1
|
Ottone OK, Mundo JJ, Kwakye BN, Slaweski A, Collins JA, Wu Q, Connelly MA, Niaziorimi F, van de Wetering K, Risbud MV. Oral Citrate Supplementation Mitigates Age-Associated Pathologic Intervertebral Disc Calcification in LG/J Mice. Aging Cell 2025:e14504. [PMID: 39930949 DOI: 10.1111/acel.14504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/27/2024] [Accepted: 01/17/2025] [Indexed: 02/19/2025] Open
Abstract
Despite the high prevalence of age-dependent intervertebral disc calcification, there is a glaring lack of treatment options for this debilitating pathology. We investigated the efficacy of long-term oral K3Citrate supplementation in ameliorating disc calcification in LG/J mice, a model of spontaneous age-associated disc calcification. K3Citrate reduced the incidence of disc calcification without affecting the vertebral bone structure, knee calcification, plasma chemistry, or locomotion in LG/J mice. Notably, a positive effect on grip strength was evident in treated mice. FTIR spectroscopy of the persisting calcified nodules indicated K3Citrate did not alter the mineral composition. Mechanistically, activation of an endochondral differentiation in the cartilaginous endplates and nucleus pulposus (NP) compartment contributed to LG/J disc calcification. Importantly, K3Citrate reduced calcification incidence by Ca2+ chelation throughout the disc while exhibiting a differential effect on NP and endplate cell differentiation. In the NP compartment, K3Citrate reduced the NP cell acquisition of a hypertrophic chondrocytic fate, but the pathologic endochondral program was unimpacted in the endplates. Overall, this study for the first time shows the therapeutic potential of oral K3Citrate as a systemic intervention strategy to ameliorate disc calcification.
Collapse
Affiliation(s)
- Olivia K Ottone
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jorge J Mundo
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Boahen N Kwakye
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Amber Slaweski
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - John A Collins
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Qinglin Wu
- LabCorp, Morrisville, North Carolina, USA
| | | | - Fatemeh Niaziorimi
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- PXE International Center of Excellence for Research and Clinical Care, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Koen van de Wetering
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- PXE International Center of Excellence for Research and Clinical Care, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Ottone OK, Mundo JJ, Kwakye BN, Slaweski A, Collins JA, Wu Q, Connelly MA, Niaziorimi F, van de Wetering K, Risbud MV. Oral citrate supplementation mitigates age-associated pathological intervertebral disc calcification in LG/J mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.604008. [PMID: 39071393 PMCID: PMC11275755 DOI: 10.1101/2024.07.17.604008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Despite the high prevalence of age-dependent intervertebral disc calcification, there is a glaring lack of treatment options for this debilitating pathology. Here, we investigate the efficacy of long-term oral K3Citrate supplementation in ameliorating disc calcification in LG/J mice, a model of spontaneous age-associated disc calcification. K3Citrate successfully reduced the incidence of disc calcification in LG/J mice without deleterious effects on vertebral bone structure, plasma chemistry, and locomotion. Notably, a positive effect on grip strength was evident in treated mice. Spectroscopic investigation of the persisting calcified nodules indicated K3Citrate did not alter the mineral composition and revealed that reactivation of an endochondral differentiation program in endplates may drive LG/J disc calcification. Importantly, K3Citrate reduced calcification incidence without altering the pathological endplate chondrocyte hypertrophy, suggesting mitigation of disc calcification primarily occurred through Ca2+ chelation, a conclusion supported by chondrogenic differentiation and Seahorse metabolic assays. Overall, this study underscores the therapeutic potential of K3Citrate as a systemic intervention strategy for disc calcification.
Collapse
Affiliation(s)
- Olivia K. Ottone
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jorge J. Mundo
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Boahen N. Kwakye
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Amber Slaweski
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - John A. Collins
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | - Fatemeh Niaziorimi
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- PXE International Center of Excellence for Research and Clinical Care
| | - Koen van de Wetering
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- PXE International Center of Excellence for Research and Clinical Care
| | - Makarand V. Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Graduate Program in Cell Biology and Regenerative Medicine, Jefferson College of Life Sciences, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
3
|
Novais EJ, Narayanan R, Canseco JA, van de Wetering K, Kepler CK, Hilibrand AS, Vaccaro AR, Risbud MV. A new perspective on intervertebral disc calcification-from bench to bedside. Bone Res 2024; 12:3. [PMID: 38253615 PMCID: PMC10803356 DOI: 10.1038/s41413-023-00307-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Disc degeneration primarily contributes to chronic low back and neck pain. Consequently, there is an urgent need to understand the spectrum of disc degeneration phenotypes such as fibrosis, ectopic calcification, herniation, or mixed phenotypes. Amongst these phenotypes, disc calcification is the least studied. Ectopic calcification, by definition, is the pathological mineralization of soft tissues, widely studied in the context of conditions that afflict vasculature, skin, and cartilage. Clinically, disc calcification is associated with poor surgical outcomes and back pain refractory to conservative treatment. It is frequently seen as a consequence of disc aging and progressive degeneration but exhibits unique molecular and morphological characteristics: hypertrophic chondrocyte-like cell differentiation; TNAP, ENPP1, and ANK upregulation; cell death; altered Pi and PPi homeostasis; and local inflammation. Recent studies in mouse models have provided a better understanding of the mechanisms underlying this phenotype. It is essential to recognize that the presentation and nature of mineralization differ between AF, NP, and EP compartments. Moreover, the combination of anatomic location, genetics, and environmental stressors, such as aging or trauma, govern the predisposition to calcification. Lastly, the systemic regulation of calcium and Pi metabolism is less important than the local activity of PPi modulated by the ANK-ENPP1 axis, along with disc cell death and differentiation status. While there is limited understanding of this phenotype, understanding the molecular pathways governing local intervertebral disc calcification may lead to developing disease-modifying drugs and better clinical management of degeneration-related pathologies.
Collapse
Affiliation(s)
- Emanuel J Novais
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Unidade Local de Saúde do Litoral Alentejano, Orthopedic Department, Santiago do Cacém, Portugal
| | - Rajkishen Narayanan
- Rothman Orthopedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Jose A Canseco
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Rothman Orthopedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Koen van de Wetering
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Christopher K Kepler
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Rothman Orthopedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Alan S Hilibrand
- Rothman Orthopedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Alexander R Vaccaro
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
- Rothman Orthopedic Institute at Thomas Jefferson University, Philadelphia, PA, USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Maia A, Saraiva M, Costa L, Carvalho AC, Freitas C, Amaral C, Coelho A, Carvalho R. Leg dystrophic calcification as a consequence of chronic diabetic foot infection: a case report. J Wound Care 2024; 33:66-71. [PMID: 38197282 DOI: 10.12968/jowc.2024.33.1.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Foot ulceration and infection is associated with a substantial increase in morbidity and mortality in patients with diabetes. We present a clinical case of recurrent diabetic foot infection with an atypical clinical evolution. A 58-year-old male patient with type 1 diabetes and a history of bilateral Charcot foot neuroarthropathy was followed at our Diabetic Foot Clinic for an unhealed plantar foot ulcer for >1.5 years with recurrent episodes of infection. He was admitted to hospital due to foot ulcer reinfection with sepsis and ipsilateral lower limb cellulitis. The foot infection was found to be associated with an underlying abscess in the anterior compartment of the leg, with a cutaneous fistulous course with extensive alterations of an inflammatory nature. Exudate from the lesion was drained and tissue biopsied, revealing Serratia marcescens and Klebsiella oxytoca with dystrophic calcification (DC). Surgical excision of dystrophic tissue with debridement of the fistulous tracts was performed. The excised material corroborated the presence of fibroadipose connective tissue with marked DC, as well as areas of mixed inflammation compatible with a chronic infectious aetiology. Targeted long-term antibiotic therapy was implemented, for a total of six weeks, with a favourable clinical evolution and complete closure of the lesion at the final follow-up. DC results from calcium deposition in degenerated tissues without evidence of systemic mineral imbalance and is a potential cause of non-healing ulcers. Few cases of DC have been reported in diabetic foot patients and its treatment remains challenging and controversial. A longer follow-up period is necessary to verify the effectiveness of our approach.
Collapse
Affiliation(s)
- Ariana Maia
- Diabetic Foot Unit, Centro Hospitalar e Universitário do Porto, Porto, Portugal
- Division of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Miguel Saraiva
- Diabetic Foot Unit, Centro Hospitalar e Universitário do Porto, Porto, Portugal
- Division of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Luís Costa
- Diabetic Foot Unit, Centro Hospitalar e Universitário do Porto, Porto, Portugal
- Division of Orthopedics and Traumatology, Centro Hospitalar e Universitário do Porto, Porto, Portugal
| | - André Couto Carvalho
- Diabetic Foot Unit, Centro Hospitalar e Universitário do Porto, Porto, Portugal
- Division of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Cláudia Freitas
- Diabetic Foot Unit, Centro Hospitalar e Universitário do Porto, Porto, Portugal
- Division of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Cláudia Amaral
- Diabetic Foot Unit, Centro Hospitalar e Universitário do Porto, Porto, Portugal
- Division of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - André Coelho
- Division of Pathological Anatomy, Centro Hospitalar e Universitário do Porto, Porto, Portugal
| | - Rui Carvalho
- Diabetic Foot Unit, Centro Hospitalar e Universitário do Porto, Porto, Portugal
- Division of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário do Porto, Porto, Portugal
| |
Collapse
|
5
|
Wang Y, Lu J, Liu Y. Skeletal Muscle Regeneration in Cardiotoxin-Induced Muscle Injury Models. Int J Mol Sci 2022; 23:ijms232113380. [PMID: 36362166 PMCID: PMC9657523 DOI: 10.3390/ijms232113380] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Skeletal muscle injuries occur frequently in daily life and exercise. Understanding the mechanisms of regeneration is critical for accelerating the repair and regeneration of muscle. Therefore, this article reviews knowledge on the mechanisms of skeletal muscle regeneration after cardiotoxin-induced injury. The process of regeneration is similar in different mouse strains and is inhibited by aging, obesity, and diabetes. Exercise, microcurrent electrical neuromuscular stimulation, and mechanical loading improve regeneration. The mechanisms of regeneration are complex and strain-dependent, and changes in functional proteins involved in the processes of necrotic fiber debris clearance, M1 to M2 macrophage conversion, SC activation, myoblast proliferation, differentiation and fusion, and fibrosis and calcification influence the final outcome of the regenerative activity.
Collapse
|
6
|
Memida T, Matsuda S, Nakamoto T, Ouhara K, Kajiya M, Hirata S, Sugiyama E, Kakimoto N, Mizuno N. Cancellous bone-like tissue replacement from calcinosis in patients with systemic sclerosis with multiple external root resorption. Bone Rep 2022; 16:101165. [PMID: 35059476 PMCID: PMC8760497 DOI: 10.1016/j.bonr.2021.101165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/27/2021] [Accepted: 12/31/2021] [Indexed: 12/24/2022] Open
Abstract
Calcinosis is frequently observed in patients with systemic sclerosis (SSc). The fundamental treatment of calcinosis has not yet been established. During follow-up, calcinosis in the subcutaneous surface is often spontaneously extracted or remains confined by fibrous tissues. We previously identified a new symptom in SSc patients, multiple external root resorption (MERR), and these patients had calcifications in the nasal spine. Here, we report for the first time that calcinosis at the nasal spine in patients with MERR can be replaced by cancellous bone-like tissue. Patients 1 and 2 were a 62-year-old Japanese female and a 45-year-old Japanese female (respectively) with MERR who had been previously treated for SSc (Patient 1: limited type, positive for anti-centromere antibody; Patient 2: diffuse type, positive for anti-Scl70 and anti-SS-A antibodies). Patient 3 was a 57-year-old female with MERR who had been previously treated for SSc (diffuse type, positive anti-Scl-70 antibody) and underwent denosumab injection for osteoporosis. Cone-beam computed tomography (CBCT) and CT images in the calcifications at the nasal spine in Patient 1 and 2 were replaced with cancellous bone-like tissue, but not in Patient 3. Serum laboratory examination was performed to assess the systemic bone disease. All three patients had normal clinical data within the references, apart from slightly higher 1,25-dihydroxyvitamin D levels in Patient 1. SSc patients with calcinosis in the maxillofacial area need to be examined carefully for bone replacement using CBCT or CT.
Collapse
|
7
|
Saito M, Moore-Lotridge SN, Uppuganti S, Egawa S, Yoshii T, Robinette JP, Posey SL, Gibson BHY, Cole HA, Hawley GD, Guelcher SA, Tanner SB, McCarthy JR, Nyman JS, Schoenecker JG. Determining the pharmacologic window of bisphosphonates that mitigates severe injury-induced osteoporosis and muscle calcification, while preserving fracture repair. Osteoporos Int 2022; 33:807-820. [PMID: 34719727 PMCID: PMC9530779 DOI: 10.1007/s00198-021-06208-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/09/2021] [Indexed: 12/16/2022]
Abstract
UNLABELLED Following severe injury, biomineralization is disrupted and limited therapeutic options exist to correct these pathologic changes. This study utilized a clinically relevant murine model of polytrauma including a severe injury with concomitant musculoskeletal injuries to identify when bisphosphonate administration can prevent the paradoxical decrease of biomineralization in bone and increased biomineralization in soft tissues, yet not interfere with musculoskeletal repair. INTRODUCTION Systemic and intrinsic mechanisms in bone and soft tissues help promote biomineralization to the skeleton, while preventing it in soft tissues. However, severe injury can disrupt this homeostatic biomineralization tropism, leading to adverse patient outcomes due to a paradoxical decrease of biomineralization in bone and increased biomineralization in soft tissues. There remains a need for therapeutics that restore the natural tropism of biomineralization in severely injured patients. Bisphosphonates can elicit potent effects on biomineralization, though with variable impact on musculoskeletal repair. Thus, a critical clinical question remains as to the optimal time to initiate bisphosphonate therapy in patients following a polytrauma, in which bone and muscle are injured in combination with a severe injury, such as a burn. METHODS To test the hypothesis that the dichotomous effects of bisphosphonates are dependent upon the time of administration relative to the ongoing biomineralization in reparative bone and soft tissues, this study utilized murine models of isolated injury or polytrauma with a severe injury, in conjunction with sensitive, longitudinal measure of musculoskeletal repair. RESULTS This study demonstrated that if administered at the time of injury, bisphosphonates prevented severe injury-induced bone loss and soft tissue calcification, but did not interfere with bone repair or remodeling. However, if administered between 7 and 21 days post-injury, bisphosphonates temporally and spatially localized to sites of active biomineralization, leading to impaired fracture callus remodeling and permanence of soft tissue calcification. CONCLUSION There is a specific pharmacologic window following polytrauma that bisphosphonates can prevent the consequences of dysregulated biomineralization, yet not impair musculoskeletal regeneration.
Collapse
Affiliation(s)
- M Saito
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Orthopaedic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - S N Moore-Lotridge
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - S Uppuganti
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - S Egawa
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Orthopaedic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - T Yoshii
- Department of Orthopaedic Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - J P Robinette
- School of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - S L Posey
- School of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - B H Y Gibson
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, Vanderbilt University Medical Center, 2215-B Garland Ave, 1155 Medical Research Building 4, Nashville, TN, 37232, USA
| | - H A Cole
- Department of Nuclear Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - G D Hawley
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - S A Guelcher
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University Medical Center, Nashville, TN, USA
| | - S B Tanner
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Allergy, Pulmonary, and Critical Care, Vanderbilt University Medical Center, Nashville, TN, USA
| | - J R McCarthy
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY, 13501, USA
| | - J S Nyman
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, USA.
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Biomedical Engineering, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Veterans Affairs, Tennessee Valley Health Care System, 1215 21st Ave S, Suite 4200, Nashville, TN, 37232, USA.
| | - J G Schoenecker
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, USA.
- Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pharmacology, Vanderbilt University Medical Center, 2215-B Garland Ave, 1155 Medical Research Building 4, Nashville, TN, 37232, USA.
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
8
|
Kazezian Z, Bull AMJ. A review of the biomarkers and in vivo models for the diagnosis and treatment of heterotopic ossification following blast and trauma-induced injuries. Bone 2021; 143:115765. [PMID: 33285256 DOI: 10.1016/j.bone.2020.115765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/29/2020] [Accepted: 11/18/2020] [Indexed: 12/29/2022]
Abstract
Heterotopic ossification (HO) is the process of de novo bone formation in non-osseous tissues. HO can occur following trauma and burns and over 60% of military personnel with blast-associated amputations develop HO. This rate is far higher than in other trauma-induced HO development. This suggests that the blast effect itself is a major contributing factor, but the pathway triggering HO following blast injury specifically is not yet fully identified. Also, because of the difficulty of studying the disease using clinical data, the only sources remain the relevant in vivo models. The aim of this paper is first to review the key biomarkers and signalling pathways identified in trauma and blast induced HO in order to summarize the molecular mechanisms underlying HO development, and second to review the blast injury in vivo models developed. The literature derived from trauma-induced HO suggests that inflammatory cytokines play a key role directing different progenitor cells to transform into an osteogenic class contributing to the development of the disease. This highlights the importance of identifying the downstream biomarkers under specific signalling pathways which might trigger similar stimuli in blast to those of trauma induced formation of ectopic bone in the tissues surrounding the site of the injury. The lack of information in the literature regarding the exact biomarkers leading to blast associated HO is hampering the design of specific therapeutics. The majority of existing blast injury in vivo models do not fully replicate the combat scenario in terms of blast, fracture and amputation; these three usually happen in one insult. Hence, this paper highlights the need to replicate the full effect of the blast in preclinical models to better understand the mechanism of blast induced HO development and to enable the design of a specific therapeutic to supress the formation of ectopic bone.
Collapse
Affiliation(s)
- Zepur Kazezian
- Centre for Blast Injury Studies, Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom.
| | - Anthony M J Bull
- Centre for Blast Injury Studies, Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| |
Collapse
|
9
|
Moore-Lotridge SN, Ihejirika R, Gibson BHY, Posey SL, Mignemi NA, Cole HA, Hawley GD, Uppuganti S, Nyman JS, Schoenecker JG. Severe injury-induced osteoporosis and skeletal muscle mineralization: Are these related complications? Bone Rep 2020; 14:100743. [PMID: 33490313 PMCID: PMC7804603 DOI: 10.1016/j.bonr.2020.100743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 12/10/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
Severely injured patients are beleaguered by complications during convalescence, such as dysregulated biomineralization. Paradoxically, severely injured patients experience the loss of bone (osteoporosis), resulting in diminished skeletal integrity and increased risk of fragility fractures; yet they also accrue mineralization in soft tissues, resulting in complications such as heterotopic ossification (HO). The pathophysiology leading to dysregulated biomineralization in severely injured patients is not well defined. It has been postulated that these pathologies are linked, such that mineralization is "transferred" from the bone to soft tissue compartments. The goal of this study was to determine if severe injury-induced osteoporosis and soft tissue calcification are temporally coincident following injury. Using a murine model of combined burn and skeletal muscle injury to model severe injury, it was determined that mice developed significant progressive bone loss, detectable as early as 3 days post injury, and marked soft tissue mineralization by 7 days after injury. The observed temporal concordance between the development of severe injury-induced osteoporosis and soft tissue mineralization indicates the plausibility that these complications share a common pathophysiology, though further experiments are required.
Collapse
Key Words
- BMD, bone mineral density
- BV/TV, bone volume/tissue volume
- Biomineralization
- Burn
- CTX, cardiotoxin
- DC, dystrophic calcification
- DPI, days post injury
- DXA, dual energy X-ray absorptiometry
- Dystrophic calcification
- H&E, hematoxylin and eosin
- HO, heterotopic ossification
- Heterotopic ossificaiton
- Osteoporosis
- STiCSS, soft tissue calcification scoring system
- Severe injury
- Severe injury-induced osteoporosis
- Soft tissue mineralization
- Trauma
- μCT, microcomputed tomography
Collapse
Affiliation(s)
- Stephanie N Moore-Lotridge
- Department of Orthopaedics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Center of Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rivka Ihejirika
- Vanderbilt University Medical School, Vanderbilt University, Nashville, TN 37232, USA
| | - Breanne H Y Gibson
- Department of Orthopaedics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Samuel L Posey
- Vanderbilt University Medical School, Vanderbilt University, Nashville, TN 37232, USA
| | - Nicholas A Mignemi
- Department of Orthopaedics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Heather A Cole
- Department of Nuclear Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Gregory D Hawley
- Department of Orthopaedics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sasidhar Uppuganti
- Department of Orthopaedics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Center of Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Tennessee Valley Healthcare System, Vanderbilt University, Nashville, TN 37232, USA
| | - Jeffry S Nyman
- Department of Orthopaedics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Center of Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Tennessee Valley Healthcare System, Vanderbilt University, Nashville, TN 37232, USA
| | - Jonathan G Schoenecker
- Department of Orthopaedics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Center of Bone Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
10
|
Łęgosz P, Sarzyńska S, Pulik Ł, Stępiński P, Niewczas P, Kotela A, Małdyk P. Heterotopic ossification and clinical results after total hip arthroplasty using the anterior minimally invasive and anterolateral approaches. Arch Med Sci 2020; 16:613-620. [PMID: 32399110 PMCID: PMC7212234 DOI: 10.5114/aoms.2018.78653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/24/2017] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Total hip arthroplasty (THA) is considered the gold standard in the treatment of advanced osteoarthritis of the hip. The aim of this study was to compare the incidence of heterotopic ossification (HO), the quality of life and the function in two groups of patients who underwent total hip arthroplasty (THA), performed using the anterior minimally invasive (MIS) and the anterolateral approaches. MATERIAL AND METHODS Retrospective analysis of 597 patients who underwent THA in 2009-2013 was performed. In all 597 cohort data on medical history were retrieved. HO occurrence was recorded for 331 patients and was evaluated based on Brooker's scale in the X-ray scan. Functional and quality of life scores were obtained for 238 patients. The following scales were used for the survey: Harris Hip Score, Western Ontario and McMaster Universities Osteoarthritis Index, Visual Analogue Scale, and Hip and Knee Arthroplasty Satisfaction Scale. RESULTS Patients operated on from the MIS approach had statistically significantly (p < 0.05) better results with all the clinical scales used, except the Visual Analogue Scale (p > 0.05). HO was slightly more common after the MIS approach (52.5%) compared to the anterolateral approach (49.76%), though the difference was not statistically significant (p > 0.05). CONCLUSIONS The MIS approach was associated with better clinical and functional outcomes. In the aspect of HO, we were not able to show the superiority of the MIS approach in terms of incidence.
Collapse
Affiliation(s)
- Paweł Łęgosz
- Department of Orthopedics and Traumatology, 1 Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Sylwia Sarzyńska
- Department of Orthopedics and Traumatology, 1 Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Łukasz Pulik
- Department of Orthopedics and Traumatology, 1 Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Piotr Stępiński
- Department of Orthopedics and Traumatology, 1 Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Paweł Niewczas
- Department of Orthopedics and Traumatology, 1 Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Andrzej Kotela
- Department of Orthopedics and Traumatology, CSK MSW, Warsaw, Poland
| | - Paweł Małdyk
- Department of Orthopedics and Traumatology, 1 Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
11
|
Li L, Jiang Y, Lin H, Shen H, Sohn J, Alexander PG, Tuan RS. Muscle injury promotes heterotopic ossification by stimulating local bone morphogenetic protein-7 production. J Orthop Translat 2019; 18:142-153. [PMID: 31508317 PMCID: PMC6718974 DOI: 10.1016/j.jot.2019.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 02/01/2023] Open
Abstract
Background Heterotopic ossification (HO) is a pathological condition of abnormal bone formation in soft tissue, which causes pain and restricted range of motion in patients. There are two broad categories of HO, hereditary and acquired. Although different types of HO do not use identical mechanistic pathways of pathogenesis, muscle injury appears to be a unifying feature for all types of HO. However, little is known about the mechanisms by which muscle injury facilitates HO formation. Objective and method This study aimed to explore the cellular and molecular mechanisms linking muscle injury to HO by using cardiotoxin to induce muscle injury in a bone morphogenetic protein-2 (BMP-2)-induced HO mouse model. Results We found that muscle injury augmented HO formation and that this effect was correlated with BMP signalling activation and upregulation of BMP-7 expression at the early phase of HO progression. We further demonstrated that inhibition of BMP-7 activity in vitro suppressed the osteogenesis-promoting effect of conditioned medium derived from injured muscle tissue and in vivo reduced the volume of HO formation. We also showed that antiinflammatory drug treatment reduced the volume of HO with concomitant reduction in BMP-7 production. Conclusion In summary, our study has identified BMP-7 as a key osteoinductive factor in injured muscle that facilitates HO formation. The translational potential of this article Our results provide a candidate mechanistic rationale for the use of antiinflammatory drugs in the prevention of HO.
Collapse
Affiliation(s)
- La Li
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Graduate Program of Cellular and Molecular Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yangzi Jiang
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hang Lin
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - He Shen
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jihee Sohn
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peter G. Alexander
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rocky S. Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Graduate Program of Cellular and Molecular Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Corresponding author. Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Moore-Lotridge SN, Li Q, Gibson BHY, Martin JT, Hawley GD, Arnold TH, Saito M, Tannouri S, Schwartz HS, Gumina RJ, Cates JMM, Uitto J, Schoenecker JG. Trauma-Induced Nanohydroxyapatite Deposition in Skeletal Muscle is Sufficient to Drive Heterotopic Ossification. Calcif Tissue Int 2019; 104:411-425. [PMID: 30515544 PMCID: PMC6437294 DOI: 10.1007/s00223-018-0502-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/27/2018] [Indexed: 02/05/2023]
Abstract
Heterotopic ossification (HO), or the pathologic formation of bone within soft tissues, is a significant complication following severe injuries as it impairs joint motion and function leading to loss of the ability to perform activities of daily living and pain. While soft tissue injury is a prerequisite of developing HO, the exact molecular pathology leading to trauma-induced HO remains unknown. Through prior investigations aimed at identifying the causative factors of HO, it has been suggested that additional predisposing factors that favor ossification within the injured soft tissues environment are required. Considering that chondrocytes and osteoblasts initiate physiologic bone formation by depositing nanohydroxyapatite crystal into their extracellular environment, we investigated the hypothesis that deposition of nanohydroxyapatite within damaged skeletal muscle is likewise sufficient to predispose skeletal muscle to HO. Using a murine model genetically predisposed to nanohydroxyapatite deposition (ABCC6-deficient mice), we observed that following a focal muscle injury, nanohydroxyapatite was robustly deposited in a gene-dependent manner, yet resolved via macrophage-mediated regression over 28 days post injury. However, if macrophage-mediated regression was inhibited, we observed persistent nanohydroxyapatite that was sufficient to drive the formation of HO in 4/5 mice examined. Together, these results revealed a new paradigm by suggesting the persistent nanohydroxyapatite, referred to clinically as dystrophic calcification, and HO may be stages of a pathologic continuum, and not discrete events. As such, if confirmed clinically, these findings support the use of early therapeutic interventions aimed at preventing nanohydroxyapatite as a strategy to evade HO formation.
Collapse
Affiliation(s)
- Stephanie N Moore-Lotridge
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN, 37232, USA
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Ave, Robinson Research Building, Nashville, TN, 37232, USA
| | - Qiaoli Li
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 233 South Tenth Street, Bluemle Life Sciences Building, Room 450, Philadelphia, PA, 19107, USA
| | - Breanne H Y Gibson
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN, 37232, USA
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Ave, Robinson Research Building, Nashville, TN, 37232, USA
| | - Joseph T Martin
- College of Arts and Science, Vanderbilt University, 301 Kirkland Hall, Nashville, TN, 37240, USA
| | - Gregory D Hawley
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN, 37232, USA
| | - Thomas H Arnold
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN, 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, 4202 Doctor's Office Tower, 2200 Children's Way, Nashville, TN, 37232, USA
| | - Masanori Saito
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN, 37232, USA
| | - Sami Tannouri
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 233 South Tenth Street, Bluemle Life Sciences Building, Room 450, Philadelphia, PA, 19107, USA
| | - Herbert S Schwartz
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN, 37232, USA
| | - Richard J Gumina
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, 1161 21st Ave. South, Nashville, TN, 37232, USA
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, 2220 Pierce Ave, Preston Research Building, Nashville, TN, 37232, USA
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Ave, Robinson Research Building, Nashville, TN, 37232, USA
- University of Nebraska Medical Center, Omaha, NE, USA
| | - Justin M M Cates
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, 1161 21st Ave. South, Nashville, TN, 37232, USA
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 233 South Tenth Street, Bluemle Life Sciences Building, Room 450, Philadelphia, PA, 19107, USA
| | - Jonathan G Schoenecker
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN, 37232, USA.
- Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, 1161 21st Ave. South, Nashville, TN, 37232, USA.
- Department of Pediatrics, Vanderbilt University Medical Center, 4202 Doctor's Office Tower, 2200 Children's Way, Nashville, TN, 37232, USA.
- Department of Pharmacology, Vanderbilt University, 2200 Pierce Ave, Robinson Research Building, Nashville, TN, 37232, USA.
- , 2200 Pierce Ave, Robinson Research Building, Rm 454, Nashville, TN, 37232, USA.
| |
Collapse
|
13
|
Łęgosz P, Drela K, Pulik Ł, Sarzyńska S, Małdyk P. Challenges of heterotopic ossification-Molecular background and current treatment strategies. Clin Exp Pharmacol Physiol 2018; 45:1229-1235. [DOI: 10.1111/1440-1681.13025] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 01/27/2023]
Affiliation(s)
- Paweł Łęgosz
- Department of Orthopaedics and Traumatology; 1st Faculty of Medicine; Medical University of Warsaw; Warsaw Poland
| | - Katarzyna Drela
- NeuroRepair Department; Mossakowski Medical Research Centre; Polish Academy of Sciences; Warsaw Poland
| | - Łukasz Pulik
- Department of Orthopaedics and Traumatology; 1st Faculty of Medicine; Medical University of Warsaw; Warsaw Poland
| | - Sylwia Sarzyńska
- Department of Orthopaedics and Traumatology; 1st Faculty of Medicine; Medical University of Warsaw; Warsaw Poland
| | - Paweł Małdyk
- Department of Orthopaedics and Traumatology; 1st Faculty of Medicine; Medical University of Warsaw; Warsaw Poland
| |
Collapse
|
14
|
Moore-Lotridge SN, Oelsner WK, Ihejirika Y, Desai MJ, Gebhart SS, Schoenecker JG. Novel preclinical murine model of trauma-induced elbow stiffness. J Exp Orthop 2018; 5:36. [PMID: 30229498 PMCID: PMC6143496 DOI: 10.1186/s40634-018-0155-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 09/13/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Peri-articular injury may result in functional deficits and pain. In particular, post-traumatic elbow stiffness is a debilitating condition, precluding patients from performing activities of daily living. As such, clinicians and basic scientists alike, aim to develop novel therapeutic interventions to prevent and treat elbow stiffness; thereby reducing patient morbidity. Yet, there is a paucity of pre-clinical models of peri-articular stiffness, especially of the upper extremity, necessary to develop and test the efficacy of therapeutics. We set out to develop a pre-clinical murine model of elbow stiffness, resulting from soft tissue injury, with features characteristic of pathology observed in these patients. METHODS A soft tissue peri-elbow injury was inflicted in mice using cardiotoxin. Pathologic tissue repair was induced by creating an investigator-imposed deficiency of plasminogen, a protease essential for musculoskeletal tissue repair. Functional testing was conducted through analysis of grip strength and gait. Radiography, microcomputed tomography, and histological analyses were employed to quantify development of heterotopic ossification. RESULTS Animals with peri-elbow soft tissues injury in conjunction with an investigator-imposed plasminogen deficiency, developed a significant loss of elbow function measured by grip strength (2.387 ± 0.136 N vs 1.921 ± 0.157 N, ****, p < 0.0001) and gait analysis (35.05 ± 2.775 mm vs 29.87 ± 2.075 mm, ***, p < 0.0002). Additionally, plasminogen deficient animals developed capsule thickening, delayed skeletal muscle repair, fibrosis, chronic inflammation, and heterotopic ossification; all features characteristic of pathology observed in patients with trauma-induced elbow stiffness. CONCLUSION A soft tissue injury to the peri-elbow soft tissue with a concomitant deficiency in plasminogen, instigates elbow stiffness and pathologic features similar to those observed in humans. This pre-clinical model is valuable for translational studies designed to investigate the contributions of pathologic features to elbow stiffness or as a high-throughput model for testing therapeutic strategies designed to prevent and treat trauma-induced elbow stiffness.
Collapse
Affiliation(s)
- Stephanie N Moore-Lotridge
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN, 37232, USA.,Department of Pharmacology, Vanderbilt University Medical Center, 2200 Pierce Ave, Robinson Research Building, Rm 454, Nashville, TN, 37232, USA
| | - William K Oelsner
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN, 37232, USA
| | - Yael Ihejirika
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN, 37232, USA
| | - Mihir J Desai
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN, 37232, USA
| | - Sandra S Gebhart
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN, 37232, USA
| | - Jonathan G Schoenecker
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, 1215 21st Ave. South, Suite 4200 MCE, South Tower, Nashville, TN, 37232, USA. .,Department of Pathology Microbiology and Immunology, Vanderbilt University Medical Center, 1161 21st Ave. South, Nashville, TN, 37232, USA. .,Department of Pediatrics, Vanderbilt University Medical Center, 4202 Doctor's Office Tower, 2200 Children's Way, Nashville, TN, 37232, USA. .,Department of Pharmacology, Vanderbilt University Medical Center, 2200 Pierce Ave, Robinson Research Building, Rm 454, Nashville, TN, 37232, USA.
| |
Collapse
|
15
|
Mignemi NA, Yuasa M, Baker CE, Moore SN, Ihejirika RC, Oelsner WK, Wallace CS, Yoshii T, Okawa A, Revenko AS, MacLeod AR, Bhattacharjee G, Barnett JV, Schwartz HS, Degen JL, Flick MJ, Cates JM, Schoenecker JG. Plasmin Prevents Dystrophic Calcification After Muscle Injury. J Bone Miner Res 2017; 32:294-308. [PMID: 27530373 DOI: 10.1002/jbmr.2973] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/09/2016] [Accepted: 08/14/2016] [Indexed: 01/20/2023]
Abstract
Extensive or persistent calcium phosphate deposition within soft tissues after severe traumatic injury or major orthopedic surgery can result in pain and loss of joint function. The pathophysiology of soft tissue calcification, including dystrophic calcification and heterotopic ossification (HO), is poorly understood; consequently, current treatments are suboptimal. Here, we show that plasmin protease activity prevents dystrophic calcification within injured skeletal muscle independent of its canonical fibrinolytic function. After muscle injury, dystrophic calcifications either can be resorbed during the process of tissue healing, persist, or become organized into mature bone (HO). Without sufficient plasmin activity, dystrophic calcifications persist after muscle injury and are sufficient to induce HO. Downregulating the primary inhibitor of plasmin (α2-antiplasmin) or treating with pyrophosphate analogues prevents dystrophic calcification and subsequent HO in vivo. Because plasmin also supports bone homeostasis and fracture repair, increasing plasmin activity represents the first pharmacologic strategy to prevent soft tissue calcification without adversely affecting systemic bone physiology or concurrent muscle and bone regeneration. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Nicholas A Mignemi
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Masato Yuasa
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Orthopaedics, Tokyo Medical Dental University, Tokyo, Japan
| | - Courtney E Baker
- School of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephanie N Moore
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rivka C Ihejirika
- School of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William K Oelsner
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Toshitaka Yoshii
- Department of Orthopaedics, Tokyo Medical Dental University, Tokyo, Japan
| | - Atsushi Okawa
- Department of Orthopaedics, Tokyo Medical Dental University, Tokyo, Japan
| | | | | | | | - Joey V Barnett
- School of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Herbert S Schwartz
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jay L Degen
- Department of Experimental Hematology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Matthew J Flick
- Department of Experimental Hematology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Justin M Cates
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jonathan G Schoenecker
- Department of Orthopaedics and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|