1
|
Adeneye AA, Babatope FE, Adesiji-Adelekan AE, Olorundare OE, Okoye II. Tadalafil pretreatment attenuates doxorubicin-induced hepatorenal toxicity by modulating oxidative stress and inflammation in Wistar rats. Toxicol Rep 2024; 13:101737. [PMID: 39391709 PMCID: PMC11465077 DOI: 10.1016/j.toxrep.2024.101737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
Doxorubicin (DOX) is a widely used anticancer agent, but its clinical application is limited by significant off-target hepatorenal toxicity. Tadalafil (TAD), a selective phosphodiesterase-5 inhibitor used mainly for erectile dysfunction and pulmonary arterial hypertension, has shown potential in reducing oxidative stress. This study investigated TAD's chemoprotective effects and underlying mechanisms in DOX-induced hepatorenal toxicity in rats over 12 days. Eight groups of six rats each were orally pretreated with sterile water, silymarin (SIL), or TAD one hour before receiving intraperitoneal injections of 2.5 mg/kg DOX. On the 13th day, the rats were humanely sacrificed under inhaled halothane anesthesia, and serum was collected for hepatic and renal function tests, while liver and kidney tissues were analyzed for antioxidant enzyme activity, pro-inflammatory cytokines assay, and histopathological evaluation. DOX successfully induced hepatorenal toxicity, evidenced by significant increases (p<0.001, p<0.0001) in serum K+, urea, and creatinine levels, along with decreases in HCO3 -, TCa2+, and Cl-. Tissue analysis showed reduced SOD, CAT, GST, and GPx activities, with elevated MDA and GSH levels. TAD pretreatment significantly ameliorated these biochemical alterations (p<0.05, p<0.001, p<0.0001), suggesting its potential as an effective chemoprophylactic adjuvant in the development of DOX-induced hepatorenal toxicity.
Collapse
Affiliation(s)
- Adejuwon Adewale Adeneye
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Clinical Sciences, Lagos State University College of Medicine, 1-5 Oba Akinjobi Way, G.R.A., Ikeja, Lagos State, Nigeria
- Directorate of Research Management and Innovation, 3rd Floor, Babatunde Raji Fashola Senate Building, Lagos State University, Ojo, Lagos State, Nigeria
| | - Fidaraoluwa Esther Babatope
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Clinical Sciences, Lagos State University College of Medicine, 1-5 Oba Akinjobi Way, G.R.A., Ikeja, Lagos State, Nigeria
| | - Ademilayo Eunice Adesiji-Adelekan
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Clinical Sciences, Lagos State University College of Medicine, 1-5 Oba Akinjobi Way, G.R.A., Ikeja, Lagos State, Nigeria
| | - Olufunke Esan Olorundare
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Ikechukwu Innocent Okoye
- Department of Oral Pathology and Medicine, Faculty of Dentistry, Lagos State University College of Medicine, 1-5 Oba Akinjobi Way, G.R.A., Ikeja, Lagos State, Nigeria
| |
Collapse
|
2
|
Takayama A, Yoshida S, Kawakami K. Tadalafil use is associated with a lower incidence of Type 2 diabetes in men with benign prostatic hyperplasia: A population-based cohort study. J Intern Med 2024; 296:422-434. [PMID: 39287476 DOI: 10.1111/joim.20012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
BACKGROUND Tadalafil, commonly prescribed for benign prostatic hyperplasia (BPH), may benefit patients with Type 2 diabetes mellitus (T2DM) for glycemic markers and complications. However, the association between the long-term use of tadalafil and the incidence of T2DM has not been investigated. METHODS We emulated a target trial of tadalafil use (5 mg/day) and the risk of T2DM using a population-based claims database in Japan. Patients who initiated tadalafil or alpha-blockers for BPH and had no history of diabetes diagnosis, no dispensing of glucose-lowering drugs, and no history of hemoglobin A1c levels of ≥6.5% (47-48 mmol/mol) were included. The primary outcome was the incidence of T2DM. Pooled logistic regression was used to estimate adjusted risk ratios (RRs) and 5-year cumulative incidence differences (CIDs). RESULTS A total of 5180 participants initiated tadalafil treatment and were compared with 20,049 patients who initiated alpha-blockers. The median follow-up time for each arm was 27.2 months (interquartile range [IQR], 12.0-47.9) in tadalafil users and 31.3 months (IQR, 13.7-57.2) in alpha-blocker users. The incidence rates of T2DM in tadalafil and alpha-blocker users were 5.4 (95% confidence interval [CI], 4.0-7.2) and 8.8 (95% CI, 7.8-9.8) per 1000-person years, respectively. Initiation of tadalafil was associated with a reduced risk of T2DM (RR, 0.47; 95% CI, 0.39-0.62; 5-year CID, -0.031; 95% CI, -0.040 to -0.019). CONCLUSION The incidence of T2DM was lower in men with BPH treated with tadalafil than in those treated with alpha-blockers. Thus, tadalafil may be more beneficial than alpha-blockers in preventing T2DM.
Collapse
Affiliation(s)
- Atsushi Takayama
- Department of Pharmacoepidemiology, Kyoto University Graduate School of Medicine and Public Health, Kyoto, Japan
| | - Satomi Yoshida
- Department of Clinical Medicine, Division of Social Medicine, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Koji Kawakami
- Department of Pharmacoepidemiology, Kyoto University Graduate School of Medicine and Public Health, Kyoto, Japan
| |
Collapse
|
3
|
Saha P, Sharma SS. RNA Interference Unleashed: Current Perspective of Small Interfering RNA (siRNA) Therapeutics in the Treatment of Neuropathic Pain. ACS Pharmacol Transl Sci 2024; 7:2951-2970. [PMID: 39416962 PMCID: PMC11475279 DOI: 10.1021/acsptsci.4c00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/12/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024]
Abstract
Neuropathic pain (NP) is one of the debilitating pain phenotypes that leads to the progressive degeneration of the central as well as peripheral nervous system. NP is often associated with hyperalgesia, allodynia, paresthesia, tingling, and burning sensations leading to disability, motor dysfunction, and compromised psychological state of the patients. Most of the conventional pharmacological agents are unable to improve the devastating conditions of pain because of their limited efficacy, undesirable side effects, and multifaceted pathophysiology of the diseased condition. A rapid rise in new cases of NP warrants further research for identifying the potential novel therapeutic modalities for treating NP. Recently, small interfering RNA (siRNA) approach has shown therapeutic potential in many disease conditions including NP. Delivery of siRNAs led to potential and selective downregulation of target mRNA and abolished the pain-related behaviors/pathophysiological pain response. The crucial role of siRNA in the treatment of NP by considering all of the pathways associated with NP that could be managed by siRNA therapeutics has been discussed. However, their therapeutic use is limited by several hurdles such as instability in systemic circulation due to their negative charge and membrane impermeability, off-target effects, immunogenicity, and inability to reach the intended site of action. This review also emphasizes several strategies and techniques to overcome these hurdles for translating these therapeutic siRNAs from bench to bedside by opening a new avenue for obtaining a potential therapeutic approach for treating NP.
Collapse
Affiliation(s)
- Priya Saha
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Shyam S. Sharma
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, Punjab 160062, India
| |
Collapse
|
4
|
Bing J, You H, Dai Y, Ding Y. Progress and research trends in neurogenic bladder after spinal cord injury bibliometric analysis based on web of science database: An observational study. Medicine (Baltimore) 2024; 103:e38491. [PMID: 38875432 PMCID: PMC11175955 DOI: 10.1097/md.0000000000038491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/16/2024] Open
Abstract
Neurogenic bladder (NB) is a significant complication that often occurs after spinal cord injury. It results from urinary dysfunction caused by the injury, disrupting the normal neural control of the bladder and urethra. Symptoms of NB can include urinary frequency, urgency, incontinence, and retention, all of which can greatly impact the quality of life of affected individuals. While there are articles and reviews on NB, fewer specifically address NB following spinal cord injury. This study examined 1095 publications from January 1, 2000, to March 27, 2024, in the Web of Science core database using bibliometric software like VOSviewer, CiteSpace, and Bibliometrics. The analysis revealed an increasing trend in the number of publications, with the United States and China leading in research output. Professor Jeremy B. Myers from the University of Utah had the highest number of publications, while the University of Michigan and the University of Pittsburgh were the institutions with the most publications. The journal Neurourology and Urodynamics had the highest number of articles, and common keywords included management, quality of life, and dysfunction, highlighting key areas of focus for scholars.
Collapse
Affiliation(s)
- Jingyu Bing
- Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong
| | - Haihua You
- Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong
| | - Yaowen Dai
- Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong
| | - Yunxia Ding
- Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong
| |
Collapse
|
5
|
Nakagawa T, Kaneko S. Role of TRPA1 in Painful Cold Hypersensitivity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:245-252. [PMID: 39289286 DOI: 10.1007/978-981-97-4584-5_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is a polymodal cation channel that plays a pivotal role in pain generation after exposure to irritant chemicals and is involved in the sensation of a wide variety of pathological pain. TRPA1 was first reported to be sensitive to noxious cold, but its intrinsic cold sensitivity still remains under debate. To address this issue, we focused on cold hypersensitivity induced by oxaliplatin, a platinum-based chemotherapeutic drug, as a peculiar adverse symptom of acute peripheral neuropathy. We and other groups have shown that oxaliplatin enhances TRPA1 sensitivity to its chemical agonists and reactive oxygen species (ROS). Our in vitro and animal model studies revealed that oxaliplatin, or its metabolite oxalate, inhibits hydroxylation of a proline residue within the N-terminus of human TRPA1 (hTRPA1) via inhibition of prolyl hydroxylase domain-containing protein (PHD), which induces TRPA1 sensitization to ROS. Although hTRPA1 is insensitive to cold, PHD inhibition endows hTRPA1 with cold sensitivity through sensing the small amount of ROS produced after exposure to cold. Hence, we propose that PHD inhibition can unveil the cold sensitivity of hTRPA1 by converting ROS signaling into cold sensitivity. Furthermore, in this review, we summarize the role of TRPA1 in painful cold hypersensitivity during peripheral vascular impairment.
Collapse
Affiliation(s)
- Takayuki Nakagawa
- Department of Clinical Pharmacology and Pharmacotherapy, Wakayama Medical University, Wakayama, Japan.
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Swiecicka A. The efficacy of PDE5 inhibitors in diabetic patients. Andrology 2023; 11:245-256. [PMID: 36367281 PMCID: PMC10107754 DOI: 10.1111/andr.13328] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/27/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Phosphodiesterase 5 inhibitors (PDE5i), since their introduction in the late 1990s, have proven their efficacy in treating several conditions, predominantly pulmonary hypertension and erectile dysfunction where they remain the first-line therapeutic option. However, in the recent years, growing evidence from both animal and human studies has emerged to suggest the additional benefits of PDE5i in cardiovascular and metabolic disorders. This is of specific interest to the diabetes population where prevalent cardiovascular disease and metabolic dysregulation significantly contribute to the increased morbidity and mortality. OBJECTIVES To examine the available data on the non-standard, pleiotropic effects of PDE5i in patients with diabetes mellitus. MATERIALS AND METHODS The review of the published background research, preclinical studies and clinical trials. RESULTS In human studies, PDE5 inhibition appeared to be associated with reduced cardiovascular mortality and overall improved clinical outcomes in those with established cardiovascular disease. PDE5i were also consistently found to reduce albuminuria in subjects with diabetic nephropathy. Furthermore, animal data suggest a plausible effect of this group of medication on sensory function and neuropathic symptoms in diabetic neuropathy as well as improved wound healing. A decrease in insulin resistance and augmentation of beta cell function seen in preclinical studies has not been consistently demonstrated in human trials. DISCUSSION AND CONCLUSION In animal models, PDE5 inhibition appears to decrease oxidative stress and reduce some of the micro- and macrovascular complications associated with diabetes. However, data from human trials are limited and largely inconsistent, highlighting the need for adequately powered, randomised-controlled trials in diabetic cohorts in order to fully assess the benefits of PDE5i in this group of patients.
Collapse
Affiliation(s)
- Agnieszka Swiecicka
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus
| |
Collapse
|
7
|
Nutraceutical Prevention of Diabetic Complications—Focus on Dicarbonyl and Oxidative Stress. Curr Issues Mol Biol 2022; 44:4314-4338. [PMID: 36135209 PMCID: PMC9498143 DOI: 10.3390/cimb44090297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/25/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative and dicarbonyl stress, driven by excess accumulation of glycolytic intermediates in cells that are highly permeable to glucose in the absence of effective insulin activity, appear to be the chief mediators of the complications of diabetes. The most pathogenically significant dicarbonyl stress reflects spontaneous dephosphorylation of glycolytic triose phosphates, giving rise to highly reactive methylglyoxal. This compound can be converted to harmless lactate by the sequential activity of glyoxalase I and II, employing glutathione as a catalyst. The transcription of glyoxalase I, rate-limiting for this process, is promoted by Nrf2, which can be activated by nutraceutical phase 2 inducers such as lipoic acid and sulforaphane. In cells exposed to hyperglycemia, glycine somehow up-regulates Nrf2 activity. Zinc can likewise promote glyoxalase I transcription, via activation of the metal-responsive transcription factor (MTF) that binds to the glyoxalase promoter. Induction of glyoxalase I and metallothionein may explain the protective impact of zinc in rodent models of diabetic complications. With respect to the contribution of oxidative stress to diabetic complications, promoters of mitophagy and mitochondrial biogenesis, UCP2 inducers, inhibitors of NAPDH oxidase, recouplers of eNOS, glutathione precursors, membrane oxidant scavengers, Nrf2 activators, and correction of diabetic thiamine deficiency should help to quell this.
Collapse
|
8
|
Huyut Z, Alp HH, Bakan N, Yıldırım S, Şekeroğlu MR. Stimulating effects of vardenafil, tadalafil, and udenafil on vascular endothelial growth factor, angiogenesis, vitamin D 3, bone morphogenic proteins in ovariectomized rats. Arch Physiol Biochem 2022; 128:1121-1127. [PMID: 32314927 DOI: 10.1080/13813455.2020.1755695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVE This study investigated the effect of vardenafil, tadalafil, and udenafil from phosphodiesterase-5 inhibitors (PDE-5Is) on bone morphogenic-protein (BMP)2 and 4 levels, along with angiogenesis in ovariectomized rat's kidney. METHOD Rats were randomly divided into five groups (n = 10). Sham: abdomen was opened, and closed. OVX: ovaries were removed. OVX + vardenafil, OVX + tadalafil, and OVX + udenafil groups: ovaries were removed and closed, and after 6 months from postoperative, 10 mg/kg of vardenafil, tadalafil, and udenafil were administrated as daily a single-dose for 60 days, respectively. Histopathologic and immunohistochemical examinations were performed for angiogenesis, and biochemical analysis for vascular endothelial growth-factor (VEGF), VitaminD3, BMP2 and 4 levels in rat's kidney. RESULTS VEGF, BMP2 and 4, VitaminD3, and angiogenesis were high in the all inhibitor groups compared with the sham and OVX (p < .05). However, BMP4 levels were only high in the OVX + tadalafil group (p < .05). CONCLUSION The results indicated that vardenafil, udenafil, and especially tadalafil increased VEGF, BMP2, and VitaminD3 levels.
Collapse
Affiliation(s)
- Zübeyir Huyut
- Medical Faculty, Department of Biochemistry, Van Yuzuncu Yıl University, Van, Turkey
| | - Hamit Hakan Alp
- Medical Faculty, Department of Biochemistry, Van Yuzuncu Yıl University, Van, Turkey
| | - Nuri Bakan
- Medical Faculty, Department of Biochemistry, Ataturk University, Erzurum, Turkey
| | - Serkan Yıldırım
- Faculty of Veterinary, Department of Pathology, Ataturk University, Erzurum, Turkey
| | | |
Collapse
|
9
|
The microvascular hypothesis underlying neurologic manifestations of long COVID-19 and possible therapeutic strategies. Cardiovasc Endocrinol Metab 2021; 10:193-203. [PMID: 34765889 PMCID: PMC8575441 DOI: 10.1097/xce.0000000000000253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023]
Abstract
With the ongoing distribution of the coronavirus disease (COVID) vaccines, the pandemic of our age is ending, leaving the world to deal with its well-documented aftereffects. Long COVID comprises a variety of symptoms, of which the neurological component prevails. The most permeating theory on the genesis of these symptoms builds upon the development of microvascular dysfunction similar to that seen in numerous vascular diseases such as diabetes. This can occur through the peripheral activation of angiotensin-converting enzyme 2 receptors, or through exacerbations of pro-inflammatory cytokines that can remain in circulation even after the infection diminishes. Several drugs have been identified to act on the neurovascular unit to promote repair, such as gliptins, and others. They also succeeded in improving neurologic outcome in diabetic patients. The repurposing of such drugs for treatment of long COVID-19 can possibly shorten the time to recovery of long COVID-19 syndrome.
Collapse
|
10
|
Brady L, Pai S, Iaquinto JM, Wang YN, Ledoux WR. The compressive, shear, biochemical, and histological characteristics of diabetic and non-diabetic plantar skin are minimally different. J Biomech 2021; 129:110797. [PMID: 34688066 DOI: 10.1016/j.jbiomech.2021.110797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 01/30/2023]
Abstract
Diabetes is associated with lower limb co-morbidities, including ulceration and subsequent amputation. As a systemic disease, diabetes affects the microstructure of soft tissues, and material microstructural changes are known to affect the macroscale mechanics. However, the associations between diabetes-related disruptions to essential microstructural components and mechanical changes in plantar skin with diabetes has not been thoroughly characterized. Plantar skin specimens were collected from four diabetic and eight non-diabetic donors at six plantar locations (hallux; first, third, and fifth metatarsals; lateral midfoot; calcaneus) from matched pairs. Mechanical testing was performed on fresh frozen specimens from one foot, and histomorphological measurement and biochemical quantification were performed on specimens from the other foot. Mechanical (compressive and shear moduli and viscoelastic slopes) and biochemical/histological (total quantity of collagen and elastin; dermal and epidermal thickness) parameters were correlated using linear mixed effects regression. There were no significant differences by disease state. Skin thicknesses were positively correlated with initial compression modulus and all three shear moduli. The final compressive modulus was significantly lower at the third metatarsal than the fifth metatarsal, lateral midfoot, and calcaneus, while the final shear modulus was significantly higher at the calcaneus than at the hallux, first, and third metatarsals. Epidermal thickness was significantly higher at the calcaneus compared to all other locations. While differences were not significant by disease state, the strong differences by locations and significant but weak correlations between skin thickness and mechanics can inform future research to understand the mechanism of ulcer formation in the diabetic foot.
Collapse
Affiliation(s)
- Lynda Brady
- VA RR&D Center for Limb Loss and MoBility (CLiMB), Seattle, WA 98108, USA; Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Shruti Pai
- VA RR&D Center for Limb Loss and MoBility (CLiMB), Seattle, WA 98108, USA; Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Joseph M Iaquinto
- VA RR&D Center for Limb Loss and MoBility (CLiMB), Seattle, WA 98108, USA; Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Yak-Nam Wang
- VA RR&D Center for Limb Loss and MoBility (CLiMB), Seattle, WA 98108, USA; Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, Seattle, WA 98195, USA
| | - William R Ledoux
- VA RR&D Center for Limb Loss and MoBility (CLiMB), Seattle, WA 98108, USA; Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA; Department of Orthopaedics & Sports Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
11
|
An L, Shen Y, Chopp M, Zacharek A, Venkat P, Chen Z, Li W, Qian Y, Landschoot-Ward J, Chen J. Deficiency of Endothelial Nitric Oxide Synthase (eNOS) Exacerbates Brain Damage and Cognitive Deficit in A Mouse Model of Vascular Dementia. Aging Dis 2021; 12:732-746. [PMID: 34094639 PMCID: PMC8139201 DOI: 10.14336/ad.2020.0523] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/23/2020] [Indexed: 12/19/2022] Open
Abstract
Vascular Dementia (VaD) accounts for nearly 20% of all cases of dementia. eNOS plays an important role in neurovascular remodeling, anti-inflammation, and cognitive functional recovery after stroke. In this study, we investigated whether eNOS regulates brain damage, cognitive function in mouse model of bilateral common carotid artery stenosis (BCAS) induced VaD. Late-adult (6-8 months) C57BL/6J and eNOS knockout (eNOS-/-) mice were subjected to BCAS (n=12/group) or sham group (n=8/group). BCAS was performed by applying microcoils to both common carotid arteries. Cerebral blood flow (CBF) and blood pressure were measured. A battery of cognitive functional tests was performed, and mice were sacrificed 30 days after BCAS. Compared to corresponding sham mice, BCAS in wild-type (WT) and eNOS-/- mice significantly: 1) induces short term, long term memory loss, spatial learning and memory deficits; 2) decreases CBF, increases ischemic cell damage, including apoptosis, white matter (WM) and axonal damage; 3) increases blood brain barrier (BBB) leakage, decreases aquaporin-4 (AQP4) expression and vessel density; 4) increases microglial, astrocyte activation and oxidative stress in the brain; 5) increases inflammatory factor interleukin-1 receptor-associated kinase-1(IRAK-1) and amyloid beta (Aβ) expression in brain; 6) increases IL-6 and IRAK4 expression in brain. eNOS-/-sham mice exhibit increased blood pressure, decreased iNOS and nNOS in brain compared to WT-sham mice. Compared to WT-BCAS mice, eNOS-/-BCAS mice exhibit worse vascular and WM/axonal damage, increased BBB leakage and inflammatory response, increased cognitive deficit, decreased iNOS, nNOS in brain. eNOS deficit exacerbates BCAS induced brain damage and cognitive deficit.
Collapse
Affiliation(s)
- Lulu An
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA
| | - Yi Shen
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA.,2Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China (Current address)
| | - Michael Chopp
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA.,3Department of Physics, Oakland University, Rochester, MI-48309, USA
| | - Alex Zacharek
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA
| | - Poornima Venkat
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA
| | - Zhili Chen
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA
| | - Wei Li
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA
| | - Yu Qian
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA
| | | | - Jieli Chen
- 1Department of Neurology, Henry Ford Hospital, Detroit, MI-48202, USA
| |
Collapse
|
12
|
Vieira MC, Monte FBDM, Eduardo Dematte B, Montagnoli TL, Montes GC, da Silva JS, Mendez-Otero R, Trachez MM, Sudo RT, Zapata-Sudo G. Antinociceptive Effect of Lodenafil Carbonate in Rodent Models of Inflammatory Pain and Spinal Nerve Ligation-Induced Neuropathic Pain. J Pain Res 2021; 14:857-866. [PMID: 33833563 PMCID: PMC8020462 DOI: 10.2147/jpr.s295265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/16/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction New therapeutic alternatives for pain relief include the use of phosphodiesterase-5 (PDE5) inhibitors, which could prevent the transmission of painful stimuli by neuron hyperpolarization via nitric oxide (NO)/cyclic 3',5'-guanosine monophosphate (cGMP) pathway. The present work investigated the antinociceptive activity of a new PDE5 inhibitor, lodenafil carbonate, in inflammatory and neuropathic pain models. Methods and Results Although no effect was detected on neurogenic phase of formalin test in mice, oral administration of lodenafil carbonate dose-dependently reduced reactivity in the inflammatory phase (200.6 ± 39.1 to 81.9 ± 18.8 s at 10 μmol/kg, p= 0.0172) and this effect was totally blocked by NO synthase inhibitor, L-Nω-nitroarginine methyl ester (L-NAME). Lodenafil carbonate (10 μmol/kg p.o.) significantly reduced nociceptive response as demonstrated by increased paw withdrawal latency to thermal stimulus (from 6.8 ± 0.7 to 10.6 ± 1.3 s, p= 0.0006) and paw withdrawal threshold to compressive force (from 188.0 ± 14.0 to 252.5 ± 5.3 g, p<0.0001) in carrageenan-induced paw inflammation model. In a spinal nerve ligation-induced neuropathic pain, oral lodenafil carbonate (10 μmol/kg) also reversed thermal hyperalgesia and mechanical allodynia by increasing paw withdrawal latency from 17.9 ± 1.5 to 22.8 ± 1.9 s (p= 0.0062) and paw withdrawal threshold from 26.0 ± 2.8 to 41.4 ± 2.9 g (p= 0.0196). These effects were reinforced by the reduced GFAP (3.4 ± 0.5 to 1.4 ± 0.3%, p= 0.0253) and TNF-alpha (1.1 ± 0.1 to 0.4 ± 0.1%, p= 0.0111) stained area densities as detected by immunofluorescence in ipsilateral dorsal horns. Conclusion Lodenafil carbonate demonstrates important analgesic activity by promoting presynaptic hyperpolarization and preventing neuroplastic changes, which may perpetuate chronic pain, thus representing a potential treatment for neuropathic pain.
Collapse
Affiliation(s)
- Marcio Carneiro Vieira
- Programa de Pós-graduação em Ciências Cirúrgicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil.,Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Fernanda Bezerra de Mello Monte
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Bruno Eduardo Dematte
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Tadeu Lima Montagnoli
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Guilherme Carneiro Montes
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Jaqueline Soares da Silva
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Rosalia Mendez-Otero
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio De Janeiro, 21941-902, Brazil
| | - Margarete Manhães Trachez
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Roberto Takashi Sudo
- Programa de Pós-graduação em Ciências Cirúrgicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil.,Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Gisele Zapata-Sudo
- Programa de Pós-graduação em Ciências Cirúrgicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil.,Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| |
Collapse
|
13
|
Bencsik P, Gömöri K, Szabados T, Sántha P, Helyes Z, Jancsó G, Ferdinandy P, Görbe A. Myocardial ischaemia reperfusion injury and cardioprotection in the presence of sensory neuropathy: Therapeutic options. Br J Pharmacol 2020; 177:5336-5356. [PMID: 32059259 PMCID: PMC7680004 DOI: 10.1111/bph.15021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022] Open
Abstract
During the last decades, mortality from acute myocardial infarction has been dramatically reduced. However, the incidence of post-infarction heart failure is still increasing. Cardioprotection by ischaemic conditioning had been discovered more than three decades ago. Its clinical translation, however, is still an unmet need. This is mainly due to the disrupted cardioprotective signalling pathways in the presence of different cardiovascular risk factors, co-morbidities and the medication being taken. Sensory neuropathy is one of the co-morbidities that has been shown to interfere with cardioprotection. In the present review, we summarize the diverse aetiology of sensory neuropathies and the mechanisms by which these neuropathies may interfere with ischaemic heart disease and cardioprotective signalling. Finally, we suggest future therapeutic options targeting both ischaemic heart and sensory neuropathy simultaneously. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.23/issuetoc.
Collapse
Affiliation(s)
- Péter Bencsik
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of MedicineUniversity of SzegedSzegedHungary
- Pharmahungary GroupSzegedHungary
| | - Kamilla Gömöri
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of MedicineUniversity of SzegedSzegedHungary
- Pharmahungary GroupSzegedHungary
| | - Tamara Szabados
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of MedicineUniversity of SzegedSzegedHungary
- Pharmahungary GroupSzegedHungary
| | - Péter Sántha
- Department of Physiology, Faculty of MedicineUniversity of SzegedSzegedHungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical SchoolUniversity of PécsPécsHungary
- Molecular Pharmacology Research Group, Centre for Neuroscience, János Szentágothai Research CentreUniversity of PécsPécsHungary
| | - Gábor Jancsó
- Department of Physiology, Faculty of MedicineUniversity of SzegedSzegedHungary
| | - Péter Ferdinandy
- Pharmahungary GroupSzegedHungary
- Department of Pharmacology and PharmacotherapySemmelweis UniversityBudapestHungary
| | - Anikó Görbe
- Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, Faculty of MedicineUniversity of SzegedSzegedHungary
- Pharmahungary GroupSzegedHungary
- Department of Pharmacology and PharmacotherapySemmelweis UniversityBudapestHungary
| |
Collapse
|
14
|
Zhang GH, Murthy KD, Binti Pare R, Qian YH. Protective effect of Tβ4 on central nervous system tissues and its developmental prospects. EUR J INFLAMM 2020. [DOI: 10.1177/2058739220934559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tissue repair and regeneration in the central nervous system (CNS) remains a serious medical problem. CNS diseases such as traumatic and neurological brain injuries have a high mortality and disability rate, thereby bringing a considerable amount of economic burden to society and families. How to treat traumatic and neurological brain injuries has always been a serious issue faced by neurosurgeons. The global incidence of traumatic and neurological brain injuries has gradually increased and become a global challenge. Thymosin β4 (Tβ4) is the main G-actin variant molecule in eukaryotic cells. During the development of the CNS, Tβ4 regulates neurogenesis, tangential expansion, tissue growth, and cerebral hemisphere folding. In addition, Tβ4 has anti-apoptotic and anti-inflammatory properties. It promotes angiogenesis, wound healing, stem/progenitor cell differentiation, and other characteristics of cell migration and survival, providing a scientific basis for the repair and regeneration of injured nerve tissue. This review provides evidence to support the role of Tβ4 in the protection and repair of nervous tissue in CNS diseases, especially with the potential to control brain inflammatory processes, and thus open up new therapeutic applications for a series of neurodegenerative diseases.
Collapse
Affiliation(s)
- Gui-hong Zhang
- School of Medicine, Xi’an International University, Xi’an, China
- Department of Biomedical Science and Therapeutic, Faculty of Medicine and Health Sciences (FPSK), Universiti Malaysia Sabah (UMS), Kota Kinabalu, Malaysia
| | - Krishna Dilip Murthy
- Department of Biomedical Science and Therapeutic, Faculty of Medicine and Health Sciences (FPSK), Universiti Malaysia Sabah (UMS), Kota Kinabalu, Malaysia
| | - Rahmawati Binti Pare
- Department of Biomedical Science and Therapeutic, Faculty of Medicine and Health Sciences (FPSK), Universiti Malaysia Sabah (UMS), Kota Kinabalu, Malaysia
| | - Yi-hua Qian
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| |
Collapse
|
15
|
Sodium nitrate preconditioning prevents progression of the neuropathic pain in streptozotocin-induced diabetes Wistar rats. J Diabetes Metab Disord 2020; 19:105-113. [PMID: 32550160 DOI: 10.1007/s40200-019-00481-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022]
Abstract
Purpose The purpose of the study was to evaluate the possible protective effects of low dose sodium nitrate preconditioning on the peripheral neuropathy in streptozotocin (STZ)-induced diabetic model. Methods Male Wistar rats were randomly divided into five groups: control (no intervention), control treated sodium nitrate (100 mg/L in drinking water), diabetic (no intervention), diabetic treated NPH insulin (2-4 U), and diabetic treated sodium nitrate (100 mg/L in drinking water). Diabetes was induced by intraperitoneal injection of STZ (60 mg/kg). All interventions were done for 60 days immediately following diabetes confirmation. Thermal and mechanical algesia thresholds were measured by means of hot-plate test, von Frey test, and tail-withdrawal test before the diabetic induction and after diabetes confirmation. At the end of the experiment, serum NOx level and serum insulin level were assessed. Blood glucose concentration and body weight have recorded at the base and duration of the experiment. Results Both hypoalgesia, hyperalgesia along with allodynia developed in diabetic rats. Significant alterations including, decrease in tail withdrawal latency (30th day), decreased mechanical threshold (60th day), and an increase in hot plate latency (61st day) were displayed in diabetic rats compared to control rats. Nitrate and insulin preconditioning produced protective effects against diabetes-induced peripheral neuropathy. Data analysis also showed a significant increase in glucose level as well as a considerable reduction in serum insulin and body weight of diabetic rats, which restored by both insulin and nitrate preconditioning. Conclusion Sodium nitrate preconditioning produces a protective effect in diabetic neuropathy, which may be mediated by its antihyperglycemic effects and increased serum insulin level.
Collapse
|
16
|
Dewanjee S, Das S, Das AK, Bhattacharjee N, Dihingia A, Dua TK, Kalita J, Manna P. Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets. Eur J Pharmacol 2018; 833:472-523. [DOI: 10.1016/j.ejphar.2018.06.034] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 06/15/2018] [Accepted: 06/26/2018] [Indexed: 02/07/2023]
|
17
|
Hiyama H, Yano Y, So K, Imai S, Nagayasu K, Shirakawa H, Nakagawa T, Kaneko S. TRPA1 sensitization during diabetic vascular impairment contributes to cold hypersensitivity in a mouse model of painful diabetic peripheral neuropathy. Mol Pain 2018; 14:1744806918789812. [PMID: 29968518 PMCID: PMC6055098 DOI: 10.1177/1744806918789812] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Background Diabetic peripheral neuropathy is a common long-term complication of diabetes. Accumulating evidence suggests that vascular impairment plays important roles in the pathogenesis of diabetic peripheral neuropathy, while the mechanism remains unclear. We recently reported that transient receptor potential ankyrin 1 (TRPA1) is sensitized by hypoxia, which can contribute to cold hypersensitivity. In this study, we investigated the involvement of TRPA1 and vascular impairment in painful diabetic peripheral neuropathy using streptozotocin-induced diabetic model mice. Results Streptozotocin-induced diabetic model mice showed mechanical and cold hypersensitivity with a peak at two weeks after the streptozotocin administration, which were likely to be paralleled with the decrease in the skin blood flow of the hindpaw. Streptozotocin-induced cold hypersensitivity was significantly inhibited by an antagonist HC-030031 (100 mg/kg) or deficiency for TRPA1, whereas mechanical hypersensitivity was unaltered. Consistent with these results, the nocifensive behaviors evoked by an intraplantar injection of the TRPA1 agonist allyl isothiocyanate (AITC) were enhanced two weeks after the streptozotocin administration. Both streptozotocin-induced cold hypersensitivity and the enhanced AITC-evoked nocifensive behaviors were significantly inhibited by a vasodilator, tadalafil (10 mg/kg), with recovery of the decreased skin blood flow. Similarly, in a mouse model of hindlimb ischemia induced by the ligation of the external iliac artery, AITC-evoked nocifensive behaviors were significantly enhanced three and seven days after the ischemic operation, whereas mechanical hypersensitivity was unaltered in TRPA1-knockout mice. However, no difference was observed between wild-type and TRPA1-knockout mice in the hyposensitivity for current or mechanical stimulation or the deceased density of intraepidermal nerve fibers eight weeks after the streptozotocin administration. Conclusion These results suggest that TRPA1 sensitization during diabetic vascular impairment causes cold, but not mechanical, hypersensitivity in the early painful phase of diabetic peripheral neuropathy. However, TRPA1 may play little or no role in the progression of diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Haruka Hiyama
- 1 Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | - Yuichi Yano
- 1 Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | - Kanako So
- 1 Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan.,2 Department of Applied Pharmaceutics and Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | - Satoshi Imai
- 3 Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Japan
| | - Kazuki Nagayasu
- 1 Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | - Hisashi Shirakawa
- 1 Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | - Takayuki Nakagawa
- 3 Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Japan
| | - Shuji Kaneko
- 1 Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| |
Collapse
|
18
|
Neuroprotective effect of duloxetine in a mouse model of diabetic neuropathy: Role of glia suppressing mechanisms. Life Sci 2018; 205:113-124. [PMID: 29763613 DOI: 10.1016/j.lfs.2018.05.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/26/2018] [Accepted: 05/11/2018] [Indexed: 01/28/2023]
Abstract
AIMS Painful diabetic neuropathy (PDN) is one of the most frequent complications of diabetes and the current therapies have limited efficacy. This study aimed to study the neuroprotective effect of duloxetine, a serotonin noradrenaline reuptake inhibitor (SNRI), in a mouse model of diabetic neuropathy. MAIN METHODS Nine weeks after developing of PDN, mice were treated with either saline or duloxetine (15 or 30 mg/kg) for four weeks. The effect of duloxetine was assessed in terms of pain responses, histopathology of sciatic nerve and spinal cord, sciatic nerve growth factor (NGF) gene expression and on the spinal expression of astrocytes (glial fibrillary acidic protein, GFAP) and microglia (CD11b). KEY FINDINGS The present results highlighted that duloxetine (30 mg/kg) increased the withdrawal threshold in von-Frey test. In addition, both doses of duloxetine prolonged the licking time and latency to jump in the hot-plate test. Moreover, duloxetine administration downregulated the spinal expression of both CD11b and GFAP associated with enhancement in sciatic mRNA expression of NGF. SIGNIFICANCE The current results highlighted that duloxetine provided peripheral and central neuroprotective effects in neuropathic pain is, at least in part, related to its downregulation in spinal astrocytes and microglia. Further, this neuroprotective effect was accompanied by upregulation of sciatic expression of NGF.
Collapse
|
19
|
Serhiyenko VA, Serhiyenko AA. Cardiac autonomic neuropathy: Risk factors, diagnosis and treatment. World J Diabetes 2018; 9:1-24. [PMID: 29359025 PMCID: PMC5763036 DOI: 10.4239/wjd.v9.i1.1] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/09/2017] [Accepted: 12/29/2017] [Indexed: 02/06/2023] Open
Abstract
Cardiac autonomic neuropathy (CAN) is a serious complication of diabetes mellitus (DM) that is strongly associated with approximately five-fold increased risk of cardiovascular mortality. CAN manifests in a spectrum of things, ranging from resting tachycardia and fixed heart rate (HR) to development of "silent" myocardial infarction. Clinical correlates or risk markers for CAN are age, DM duration, glycemic control, hypertension, and dyslipidemia (DLP), development of other microvascular complications. Established risk factors for CAN are poor glycemic control in type 1 DM and a combination of hypertension, DLP, obesity, and unsatisfactory glycemic control in type 2 DM. Symptomatic manifestations of CAN include sinus tachycardia, exercise intolerance, orthostatic hypotension (OH), abnormal blood pressure (BP) regulation, dizziness, presyncope and syncope, intraoperative cardiovascular instability, asymptomatic myocardial ischemia and infarction. Methods of CAN assessment in clinical practice include assessment of symptoms and signs, cardiovascular reflex tests based on HR and BP, short-term electrocardiography (ECG), QT interval prolongation, HR variability (24 h, classic 24 h Holter ECG), ambulatory BP monitoring, HR turbulence, baroreflex sensitivity, muscle sympathetic nerve activity, catecholamine assessment and cardiovascular sympathetic tests, heart sympathetic imaging. Although it is common complication, the significance of CAN has not been fully appreciated and there are no unified treatment algorithms for today. Treatment is based on early diagnosis, life style changes, optimization of glycemic control and management of cardiovascular risk factors. Pathogenetic treatment of CAN includes: Balanced diet and physical activity; optimization of glycemic control; treatment of DLP; antioxidants, first of all α-lipoic acid (ALA), aldose reductase inhibitors, acetyl-L-carnitine; vitamins, first of all fat-soluble vitamin B1; correction of vascular endothelial dysfunction; prevention and treatment of thrombosis; in severe cases-treatment of OH. The promising methods include prescription of prostacyclin analogues, thromboxane A2 blockers and drugs that contribute into strengthening and/or normalization of Na+, K+-ATPase (phosphodiesterase inhibitor), ALA, dihomo-γ-linolenic acid (DGLA), ω-3 polyunsaturated fatty acids (ω-3 PUFAs), and the simultaneous prescription of ALA, ω-3 PUFAs and DGLA, but the future investigations are needed. Development of OH is associated with severe or advanced CAN and prescription of nonpharmacological and pharmacological, in the foreground midodrine and fludrocortisone acetate, treatment methods are necessary.
Collapse
Affiliation(s)
- Victoria A Serhiyenko
- Department of Endocrinology, Lviv National Medical University Named by Danylo Halitsky, Lviv 79010, Ukraine
| | - Alexandr A Serhiyenko
- Department of Endocrinology, Lviv National Medical University Named by Danylo Halitsky, Lviv 79010, Ukraine
| |
Collapse
|
20
|
González-Ortiz M, Martínez-Abundis E, Hernández-Corona DM, Ramírez-Rodríguez AM. Effect of tadalafil administration on insulin secretion and insulin sensitivity in obese men. Acta Clin Belg 2017; 72:326-330. [PMID: 28245726 DOI: 10.1080/17843286.2017.1293759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
AIM To evaluate the effect of tadalafil administration on insulin secretion and insulin sensitivity in obese men without diabetes. METHODS A randomized, double-blind, placebo-controlled clinical trial was carried out in obese male patients between 30 and 50 years of age. Eighteen subjects were randomly assigned to two groups of nine patients each. During a 28-day period, subjects received 5 mg orally of tadalafil or placebo each night. Patients were evaluated before and after the intervention. Total insulin secretion and first phase of insulin secretion were calculated by insulinogenic index and Stumvoll index, respectively, and insulin sensitivity was calculated using the Matsuda index. Tolerability and compliance were evaluated permanently throughout the study. RESULTS There were no significant differences after administration of tadalafil in total insulin secretion (0.82 ± 0.45 vs. 0.61 ± 0.27, p = 0.594), first phase of insulin secretion (1332 ± 487 vs. 1602 ± 800, p = 0.779) and insulin sensitivity (4.6 ± 1.2 vs. 4.9 ± 2.5, p = 0.779). No significant differences were shown in other measurements. CONCLUSION Tadalafil administration for 28 days did not modify insulin secretion or insulin sensitivity in obese men.
Collapse
Affiliation(s)
- Manuel González-Ortiz
- Institute of Experimental and Clinical Therapeutics, Physiology Department, Health Science University Center, University of Guadalajara, Guadalajara, Mexico
| | - Esperanza Martínez-Abundis
- Institute of Experimental and Clinical Therapeutics, Physiology Department, Health Science University Center, University of Guadalajara, Guadalajara, Mexico
| | - Diana M. Hernández-Corona
- Institute of Experimental and Clinical Therapeutics, Physiology Department, Health Science University Center, University of Guadalajara, Guadalajara, Mexico
| | - Alejandra M. Ramírez-Rodríguez
- Institute of Experimental and Clinical Therapeutics, Physiology Department, Health Science University Center, University of Guadalajara, Guadalajara, Mexico
| |
Collapse
|
21
|
Wang L, Chopp M, Zhang ZG. PDE5 inhibitors promote recovery of peripheral neuropathy in diabetic mice. Neural Regen Res 2017; 12:218-219. [PMID: 28400802 PMCID: PMC5361504 DOI: 10.4103/1673-5374.200804] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Lei Wang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA; Department of Physics, Oakland University, Rochester, MI, USA
| | | |
Collapse
|