Biology Core, UConn, Storrs, Connecticut, USA
| | - Sierra H Root
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, UConn Health, Farmington, Connecticut, USA
| | - Tannin A Schmidt
- Biomedical Engineering Department, School of Dental Medicine, UConn Health, Farmington, Connecticut, USA
| | - Kurt D Hankenson
- Department of Orthopaedic Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ivo Kalajzic
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, UConn Health, Farmington, Connecticut, USA
| |
Collapse
|
5
|
Lu F, Verleg SMNE, Groven RVM, Poeze M, van Griensven M, Blokhuis TJ. Is there a role for N1-N2 neutrophil phenotypes in bone regeneration? A systematic review. Bone 2024; 181:117021. [PMID: 38253189 DOI: 10.1016/j.bone.2024.117021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/02/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
PURPOSE This review aims to provide an overview of the multiple functions of neutrophils, with the recognition of the inflammatory (N1) and regenerative (N2) phenotypes, in relation to fracture healing. METHODS A literature search was performed using the PubMed database. The quality of the articles was evaluated using critical appraisal checklists. RESULTS Thirty one studies were included in this review. These studies consistently support that neutrophils exert both beneficial and detrimental effects on bone regeneration, influenced by Tumor Necrosis Factor-α (TNF-α), Interleukin 8 (IL-8), mast cells, and macrophages. The N2 phenotype has recently emerged as one promoter of bone healing. The N1 phenotype has progressively been connected with inflammatory neutrophils during fracture healing. CONCLUSIONS This review has pinpointed various aspects and mechanisms of neutrophil influence on bone healing. The recognition of N1 and N2 neutrophil phenotypes potentially shed new light on the dynamic shifts taking place within the Fracture Hematoma (FH).
Collapse
Affiliation(s)
- Fangzhou Lu
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands; Division of Trauma Surgery, Department of Surgery, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands.
| | - Samai M N E Verleg
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands; Division of Trauma Surgery, Department of Surgery, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands.
| | - Rald V M Groven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands; Division of Trauma Surgery, Department of Surgery, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands.
| | - Martijn Poeze
- Division of Trauma Surgery, Department of Surgery, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands.
| | - Martijn van Griensven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands.
| | - Taco J Blokhuis
- Division of Trauma Surgery, Department of Surgery, Maastricht University Medical Center, P. Debyelaan 25, 6229 HX Maastricht, the Netherlands.
| |
Collapse
|
6
|
Li L, Su H, Ji Y, Zhu F, Deng J, Bai X, Li H, Liu X, Luo Y, Lin B, Liu T, Lu Y. Deciphering Cell-Cell Interactions with Integrative Single-Cell Secretion Profiling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301018. [PMID: 37186381 PMCID: PMC10323649 DOI: 10.1002/advs.202301018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/05/2023] [Indexed: 05/17/2023]
Abstract
Cell-cell interactions are the fundamental behaviors to regulate cellular activities. A comprehensive evaluation of intercellular interactions requires direct profiling of various signaling behaviors simultaneously at the single-cell level, which remains lacking. Herein, an integrative single-cell secretion analysis platform is presented to profile different secreted factors (four proteins, three extracellular vesicles (EV) phenotypes), spatial distances, and migration information (distances and direction) simultaneously from high-throughput paired single cells using an antibody-barcode microchip. Applying the platform to analyze the tumor-stromal and tumor-immune interactions with the human oral squamous cell carcinoma (OSCC) cell lines and primary OSCC cells reveals that the initial distances between cells would determine their migratory distances and direction to approach stable organization. The cell-cell in close proximity enhances protein secretions while attenuating EV secretions. Migration has a more profound correlation with protein secretions than EV secretions, in which absolute migration distance affects protein secretions significantly but not the direction. These findings highlight the significance of spatial organization in regulating cell signaling behaviors and demonstrate that the integrative single-cell secretion profiling platform is well-suited for a comprehensive dissection of intercellular communication and interactions, providing new avenues for understanding cell-cell interaction biology and how different signaling behaviors coordinate within the tumor microenvironment.
Collapse
Affiliation(s)
- Linmei Li
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
- Key Laboratory of the Ministry of Education for Advanced Catalysis MaterialsZhejiang Key Laboratory for Reactive Chemistry on Solid SurfacesInstitute of Physical ChemistryZhejiang Normal UniversityJinhua321004China
| | - Haoran Su
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
- College of StomatologyDalian Medical UniversityDalianLiaoning116044China
| | - Yahui Ji
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
| | - Fengjiao Zhu
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
| | - Jiu Deng
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
| | - Xue Bai
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
| | - Huibing Li
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
| | - Xianming Liu
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
| | - Yong Luo
- School of Pharmaceutical Science and TechnologyDalian University of TechnologyDalianLiaoning116024China
| | - Bingcheng Lin
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
| | - Tingjiao Liu
- Department of Oral PathologyShanghai Stomatological Hospital & School of StomatologyFudan UniversityTianjin Road No.2, Huangpu DistrictShanghai200001China
- Shanghai Key Laboratory of Craniomaxillofacial Development and DiseasesFudan UniversityTianjin Road No.2, Huangpu DistrictShanghai200001China
| | - Yao Lu
- Department of BiotechnologyDalian Institute of Chemical PhysicsChinese Academy of SciencesDalianLiaoning116023China
| |
Collapse
|
7
|
Liu H, Zhao X, Li Y, Yi J, Zhang C, Zheng Z, Dai S, Yin G, Zhao S. Bioinformatic analysis of the molecular mechanisms underlying the progression of bone defects. Front Med (Lausanne) 2023; 10:1157099. [PMID: 37359021 PMCID: PMC10286739 DOI: 10.3389/fmed.2023.1157099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Background The pathophysiology of bone defects (BDs) is complex, and the treatment for bone defects, in particular massive bone defects, remains a major clinical challenge. Our study was conducted to explore the molecular events related to the progression of bone defects a common clinical condition. Methods First, microarray data of GSE20980 were obtained from the Gene Expression Omnibus (GEO) database, where 33 samples in total were used to analyze the molecular biological processes related to bone defects. Next, the original data were normalized and differentially expressed genes (DEGs) were identified. Additionally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted. Finally, a protein-protein interaction (PPI) network was constructed and the trends of the different genes were confirmed. Results Compared with the samples of non-critical size defects (NCSD), the samples of critical size defects (CSD) had 2057, 827, and 1,024 DEGs at 7, 14, and 21 days post injury, respectively. At day 7, the DEGs were significantly enriched in metabolic pathways, at day 14 the DEGs were predominantly enriched in G-protein coupled signaling pathways and the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway, and at day 21 the DEGs were mainly enriched in circadian entrainment and synaptic-related functions. The PPI network showed similar results. Quantitative real-time PCR (qRT-PCR) and western blot (WB) were performed to validate the partial results of sequencing. Conclusion This study provides some clues about the molecular mechanism behind bone defects, which should contribute to scientific research and clinical treatment of this condition.
Collapse
Affiliation(s)
- Hao Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuan Zhao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yin Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiang Yi
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chenxi Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ziyang Zheng
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Siming Dai
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guoyong Yin
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shujie Zhao
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Institute of Functional Reconstruction and Rehabilitation, Nanjing, Jiangsu, China
- Spinal Cord Disease Research Center, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Schulze S, Neuber C, Möller S, Pietzsch J, Schaser KD, Rammelt S. Microdialysis Reveals Anti-Inflammatory Effects of Sulfated Glycosaminoglycanes in the Early Phase of Bone Healing. Int J Mol Sci 2023; 24:ijms24032077. [PMID: 36768397 PMCID: PMC9917097 DOI: 10.3390/ijms24032077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Although chronic inflammation inhibits bone healing, the healing process is initiated by an inflammatory phase. In a well-tuned sequence of molecular events, pro-inflammatory cytokines are secreted to orchestrate the inflammation response to injury and the recruitment of progenitor cells. These events in turn activate the secretion of anti-inflammatory signaling molecules and attract cells and mediators that antagonize the inflammation and initiate the repair phase. Sulfated glycosaminoglycanes (sGAG) are known to interact with cytokines, chemokines and growth factors and, thus, alter the availability, duration and impact of those mediators on the local molecular level. sGAG-coated polycaprolactone-co-lactide (PCL) scaffolds were inserted into critical-size femur defects in adult male Wistar rats. The femur was stabilized with a plate, and the defect was filled with either sGAG-containing PCL scaffolds or autologous bone (positive control). Wound fluid samples obtained by microdialysis were characterized regarding alterations of cytokine concentrations over the first 24 h after surgery. The analyses revealed the inhibition of the pro-inflammatory cytokines IL-1β and MIP-2 in the sGAG-treated groups compared to the positive control. A simultaneous increase of IL-6 and TNF-α indicated advanced regenerative capacity of sGAG, suggesting their potential to improve bone healing.
Collapse
Affiliation(s)
- Sabine Schulze
- University Center for Orthopedics, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus at TU Dresden, 01307 Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, Medical Faculty, TU Dresden, 01307 Dresden, Germany
| | - Christin Neuber
- Helmholtz-Zentrum Dresden-Rossendorf, Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany
| | - Stephanie Möller
- Biomaterials Department, INNOVENT e. V., Prüssingstrasse 27B, 07745 Jena, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, 01328 Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, 01069 Dresden, Germany
| | - Klaus-Dieter Schaser
- University Center for Orthopedics, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus at TU Dresden, 01307 Dresden, Germany
| | - Stefan Rammelt
- University Center for Orthopedics, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus at TU Dresden, 01307 Dresden, Germany
- Correspondence:
| |
Collapse
|
9
|
Sammartino G, Gasparro R, Spagnuolo G, Miniello A, Blasi A, Marenzi G. Influence of the Antithrombotic Therapy in the Healing of Simple Post-Extraction Sockets: A Randomized Clinical Trial. J Clin Med 2022; 11:jcm11133654. [PMID: 35806937 PMCID: PMC9267478 DOI: 10.3390/jcm11133654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/08/2022] [Accepted: 06/20/2022] [Indexed: 01/27/2023] Open
Abstract
Background: An adequate blood supply plays a leading role in the healing process of the post-extractive socket; its coagulation leads to fibrin clot formation, which acts as a physical barrier able to prevent postoperative bleeding and microbial infection. The purpose of this study was to evaluate the effectiveness of antiaggregant drugs in healing post-extraction sockets compared to natural wound healing. Methods: This was a single-center prospective clinical trial. Extraction sockets allocated in healthy patients and in patients assuming antiplatelet drugs were considered. Thirty consecutive patients under (treated with/in treatment with) oral antiplatelet treatment were enrolled in the test group. In order to provide a control group, 30 consecutive patients meeting all the exclusion and inclusion criteria were enrolled. The extraction of the mono-radicular tooth was atraumatically performed without gingivoplasty or osteotomy procedures that could influence the healing process. Photographs were obtained before and immediately after surgery and at 3-, 7-, 14- and 28-days follow-up. Results: All patients assumed the prescribed therapy and their post-operative recovery was uneventful without any kind of post-extractive complications. The results of inter-group comparison show that on the third and seventh days of follow-up, the antiplatelet group expressed a statistically significant higher level of healing compared to the control group (p < 0.05), while no statistically significant differences were recorded at 14- and 28-days follow-up. Conclusions: Patients treated with antiplatelet agents seemed to show that this therapy can positively affect the healing process after tooth extractions.
Collapse
|
10
|
Schulze S, Rothe R, Neuber C, Hauser S, Ullrich M, Pietzsch J, Rammelt S. Men who stare at bone: multimodal monitoring of bone healing. Biol Chem 2021; 402:1397-1413. [PMID: 34313084 DOI: 10.1515/hsz-2021-0170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022]
Abstract
Knowledge of the physiological and pathological processes, taking place in bone during fracture healing or defect regeneration, is essential in order to develop strategies to enhance bone healing under normal and critical conditions. Preclinical testing allows a wide range of imaging modalities that may be applied both simultaneously and longitudinally, which will in turn lower the number of animals needed to allow a comprehensive assessment of the healing process. This work provides an up-to-date review on morphological, functional, optical, biochemical, and biophysical imaging techniques including their advantages, disadvantages and potential for combining them in a multimodal and multiscale manner. The focus lies on preclinical testing of biomaterials modified with artificial extracellular matrices in various animal models to enhance bone remodeling and regeneration.
Collapse
Affiliation(s)
- Sabine Schulze
- University Center of Orthopaedics, Trauma and Plastic Surgery (OUPC), University Hospital Carl Gustav Carus, D-01307Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, D-01307Dresden, Germany
| | - Rebecca Rothe
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328Dresden, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, D-01062Dresden, Germany
| | - Christin Neuber
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328Dresden, Germany
| | - Sandra Hauser
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328Dresden, Germany
| | - Martin Ullrich
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328Dresden, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328Dresden, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, D-01062Dresden, Germany
| | - Stefan Rammelt
- University Center of Orthopaedics, Trauma and Plastic Surgery (OUPC), University Hospital Carl Gustav Carus, D-01307Dresden, Germany.,Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, D-01307Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), D-01307Dresden, Germany
| |
Collapse
|
11
|
Yu K, Wu H, Shen C, Li H, Wei X, Liu R, Cai W, Wang G, Sun Q, Wang Z. Identification of antemortem and postmortem fractures in a complex environment by FTIR spectroscopy based on a rabbit tibial fracture self-control model. Int J Legal Med 2021; 135:2385-2394. [PMID: 34173849 DOI: 10.1007/s00414-021-02633-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 06/08/2021] [Indexed: 12/27/2022]
Abstract
The identification of antemortem and postmortem fractures is a critical and challenging task for forensic researchers. Based on our preliminary studies, we explored whether the combination of Fourier transform infrared spectroscopy (FTIR) and chemometrics can identify antemortem and postmortem fractures in complex environments. The impacts of the four environments on the bone spectrum were analyzed by principal component analysis (PCA). It was found that the bone degradation rate in the submerged and ground surface (GS) environments was higher than that in the buried and constant temperature and moisture (CTM) environments. Additionally, the bone degradation rate in buried environment higher than that in the CTM environment. The average spectrum, PCA and partial least squares discriminant analysis (PLS-DA) results all revealed that there were significant differences between the antemortem fracture and the remaining three groups in a complex environment. Compared with the antemortem fracture, the antemortem fracture control (AFC) and postmortem fracture control (PFC) tended to be more similar to the postmortem fracture. According to the loading plot, amide I and amide II were the main components that contributed to the identification of the antemortem fracture, AFC, postmortem fracture, and PFC. Finally, we established a differential model for the antemortem and postmortem fractures (an accuracy of 96.9%), and a differentiation model for the antemortem fracture, AFC, postmortem fracture, and PFC (an accuracy of 87.5%). In conclusion, FTIR spectroscopy is a reliable tool for the identification of antemortem and postmortem fractures in complex environments.
Collapse
Affiliation(s)
- Kai Yu
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Hao Wu
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Chen Shen
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Huiyu Li
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Xin Wei
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Ruina Liu
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Wumin Cai
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Gongji Wang
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Qinru Sun
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| | - Zhenyuan Wang
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| |
Collapse
|
12
|
Yahara Y, Ma X, Gracia L, Alman BA. Monocyte/Macrophage Lineage Cells From Fetal Erythromyeloid Progenitors Orchestrate Bone Remodeling and Repair. Front Cell Dev Biol 2021; 9:622035. [PMID: 33614650 PMCID: PMC7889961 DOI: 10.3389/fcell.2021.622035] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/12/2021] [Indexed: 12/21/2022] Open
Abstract
A third of the population sustains a bone fracture, and the pace of fracture healing slows with age. The slower pace of repair is responsible for the increased morbidity in older individuals who sustain a fracture. Bone healing progresses through overlapping phases, initiated by cells of the monocyte/macrophage lineage. The repair process ends with remodeling. This last phase is controlled by osteoclasts, which are bone-specific multinucleated cells also of the monocyte/macrophage lineage. The slower rate of healing in aging can be rejuvenated by macrophages from young animals, and secreted proteins from macrophage regulate undifferentiated mesenchymal cells to become bone-forming osteoblasts. Macrophages can derive from fetal erythromyeloid progenitors or from adult hematopoietic progenitors. Recent studies show that fetal erythromyeloid progenitors are responsible for the osteoclasts that form the space in bone for hematopoiesis and the fetal osteoclast precursors reside in the spleen postnatally, traveling through the blood to participate in fracture repair. Differences in secreted proteins between macrophages from old and young animals regulate the efficiency of osteoblast differentiation from undifferentiated mesenchymal precursor cells. Interestingly, during the remodeling phase osteoclasts can form from the fusion between monocyte/macrophage lineage cells from the fetal and postnatal precursor populations. Data from single cell RNA sequencing identifies specific markers for populations derived from the different precursor populations, a finding that can be used in future studies. Here, we review the diversity of macrophages and osteoclasts, and discuss recent finding about their developmental origin and functions, which provides novel insights into their roles in bone homeostasis and repair.
Collapse
Affiliation(s)
- Yasuhito Yahara
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States.,Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, Japan.,Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Xinyi Ma
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
| | - Liam Gracia
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
| | - Benjamin A Alman
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
13
|
Yu K, Wang G, Cai W, Wu D, Wei X, Zhang K, Liu R, Sun Q, Wang Z. Identification of antemortem, perimortem and postmortem fractures by FTIR spectroscopy based on a rabbit tibial fracture model. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 239:118535. [PMID: 32502812 DOI: 10.1016/j.saa.2020.118535] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
The identification of antemortem, perimortem and postmortem fractures is very important for forensic pathologists and anthropologists. However, traditional methods are subjective, time-consuming, and have low accuracy, which do not fundamentally solve the problem. In this study, we utilized Fourier transform infrared (FTIR) spectroscopy and chemometrics to identify antemortem, perimortem and postmortem fractures in a rabbit tibial fracture model. Based on the results of the principal component analysis (PCA), changes in the ante-perimortem fracture repair process are mainly associated with protein variations, while postmortem fractures are more likely to result in lipid changes during degradation. Then, a partial least squares discriminant analysis (PLS-DA) was performed to assess the classification ability of the training and predictive datasets, with classification accuracies of 88.9% and 86.7%, respectively. According to the latent variable 1 (LV1) loading plot, amide I and amide II (proteins) are mostly classified as ante-perimortem and postmortem fractures. In conclusion, FTIR spectroscopy is a reliable tool to identify antemortem, perimortem and postmortem fractures. FTIR has the advantages of rapid, objective and strong discrimination. and shows great potential for analyzing forensic cases under actual natural conditions.
Collapse
Affiliation(s)
- Kai Yu
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Gongji Wang
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Wumin Cai
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Di Wu
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xin Wei
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Kai Zhang
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Ruina Liu
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qinru Sun
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Zhenyuan Wang
- Department of Forensic Pathology, College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
14
|
Kaltenborn A, Bullok M, Schulze C, Hoffmann S, Springer P, Heppner S, Barthel C, Gutcke A. Independent Risk Factors for Impaired Early Outcome after Isolated Ankle Fracture - A Multivariate Analysis and Prognostic Models. ZEITSCHRIFT FUR ORTHOPADIE UND UNFALLCHIRURGIE 2020; 159:649-658. [PMID: 32854125 DOI: 10.1055/a-1200-2504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Ankle fractures are common operative indications in orthopedic surgery. Their incidence is increasing. OBJECTIVES To identify independent risk factors and to develop prognostic models for the prediction of prolonged length of hospital stay (LOS) and the onset of postoperative complications. MATERIALS AND METHODS This is a single-center, retrospective, observational study analyzing data of 154 consecutive, isolated, surgically treated ankle fractures. Multivariate binary logistic regression analysis was applied to identify significant independent risk factors. The validity and clinical applicability of the developed prognostic models was assessed with ROC-curve analysis (ROC: Receiver Operating Characteristic). Internal validation of prognostic models was performed with randomized backwards bootstrapping. RESULTS The median LOS was 7 days. 50 patients (33%) had a longer LOS. 13% of operated patients had a postoperative complication (n = 20). Independent preoperative risk factors for prolonged length of stay were leukocytosis (p = 0.020; OR: 1.211), an increased CRP-level (p = 0.005; OR: 1.901), as well as a bi- (p = 0.002; OR: 15.197) or trimalleolar (p = 0.001; OR: 10.678) fracture type. Immediate operative therapy was an independent beneficial factor (p < 0.001; OR: 0.070). The onset of complications was associated significantly with diabetes mellitus (p = 0.004; OR: 9.903) and an elevated ASA score (p = 0,004; OR: 3.574). The developed prognostic models for the prediction of prolonged LOS (AUROC: 0.736) and postoperative complications (AUROC: 0.724) had a good clinical validity and were internally validated. CONCLUSION The current data pronounce the importance of preoperative laboratory works. Furthermore, co-morbidities play a major role in the prognosis of outcome. The developed prognostic models are able to reliably predict the outcome and enable the preoperative identification of high-risk patients.
Collapse
Affiliation(s)
- Alexander Kaltenborn
- Department for Trauma Surgery, Orthopaedic, Plastic, Reconstructive and Hand Surgery, Armed Forces Hospital Westerstede.,Centre for Surgery, Hanover Medical School
| | - Michael Bullok
- Department for Trauma Surgery, Orthopaedic, Plastic, Reconstructive and Hand Surgery, Armed Forces Hospital Westerstede
| | - Christoph Schulze
- Department for Trauma Surgery, Orthopaedic, Plastic, Reconstructive and Hand Surgery, Armed Forces Hospital Westerstede.,Orthopaedic Surgery, Rostock Medical University
| | - Sebastian Hoffmann
- Department for Trauma Surgery, Orthopaedic, Plastic, Reconstructive and Hand Surgery, Armed Forces Hospital Westerstede
| | - Peter Springer
- Department for Trauma Surgery, Orthopaedic, Plastic, Reconstructive and Hand Surgery, Armed Forces Hospital Westerstede
| | - Stefan Heppner
- Department for Trauma Surgery, Orthopaedic, Plastic, Reconstructive and Hand Surgery, Armed Forces Hospital Westerstede
| | - Christian Barthel
- Quality Management and Controlling Department, Armed Forces Hospital Westerstede
| | - André Gutcke
- Department for Trauma Surgery, Orthopaedic, Plastic, Reconstructive and Hand Surgery, Armed Forces Hospital Westerstede
| |
Collapse
|
15
|
Aly AA, Górecki T. Green Approaches to Sample Preparation Based on Extraction Techniques. Molecules 2020; 25:E1719. [PMID: 32283595 PMCID: PMC7180442 DOI: 10.3390/molecules25071719] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/25/2020] [Accepted: 03/29/2020] [Indexed: 12/11/2022] Open
Abstract
Preparing a sample for analysis is a crucial step of many analytical procedures. The goal of sample preparation is to provide a representative, homogenous sample that is free of interferences and compatible with the intended analytical method. Green approaches to sample preparation require that the consumption of hazardous organic solvents and energy be minimized or even eliminated in the analytical process. While no sample preparation is clearly the most environmentally friendly approach, complete elimination of this step is not always practical. In such cases, the extraction techniques which use low amounts of solvents or no solvents are considered ideal alternatives. This paper presents an overview of green extraction procedures and sample preparation methodologies, briefly introduces their theoretical principles, and describes the recent developments in food, pharmaceutical, environmental and bioanalytical chemistry applications.
Collapse
Affiliation(s)
- Alshymaa A. Aly
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
- Analytical Chemistry Department, Faculty of Pharmacy, Minia University, Menia Governorate 61519, Egypt
| | - Tadeusz Górecki
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| |
Collapse
|
16
|
Rothe R, Schulze S, Neuber C, Hauser S, Rammelt S, Pietzsch J. Adjuvant drug-assisted bone healing: Part I – Modulation of inflammation. Clin Hemorheol Microcirc 2020; 73:381-408. [PMID: 31177205 DOI: 10.3233/ch-199102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Rebecca Rothe
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Sabine Schulze
- University Center of Orthopaedics & Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christin Neuber
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Sandra Hauser
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
| | - Stefan Rammelt
- University Center of Orthopaedics & Traumatology (OUC), University Hospital Carl Gustav Carus, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Dresden, Germany
- Technische Universität Dresden, School of Science, Faculty of Chemistry and Food Chemistry, Dresden, Germany
| |
Collapse
|
17
|
Herrmann M, Stanić B, Hildebrand M, Alini M, Verrier S. In vitro simulation of the early proinflammatory phase in fracture healing reveals strong immunomodulatory effects of CD146-positive mesenchymal stromal cells. J Tissue Eng Regen Med 2019; 13:1466-1481. [PMID: 31132812 DOI: 10.1002/term.2902] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 03/27/2019] [Accepted: 04/29/2019] [Indexed: 01/06/2023]
Abstract
The impact of microenvironmental cues and changes due to injury on the phenotype and fate of mesenchymal stromal cells (MSCs) is poorly understood. Here, we aimed to simulate the microenvironment associated with the early stage of bone healing in vitro and to study the regenerative response of MSCs. We enriched CD146+ MSCs from the human bone marrow. Different physiological and pathological microenvironments were simulated by using conditioned medium (CM) from human endothelial cells and osteoblasts (healthy bone), femoral head-derived bone fragments (injured bone), and activated platelets (platelet-rich plasma [PRP], injury). Cells were incubated in CM and analyzed with respect to proliferation, gene expression, migration, osteogenic differentiation, and their effect on polyclonally induced proliferation of peripheral blood mononuclear cells. CD146+ MSCs showed a specific response to different microenvironments. Cell proliferation was observed in all media with the highest values in PRP-CM and injured bone-CM. Gene expression analysis revealed the upregulation of chemokines, proinflammatory, proangiogenic, and genes involved in immunomodulation in cells stimulated with PRP- and injured bone-CM, suggesting strong paracrine activity. PRP-CM led to pronounced inhibition of lymphocyte proliferation by CD146+MSCs. Our results indicate that a microenvironment simulating bone injury elicits strong immunomodulatory and proangiogenic activity of CD146+ MSCs. This suggests that in the early stage of bone healing, the prime function of MSCs and their CD146+ subpopulation is in regulating the immune response and inducing neovascularization. Future studies will investigate the key components in CM driving this function, which might be potential targets to therapeutically stimulate the regenerative potential of MSCs.
Collapse
Affiliation(s)
- Marietta Herrmann
- AO Research Institute Davos, Davos Platz, Switzerland.,IZKF Research Group Tissue Regeneration in Musculoskeletal Diseases, University Clinics Würzburg and Orthopedic Center for Musculoskeletal Research, University of Würzburg, Germany
| | | | | | - Mauro Alini
- AO Research Institute Davos, Davos Platz, Switzerland
| | | |
Collapse
|
18
|
|
19
|
Kirwan JA, Brennan L, Broadhurst D, Fiehn O, Cascante M, Dunn WB, Schmidt MA, Velagapudi V. Preanalytical Processing and Biobanking Procedures of Biological Samples for Metabolomics Research: A White Paper, Community Perspective (for "Precision Medicine and Pharmacometabolomics Task Group"-The Metabolomics Society Initiative). Clin Chem 2018; 64:1158-1182. [PMID: 29921725 DOI: 10.1373/clinchem.2018.287045] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/01/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND The metabolome of any given biological system contains a diverse range of low molecular weight molecules (metabolites), whose abundances can be affected by the timing and method of sample collection, storage, and handling. Thus, it is necessary to consider the requirements for preanalytical processes and biobanking in metabolomics research. Poor practice can create bias and have deleterious effects on the robustness and reproducibility of acquired data. CONTENT This review presents both current practice and latest evidence on preanalytical processes and biobanking of samples intended for metabolomics measurement of common biofluids and tissues. It highlights areas requiring more validation and research and provides some evidence-based guidelines on best practices. SUMMARY Although many researchers and biobanking personnel are familiar with the necessity of standardizing sample collection procedures at the axiomatic level (e.g., fasting status, time of day, "time to freezer," sample volume), other less obvious factors can also negatively affect the validity of a study, such as vial size, material and batch, centrifuge speeds, storage temperature, time and conditions, and even environmental changes in the collection room. Any biobank or research study should establish and follow a well-defined and validated protocol for the collection of samples for metabolomics research. This protocol should be fully documented in any resulting study and should involve all stakeholders in its design. The use of samples that have been collected using standardized and validated protocols is a prerequisite to enable robust biological interpretation unhindered by unnecessary preanalytical factors that may complicate data analysis and interpretation.
Collapse
Affiliation(s)
- Jennifer A Kirwan
- Berlin Institute of Health, Berlin, Germany; .,Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Lorraine Brennan
- UCD School of Agriculture and Food Science, Institute of Food and Health, UCD, Dublin, Ireland
| | | | - Oliver Fiehn
- NIH West Coast Metabolomics Center, UC Davis, Davis, CA
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine and IBUB, Universitat de Barcelona, Barcelona and Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBER-EHD), Madrid, Spain
| | - Warwick B Dunn
- School of Biosciences and Phenome Centre Birmingham, University of Birmingham, Birmingham, UK
| | - Michael A Schmidt
- Advanced Pattern Analysis and Countermeasures Group, Research Innovation Center, Colorado State University, Fort Collins, CO.,Sovaris Aerospace, LLC, Boulder, CO
| | - Vidya Velagapudi
- Metabolomics Unit, Institute for Molecular Medicine FIMM, HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
20
|
Abstract
Chemokines are a family of small cytokines that share a typical key structure that is stabilized by disulfide bonds between the cysteine residues at the NH2-terminal of the protein, and they are secreted by a great variety of cells in several different conditions. Their function is directly dependent on their interactions with their receptors. Chemokines are involved in cell maturation and differentiation, infection, autoimmunity, cancer, and, in general, in any situation where immune components are involved. However, their role in postfracture inflammation and fracture healing is not yet well established. In this article, we will discuss the response of chemokines to bone fracture and their potential roles in postfracture inflammation and healing based on data from our studies and from other previously published studies.
Collapse
Affiliation(s)
- Bouchra Edderkaoui
- Musculoskeletal Disease Center, Loma Linda VA Health Care Systems, Loma Linda, CA, USA
- Department of Medicine, Loma Linda University, Loma Linda, CA, USA
- *Correspondence: Bouchra Edderkaoui,
| |
Collapse
|