1
|
Sturgill SL, Salyer LG, Biesiadecki BJ, Ziolo MT. A Simple and Effective Method to Consistently Isolate Mouse Cardiomyocytes. J Vis Exp 2022:10.3791/63056. [PMID: 36440883 PMCID: PMC11000524 DOI: 10.3791/63056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The need for reproducible yet technically simple methods yielding high-quality cardiomyocytes is essential for research in cardiac biology. Cellular and molecular functional experiments (e.g., contraction, electrophysiology, calcium cycling, etc.) on cardiomyocytes are the gold standard for establishing mechanism(s) of disease. The mouse is the species of choice for functional experiments and the described technique is specifically for the isolation of mouse cardiomyocytes. Previous methods requiring a Langendorff apparatus require high levels of training and precision for aortic cannulation, often resulting in ischemia. The field is shifting toward Langendorff-free isolation methods that are simple, are reproducible, and yield viable myocytes for physiological data acquisition and culture. These methods greatly diminish ischemia time compared to aortic cannulation and result in reliably obtained cardiomyocytes. Our adaptation to the Langendorff-free method includes an initial perfusion with ice-cold clearing solution, use of a stabilizing platform that ensures a steady needle during perfusion, and additional digestion steps to ensure reliably obtained cardiomyocytes for use in functional measurements and culture. This method is simple and quick to perform and requires little technical skill.
Collapse
Affiliation(s)
- Sarah L Sturgill
- Department of Physiology and Cell Biology, The Ohio State University
| | - Lorien G Salyer
- Department of Physiology and Cell Biology, The Ohio State University
| | | | - Mark T Ziolo
- Department of Physiology and Cell Biology, The Ohio State University;
| |
Collapse
|
2
|
Lyu Y, Timofeyev V, Overton J, Thai PN, Yamoah EN, Chiamvimonvat N, Zhang XD. Protocol to record and quantify the intracellular pH in contracting cardiomyocytes. STAR Protoc 2022; 3:101301. [PMID: 35463464 PMCID: PMC9026584 DOI: 10.1016/j.xpro.2022.101301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Intracellular pH (pHi) plays critical roles in the regulation of cardiac function. Methods and techniques for cardiac pHi measurement have continued to evolve since early 1960s. Fluorescent microscopy is the most recently developed technique with several advantages over other techniques including higher spatial and temporal resolutions, and feasibility for contracting cell measurement. Here, we describe detailed methods for mouse cardiomyocyte isolation, and simultaneous measurement and quantification of pHi and sarcomere length in contracting cardiomyocytes. For complete details on the use and execution of this protocol, please refer to Lyu et al. (2022).
Collapse
Affiliation(s)
- Yankun Lyu
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Valeriy Timofeyev
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
| | - James Overton
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Phung N. Thai
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Ebenezer N. Yamoah
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
- Department of Veterans Affairs, Northern California Health Care System, Mather, CA 95655, USA
| | - Xiao-Dong Zhang
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
- Department of Veterans Affairs, Northern California Health Care System, Mather, CA 95655, USA
| |
Collapse
|
3
|
Lyu Y, Thai PN, Ren L, Timofeyev V, Jian Z, Park S, Ginsburg KS, Overton J, Bossuyt J, Bers DM, Yamoah EN, Chen-Izu Y, Chiamvimonvat N, Zhang XD. Beat-to-beat dynamic regulation of intracellular pH in cardiomyocytes. iScience 2022; 25:103624. [PMID: 35005560 PMCID: PMC8718820 DOI: 10.1016/j.isci.2021.103624] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/10/2021] [Accepted: 12/10/2021] [Indexed: 11/20/2022] Open
Abstract
The mammalian heart beats incessantly with rhythmic mechanical activities generating acids that need to be buffered to maintain a stable intracellular pH (pHi) for normal cardiac function. Even though spatial pHi non-uniformity in cardiomyocytes has been documented, it remains unknown how pHi is regulated to match the dynamic cardiac contractions. Here, we demonstrated beat-to-beat intracellular acidification, termed pHi transients, in synchrony with cardiomyocyte contractions. The pHi transients are regulated by pacing rate, Cl-/HCO3 - transporters, pHi buffering capacity, and β-adrenergic signaling. Mitochondrial electron-transport chain inhibition attenuates the pHi transients, implicating mitochondrial activity in sculpting the pHi regulation. The pHi transients provide dynamic alterations of H+ transport required for ATP synthesis, and a decrease in pHi may serve as a negative feedback to cardiac contractions. Current findings dovetail with the prevailing three known dynamic systems, namely electrical, Ca2+, and mechanical systems, and may reveal broader features of pHi handling in excitable cells.
Collapse
Affiliation(s)
- Yankun Lyu
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Phung N. Thai
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Lu Ren
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Valeriy Timofeyev
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Zhong Jian
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Seojin Park
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Kenneth S. Ginsburg
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - James Overton
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Julie Bossuyt
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Donald M. Bers
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | - Ebenezer N. Yamoah
- Department of Physiology and Cell Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Ye Chen-Izu
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
- Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
- Department of Veterans Affairs, Northern California Health Care System, Mather, CA 95655, USA
| | - Xiao-Dong Zhang
- Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
- Department of Veterans Affairs, Northern California Health Care System, Mather, CA 95655, USA
| |
Collapse
|
4
|
Shaul D, Azar A, Sapir G, Uppala S, Nardi-Schreiber A, Gamliel A, Sosna J, Gomori JM, Katz-Brull R. Correlation between lactate dehydrogenase/pyruvate dehydrogenase activities ratio and tissue pH in the perfused mouse heart: A potential noninvasive indicator of cardiac pH provided by hyperpolarized magnetic resonance. NMR IN BIOMEDICINE 2021; 34:e4444. [PMID: 33258527 DOI: 10.1002/nbm.4444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 10/05/2020] [Accepted: 10/24/2020] [Indexed: 06/12/2023]
Abstract
Cardiovascular diseases account for more than 30% of all deaths worldwide and many could be ameliorated with early diagnosis. Current cardiac imaging modalities can assess blood flow, heart anatomy and mechanical function. However, for early diagnosis and improved treatment, further functional biomarkers are needed. One such functional biomarker could be the myocardium pH. Although tissue pH is already determinable via MR techniques, and has been since the early 1990s, it remains elusive to use practically. The objective of this study was to explore the possibility to evaluate cardiac pH noninvasively, using in-cell enzymatic rates of hyperpolarized [1-13 C]pyruvate metabolism (ie, moles of product produced per unit time) determined directly in real time using magnetic resonance spectroscopy in a perfused mouse heart model. As a gold standard for tissue pH we used 31 P spectroscopy and the chemical shift of the inorganic phosphate (Pi) signal. The nonhomogenous pH distribution of the perfused heart was analyzed using a multi-parametric analysis of this signal, thus taking into account the heterogeneous nature of this characteristic. As opposed to the signal ratio of hyperpolarized [13 C]bicarbonate to [13 CO2 ], which has shown correlation to pH in other studies, we investigated here the ratio of two intracellular enzymatic rates: lactate dehydrogenase (LDH) and pyruvate dehydrogenase (PDH), by way of determining the production rates of [1-13 C]lactate and [13 C]bicarbonate, respectively. The enzyme activities determined here are intracellular, while the pH determined using the Pi signal may contain an extracellular component, which could not be ruled out. Nevertheless, we report a strong correlation between the tissue pH and the LDH/PDH activities ratio. This work may pave the way for using the LDH/PDH activities ratio as an indicator of cardiac intracellular pH in vivo, in an MRI examination.
Collapse
Affiliation(s)
- David Shaul
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Assad Azar
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Gal Sapir
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Sivaranjan Uppala
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Atara Nardi-Schreiber
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Ayelet Gamliel
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Jacob Sosna
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - J Moshe Gomori
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| | - Rachel Katz-Brull
- Department of Radiology, Hadassah Medical Center, Hebrew University of Jerusalem, The Faculty of Medicine, Jerusalem, Israel
| |
Collapse
|
5
|
Roman B, Kumar SA, Allen SC, Delgado M, Moncayo S, Reyes AM, Suggs LJ, Chintalapalle R, Li C, Joddar B. A Model for Studying the Biomechanical Effects of Varying Ratios of Collagen Types I and III on Cardiomyocytes. Cardiovasc Eng Technol 2021; 12:311-324. [PMID: 33432515 PMCID: PMC8972084 DOI: 10.1007/s13239-020-00514-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/22/2020] [Indexed: 11/26/2022]
Abstract
PURPOSE To develop a novel model composed solely of Col I and Col III with the lower and upper limits set to include the ratios of Col I and Col III at 3:1 and 9:1 in which the structural and mechanical behavior of the resident CM can be studied. Further, the progression of fibrosis due to change in ratios of Col I:Col III was tested. METHODS Collagen gels with varying Col I:Col III ratios to represent a healthy (3:1) and diseased myocardial tissue were prepared by manually casting them in wells. Absorbance assay was performed to confirm the gelation of the gels. Rheometric analysis was performed on each of the collagen gels prepared to determine the varying stiffnesses and rheological parameters of the gels made with varying ratios of Col I:Col III. Second Harmonic Generation (SHG) was performed to observe the 3D characterization of the collagen samples. Scanning Electron microscopy was used for acquiring cross sectional images of the lyophilized collagen gels. AC16 CM (human) cell lines were cultured in the prepared gels to study cell morphology and behavior as a result of the varying collagen ratios. Cellular proliferation was studied by performing a Cell Trace Violet Assay and the applied force on each cell was measured by means of Finite Element Analysis (FEA) on CM from each sample. RESULTS Second harmonic generation microscopy used to image Col I, displayed a decrease in acquired image intensity with an increase in the non-second harmonic Col III in 3:1 gels. SEM showed a fiber-rich structure in the 3:1 gels with well-distributed pores unlike the 9:1 gels or the 1:0 controls. Rheological analysis showed a decrease in substrate stiffness with an increase of Col III, in comparison with other cases. CM cultured within 3:1 gels exhibited an elongated rod-like morphology with an average end-to-end length of 86 ± 28.8 µm characteristic of healthy CM, accompanied by higher cell growth in comparison with other cases. Finite element analysis used to estimate the forces exerted on CM cultured in the 3:1 gels, showed that the forces were well dispersed, and not concentrated within the center of cells, in comparison with other cases. CONCLUSION This study model can be adopted to simulate various biomechanical environments in which cells crosstalk with the Collagen-matrix in diseased pathologies to generate insights on strategies for prevention of fibrosis.
Collapse
Affiliation(s)
- Brian Roman
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), El Paso, USA
- Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA
| | - Shweta Anil Kumar
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), El Paso, USA
- Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA
| | - Shane C Allen
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Monica Delgado
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), El Paso, USA
- Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA
| | - Sabastian Moncayo
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), El Paso, USA
- Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA
| | - Andres M Reyes
- Department of Physics, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA
| | - Laura J Suggs
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Ramana Chintalapalle
- Department of Mechanical Engineering, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA
| | - Chunqiang Li
- Department of Physics, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA
- Border Biomedical Research Center, University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA
| | - Binata Joddar
- Inspired Materials & Stem-Cell Based Tissue Engineering Laboratory (IMSTEL), El Paso, USA.
- Border Biomedical Research Center, University of Texas at El Paso, 500 W University Avenue, El Paso, TX, 79968, USA.
| |
Collapse
|
6
|
Lozano O, Silva-Platas C, Chapoy-Villanueva H, Pérez BE, Lees JG, Ramachandra CJA, Contreras-Torres FF, Lázaro-Alfaro A, Luna-Figueroa E, Bernal-Ramírez J, Gordillo-Galeano A, Benitez A, Oropeza-Almazán Y, Castillo EC, Koh PL, Hausenloy DJ, Lim SY, García-Rivas G. Amorphous SiO2 nanoparticles promote cardiac dysfunction via the opening of the mitochondrial permeability transition pore in rat heart and human cardiomyocytes. Part Fibre Toxicol 2020; 17:15. [PMID: 32381100 PMCID: PMC7206702 DOI: 10.1186/s12989-020-00346-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/22/2020] [Indexed: 02/07/2023] Open
Abstract
Background Silica nanoparticles (nanoSiO2) are promising systems that can deliver biologically active compounds to tissues such as the heart in a controllable manner. However, cardiac toxicity induced by nanoSiO2 has been recently related to abnormal calcium handling and energetic failure in cardiomyocytes. Moreover, the precise mechanisms underlying this energetic debacle remain unclear. In order to elucidate these mechanisms, this article explores the ex vivo heart function and mitochondria after exposure to nanoSiO2. Results The cumulative administration of nanoSiO2 reduced the mechanical performance index of the rat heart with a half-maximal inhibitory concentration (IC50) of 93 μg/mL, affecting the relaxation rate. In isolated mitochondria nanoSiO2 was found to be internalized, inhibiting oxidative phosphorylation and significantly reducing the mitochondrial membrane potential (ΔΨm). The mitochondrial permeability transition pore (mPTP) was also induced with an increasing dose of nanoSiO2 and partially recovered with, a potent blocker of the mPTP, Cyclosporine A (CsA). The activity of aconitase and thiol oxidation, in the adenine nucleotide translocase, were found to be reduced due to nanoSiO2 exposure, suggesting that nanoSiO2 induces the mPTP via thiol modification and ROS generation. In cardiac cells exposed to nanoSiO2, enhanced viability and reduction of H2O2 were observed after application of a specific mitochondrial antioxidant, MitoTEMPO. Concomitantly, CsA treatment in adult rat cardiac cells reduced the nanoSiO2-triggered cell death and recovered ATP production (from 32.4 to 65.4%). Additionally, we performed evaluation of the mitochondrial effect of nanoSiO2 in human cardiomyocytes. We observed a 40% inhibition of maximal oxygen consumption rate in mitochondria at 500 μg/mL. Under this condition we identified a remarkable diminution in the spare respiratory capacity. This data indicates that a reduction in the amount of extra ATP that can be produced by mitochondria during a sudden increase in energy demand. In human cardiomyocytes, increased LDH release and necrosis were found at increased doses of nanoSiO2, reaching 85 and 48%, respectively. Such deleterious effects were partially prevented by the application of CsA. Therefore, exposure to nanoSiO2 affects cardiac function via mitochondrial dysfunction through the opening of the mPTP. Conclusion The aforementioned effects can be partially avoided reducing ROS or retarding the opening of the mPTP. These novel strategies which resulted in cardioprotection could be considered as potential therapies to decrease the side effects of nanoSiO2 exposure.
Collapse
Affiliation(s)
- Omar Lozano
- Tecnologico de Monterrey. Escuela Nacional de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Mexico.,Tecnologico de Monterrey. Centro de Investigación Biomédica, Hospital Zambrano-Helión, San Pedro Garza-García, Mexico
| | - Christian Silva-Platas
- Tecnologico de Monterrey. Escuela Nacional de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Mexico
| | - Héctor Chapoy-Villanueva
- Tecnologico de Monterrey. Escuela Nacional de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Mexico
| | - Baruc E Pérez
- Tecnologico de Monterrey. Escuela Nacional de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Mexico
| | - Jarmon G Lees
- Departments of Medicine and Surgery, University of Melbourne, Melbourne, Victoria, Australia.,O'Brien Institute Department, St Vincent's Institute of Medical Research, Melbourne, Victoria, Australia
| | - Chrishan J A Ramachandra
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | | | - Anay Lázaro-Alfaro
- Tecnologico de Monterrey. Escuela Nacional de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Mexico
| | - Estefanía Luna-Figueroa
- Tecnologico de Monterrey. Escuela Nacional de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Mexico
| | - Judith Bernal-Ramírez
- Tecnologico de Monterrey. Escuela Nacional de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Mexico
| | | | - Alfredo Benitez
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, USA
| | - Yuriana Oropeza-Almazán
- Tecnologico de Monterrey. Escuela Nacional de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Mexico
| | - Elena C Castillo
- Tecnologico de Monterrey. Escuela Nacional de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Mexico
| | - Poh Ling Koh
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore
| | - Derek J Hausenloy
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.,The Hatter Cardiovascular Institute, University College London, London, UK.,Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taichung City, Taiwan
| | - Shiang Y Lim
- Departments of Medicine and Surgery, University of Melbourne, Melbourne, Victoria, Australia.,O'Brien Institute Department, St Vincent's Institute of Medical Research, Melbourne, Victoria, Australia
| | - Gerardo García-Rivas
- Tecnologico de Monterrey. Escuela Nacional de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Vascular, Monterrey, Mexico. .,Tecnologico de Monterrey. Centro de Investigación Biomédica, Hospital Zambrano-Helión, San Pedro Garza-García, Mexico.
| |
Collapse
|
7
|
Clark JA, Weiss JD, Campbell SG. A Microwell Cell Capture Device Reveals Variable Response to Dobutamine in Isolated Cardiomyocytes. Biophys J 2019; 117:1258-1268. [PMID: 31537313 DOI: 10.1016/j.bpj.2019.08.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/14/2019] [Accepted: 08/22/2019] [Indexed: 12/15/2022] Open
Abstract
Isolated ventricular cardiomyocytes exhibit substantial cell-to-cell variability, even when obtained from the same small volume of myocardium. In this study, we investigated the possibility that cardiomyocyte responses to β-adrenergic stimulus are also highly heterogeneous. To achieve the throughput and measurement duration desired for these experiments, we designed and validated a novel microwell system that immobilizes and uniformly orients isolated adult cardiomyocytes. In this configuration, detailed drug responses of dozens of cells can be followed for intervals exceeding 1 h. At the conclusion of an experiment, specific cells can also be harvested via a precision aspirator for single-cell gene expression profiling. Using this system, we followed changes in Ca2+ signaling and contractility of individual cells under sustained application of either dobutamine or omecamtiv mecarbil. Both compounds increased average cardiomyocyte contractility over the course of an hour, but responses of individual cells to dobutamine were significantly more variable. Surprisingly, some dobutamine-treated cardiomyocytes augmented Ca2+ release without increasing contractility. Other cells responded with increased contractility despite unchanged Ca2+ release. Single-cell gene expression analysis revealed significant co-expression of β-adrenergic pathway genes PKA regulatory subunit type I, PKA regulatory subunit type II, and Ca2+/calmodulin-dependent protein kinase II across cardiomyocytes. Other data supported a connection between the effects of dobutamine on relaxation rate and the expression of protein phosphatase 2. These findings suggest that variable drug responses among cells are not merely experimental artifacts. By enabling direct comparison of the functional behavior of an individual cell and the genes it expresses, this new system constitutes a unique tool for interrogating cardiomyocyte drug responses and discovering the genes that modulate them.
Collapse
|
8
|
Reddy GR, West TM, Jian Z, Jaradeh M, Shi Q, Wang Y, Chen-Izu Y, Xiang YK. Illuminating cell signaling with genetically encoded FRET biosensors in adult mouse cardiomyocytes. J Gen Physiol 2018; 150:1567-1582. [PMID: 30242036 PMCID: PMC6219686 DOI: 10.1085/jgp.201812119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/04/2018] [Accepted: 09/04/2018] [Indexed: 12/15/2022] Open
Abstract
FRET-based biosensors are powerful tools to study intracellular signaling that require long culture times for adenoviral infection. Reddy et al. have developed a method for culturing adult mouse cardiomyocytes involving blebbistatin, which preserves cell morphology for up to 50 h after adenoviral infection. FRET-based biosensor experiments in adult cardiomyocytes are a powerful way of dissecting the spatiotemporal dynamics of the complicated signaling networks that regulate cardiac health and disease. However, although much information has been gleaned from FRET studies on cardiomyocytes from larger species, experiments on adult cardiomyocytes from mice have been difficult at best. Thus the large variety of genetic mouse models cannot be easily used for this type of study. Here we develop cell culture conditions for adult mouse cardiomyocytes that permit robust expression of adenoviral FRET biosensors and reproducible FRET experimentation. We find that addition of 6.25 µM blebbistatin or 20 µM (S)-nitro-blebbistatin to a minimal essential medium containing 10 mM HEPES and 0.2% BSA maintains morphology of cardiomyocytes from physiological, pathological, and transgenic mouse models for up to 50 h after adenoviral infection. This provides a 10–15-h time window to perform reproducible FRET readings using a variety of CFP/YFP sensors between 30 and 50 h postinfection. The culture is applicable to cardiomyocytes isolated from transgenic mouse models as well as models with cardiac diseases. Therefore, this study helps scientists to disentangle complicated signaling networks important in health and disease of cardiomyocytes.
Collapse
Affiliation(s)
| | - Toni M West
- Department of Pharmacology, University of California at Davis, Davis, CA
| | - Zhong Jian
- Department of Pharmacology, University of California at Davis, Davis, CA
| | - Mark Jaradeh
- Department of Pharmacology, University of California at Davis, Davis, CA
| | - Qian Shi
- Department of Pharmacology, University of California at Davis, Davis, CA
| | - Ying Wang
- Department of Pharmacology, University of California at Davis, Davis, CA
| | - Ye Chen-Izu
- Department of Pharmacology, University of California at Davis, Davis, CA.,Department of Bioengineering, University of California at Davis, Davis, CA.,Department of Internal Medicine/Cardiology, University of California at Davis, Davis, CA
| | - Yang K Xiang
- Department of Pharmacology, University of California at Davis, Davis, CA .,Veterans Affairs Northern California Health Care System, Mather, CA
| |
Collapse
|
9
|
Lindsey ML, Bolli R, Canty JM, Du XJ, Frangogiannis NG, Frantz S, Gourdie RG, Holmes JW, Jones SP, Kloner RA, Lefer DJ, Liao R, Murphy E, Ping P, Przyklenk K, Recchia FA, Schwartz Longacre L, Ripplinger CM, Van Eyk JE, Heusch G. Guidelines for experimental models of myocardial ischemia and infarction. Am J Physiol Heart Circ Physiol 2018; 314:H812-H838. [PMID: 29351451 PMCID: PMC5966768 DOI: 10.1152/ajpheart.00335.2017] [Citation(s) in RCA: 357] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Myocardial infarction is a prevalent major cardiovascular event that arises from myocardial ischemia with or without reperfusion, and basic and translational research is needed to better understand its underlying mechanisms and consequences for cardiac structure and function. Ischemia underlies a broad range of clinical scenarios ranging from angina to hibernation to permanent occlusion, and while reperfusion is mandatory for salvage from ischemic injury, reperfusion also inflicts injury on its own. In this consensus statement, we present recommendations for animal models of myocardial ischemia and infarction. With increasing awareness of the need for rigor and reproducibility in designing and performing scientific research to ensure validation of results, the goal of this review is to provide best practice information regarding myocardial ischemia-reperfusion and infarction models. Listen to this article’s corresponding podcast at ajpheart.podbean.com/e/guidelines-for-experimental-models-of-myocardial-ischemia-and-infarction/.
Collapse
Affiliation(s)
- Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi.,Research Service, G. V. (Sonny) Montgomery Veterans Affairs Medical Center , Jackson, Mississippi
| | - Roberto Bolli
- Division of Cardiovascular Medicine and Institute of Molecular Cardiology, University of Louisville , Louisville, Kentucky
| | - John M Canty
- Division of Cardiovascular Medicine, Departments of Biomedical Engineering and Physiology and Biophysics, The Veterans Affairs Western New York Health Care System and Clinical and Translational Science Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo , Buffalo, New York
| | - Xiao-Jun Du
- Baker Heart and Diabetes Institute , Melbourne, Victoria , Australia
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York
| | - Stefan Frantz
- Department of Internal Medicine I, University Hospital , Würzburg , Germany
| | - Robert G Gourdie
- Center for Heart and Regenerative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia
| | - Jeffrey W Holmes
- Department of Biomedical Engineering, University of Virginia Health System , Charlottesville, Virginia
| | - Steven P Jones
- Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville , Louisville, Kentucky
| | - Robert A Kloner
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes , Pasadena, California.,Division of Cardiovascular Medicine, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - David J Lefer
- Cardiovascular Center of Excellence, Louisiana State University Health Science Center , New Orleans, Louisiana
| | - Ronglih Liao
- Harvard Medical School , Boston, Massachusetts.,Division of Genetics and Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital , Boston, Massachusetts
| | - Elizabeth Murphy
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | - Peipei Ping
- National Institutes of Health BD2KBig Data to Knowledge (BD2K) Center of Excellence and Department of Physiology, Medicine and Bioinformatics, University of California , Los Angeles, California
| | - Karin Przyklenk
- Cardiovascular Research Institute and Departments of Physiology and Emergency Medicine, Wayne State University School of Medicine , Detroit, Michigan
| | - Fabio A Recchia
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Fondazione G. Monasterio, Pisa , Italy.,Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University , Philadelphia, Pennsylvania
| | - Lisa Schwartz Longacre
- Heart Failure and Arrhythmias Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | - Crystal M Ripplinger
- Department of Pharmacology, School of Medicine, University of California , Davis, California
| | - Jennifer E Van Eyk
- The Smidt Heart Institute, Department of Medicine, Cedars Sinai Medical Center , Los Angeles, California
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School , Essen , Germany
| |
Collapse
|
10
|
Motayagheni N. Modified Langendorff technique for mouse heart cannulation: Improved heart quality and decreased risk of ischemia. MethodsX 2017; 4:508-512. [PMID: 29204375 PMCID: PMC5704101 DOI: 10.1016/j.mex.2017.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/03/2017] [Indexed: 02/07/2023] Open
Abstract
Oscar Langendorff introduced the first method for isolating a heart with contractile activity in 1895. Since then, the Langendorff method has remained a powerful technique in cardiac research and has led to major advances in medicine. The primary goal of the Langendorff method is to provide an isolated heart with oxygen and metabolites via a cannula inserted into the aorta. The Langendorff heart is a complex in vitro technique used primarily in pharmacological and physiological research that allows the evaluation of multiple cardiac hemodynamic parameters including, but not limited to, contractility and heart rate. This article will first provide a brief background of the Langendorff method as well as details regarding organ isolation. Finally, the article will discuss the benefits of a new technique for hanging the isolated heart aorta and the benefits of this technique over traditional methods.
Collapse
Affiliation(s)
- Negar Motayagheni
- Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| |
Collapse
|