1
|
Olaru I, Stefanache A, Gutu C, Lungu II, Mihai C, Grierosu C, Calin G, Marcu C, Ciuhodaru T. Combating Bacterial Resistance by Polymers and Antibiotic Composites. Polymers (Basel) 2024; 16:3247. [PMID: 39683992 DOI: 10.3390/polym16233247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/09/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
(1) Background: Since the discovery of antibiotics in the first half of the 20th century, humans have abused this privilege, giving rise to antibiotic-resistant pathogens. Recent research has brought to light the use of antimicrobial peptides in polymers, hydrogels, and nanoparticles (NPs) as a newer and safer alternative to traditional antibiotics. (2) Methods: This review article is a synthesis of the scientific works published in the last 15 years, focusing on the synthesis of polymers with proven antimicrobial properties. (3) Results: After a critical review of the literature was made, information and data about the synthesis and antimicrobial activity of antibacterial polymers and NPs functionalized with antibiotics were extracted. Fluorinated surfactants such as the Quaterfluo® series presented significant antimicrobial effects and could be modulated to contain thioesters to boost this characteristic. Biopolymers like chitosan and starch were also doped with iodine and used as iodophors to deliver iodine atoms directly to pathogens, as well as being antimicrobial on their own. Quaternary phosphonium salts are known for their increased antimicrobial activity compared to ammonium-containing polymers and are more thermally stable. (4) Conclusions: In summary, polymers and polymeric NPs seem like future alternatives to traditional antibiotics. Future research is needed to determine functional doses for clinical use and their toxicity.
Collapse
Affiliation(s)
- Iulia Olaru
- Faculty of Medicine and Pharmacy, University "Dunarea de Jos", 47 Domneasca Str., 800008 Galati, Romania
| | - Alina Stefanache
- Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cristian Gutu
- Faculty of Medicine and Pharmacy, University "Dunarea de Jos", 47 Domneasca Str., 800008 Galati, Romania
| | - Ionut Iulian Lungu
- Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cozmin Mihai
- Faculty of Dental Medicine, "Apollonia" University of Iasi, 11 Pacurari Street, 700115 Iasi, Romania
| | - Carmen Grierosu
- Faculty of Dental Medicine, "Apollonia" University of Iasi, 11 Pacurari Street, 700115 Iasi, Romania
| | - Gabriela Calin
- Faculty of Dental Medicine, "Apollonia" University of Iasi, 11 Pacurari Street, 700115 Iasi, Romania
| | - Constantin Marcu
- Faculty of Medicine and Pharmacy, University "Dunarea de Jos", 47 Domneasca Str., 800008 Galati, Romania
| | - Tudor Ciuhodaru
- Faculty of Dental Medicine, "Apollonia" University of Iasi, 11 Pacurari Street, 700115 Iasi, Romania
| |
Collapse
|
2
|
Chen J, Fan W, Fan J, Xie J, Wang Y, Wang Y, Lin N, Lin B. Tetrahydrocurcumin Attenuates Polymyxin B Sulfate-Induced HK-2 Cells Apoptosis by Inhibiting Endoplasmic Reticulum Stress-Mediated PERK/eIF2α/ATF4/CHOP Signaling Pathway Axis. ENVIRONMENTAL TOXICOLOGY 2024; 39:4995-5007. [PMID: 39023307 DOI: 10.1002/tox.24376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 07/20/2024]
Abstract
The clinical application of polymyxin B (PMB) is limited by its nephrotoxic effects, making the reduction of PMB-induced nephrotoxicity has become a pressing concern for clinicians. Tetrahydrocurcumin (THC), known for its beneficial characteristics in biological functions, presents an attractive option for intervention therapy to mitigate PMB-induced nephrotoxicity. However, the underlying mechanism of how THC mitigates PMB-induced nephrotoxicity is still poorly understood. Here, we first evaluated the potential of THC intervention therapy to mitigate PMB-induced nephrotoxicity in an in vitro model of PMB-induced cell injury. Moreover, we demonstrated that THC effectively protected HK-2 cells from PMB-induced apoptosis by using cell counting kit-8 and flow cytometry assay. THC could also suppress PMB-induced endoplasmic reticulum (ER) stress via PERK/eIF2α/ATF4/CHOP pathway. In addition, using PERK inhibitor GSK2606414 to inhibit ER stress also alleviated PMB-induced apoptosis. Taken together, these findings provide novel insights that THC possesses the ability to alleviate PMB-induced nephrotoxicity by inhibiting the ER stress-mediated PERK/eIF2α/ATF4/CHOP axis, which sheds light on the benefits of THC as an intervention strategy to reduce PMB-induced nephrotoxicity, thus providing a potential avenue for improved clinical outcomes in patients receiving PMB treatment.
Collapse
Affiliation(s)
- Junjie Chen
- Department of Intensive Care Medicine, Changxing People's Hospital; Changxing Branch, Second Affiliated Hospital of Zhejiang University School of Medicine, Huzhou, China
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Huzhou, China
| | - Weibin Fan
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Huzhou, China
- Department of Pharmacy, Changxing People's Hospital; Changxing Branch, Second Affiliated Hospital of Zhejiang University School of Medicine, Huzhou, China
| | - Jing Fan
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Huzhou, China
- Department of Pharmacy, Changxing People's Hospital; Changxing Branch, Second Affiliated Hospital of Zhejiang University School of Medicine, Huzhou, China
| | - Jiao Xie
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Huzhou, China
- Department of Pharmacy, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'An, China
| | - Yan Wang
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Huzhou, China
- Department of Pharmacy, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'An, China
| | - Yinhui Wang
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Huzhou, China
- Department of Pharmacy, Changxing People's Hospital; Changxing Branch, Second Affiliated Hospital of Zhejiang University School of Medicine, Huzhou, China
| | - Nengming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, China
| | - Bin Lin
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Huzhou, China
- Department of Pharmacy, Changxing People's Hospital; Changxing Branch, Second Affiliated Hospital of Zhejiang University School of Medicine, Huzhou, China
| |
Collapse
|
3
|
Payasi A, Yadav MK, Chaudhary S, Aggarwal A. Evaluating nephrotoxicity reduction in a novel polymyxin B formulation: insights from a 3D kidney-on-a-chip model. Antimicrob Agents Chemother 2024; 68:e0021924. [PMID: 39225483 PMCID: PMC11459911 DOI: 10.1128/aac.00219-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
This study aimed to assess the nephrotoxicity associated with VRP-034 (novel formulation of polymyxin B [PMB]) compared to marketed PMB in a three-dimensional (3D) kidney-on-a-chip model. To model the human kidney proximal tubule for analysis, tubular structures were established using 23 triple-channel chips seeded with RPTEC/hTERT1 cells. These cells were exposed to VRP-034 or PMB at seven concentrations (1-200 µM) over 12, 24, and 48 h. A suite of novel kidney injury biomarkers, cell health, and inflammatory markers were quantitatively assessed in the effluent. Additionally, caspase and cytochrome C levels were measured, and cell viability was evaluated using calcein AM and ethidium homodimer-1 (EthD-1). Exposure to marketed PMB resulted in significantly elevated levels (P < 0.05) of four key biomarkers (KIM-1, cystatin C, clusterin, and OPN) compared to VRP-034, particularly at clinically relevant concentrations of ≥10 µM. At 25 µM, all biomarkers demonstrated a significant increase (P < 0.05) with marketed PMB exposure compared to VRP-034. Inflammatory markers (interleukin-6 and interleukin-8) increased significantly (P < 0.05) with marketed PMB at concentrations of ≥5 µM, relative to VRP-034. VRP-034 displayed superior cell health outcomes, exhibiting lower lactate dehydrogenase release, while ATP levels remained comparable. Morphological analysis revealed that marketed PMB induced more severe damage, disrupting tubular integrity. Both treatments activated cytochrome C, caspase-3, caspase-8, caspase-9, and caspase-12 in a concentration-dependent manner; however, caspase activation was significantly reduced (P < 0.05) with VRP-034. This study demonstrates that VRP-034 significantly reduces nephrotoxicity compared to marketed PMB within a 3D microphysiological system, suggesting its potential to enable the use of full therapeutic doses of PMB with an improved safety profile, addressing the need for less nephrotoxic polymyxin antibiotics.
Collapse
Affiliation(s)
- Anurag Payasi
- Department of Cell Culture, Venus Medicine Research Centre, Baddi, Himachal Pradesh, India
| | - Manoj Kumar Yadav
- Department of Cell Culture, Venus Medicine Research Centre, Baddi, Himachal Pradesh, India
| | | | - Anmol Aggarwal
- Department of Pipeline Strategy, Venus Medicine Research Centre, Baddi, Himachal Pradesh, India
| |
Collapse
|
4
|
Hudson CS, Roy A, Li Q, Joshi AS, Yin T, Kumar A, Sheikh-Hamad D, Tam VH. Mechanisms of gelofusine protection in an in vitro model of polymyxin B-associated renal injury. Am J Physiol Renal Physiol 2024; 327:F137-F145. [PMID: 38779756 DOI: 10.1152/ajprenal.00029.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Polymyxins are a last-resort treatment option for multidrug-resistant gram-negative bacterial infections, but they are associated with nephrotoxicity. Gelofusine was previously shown to reduce polymyxin-associated kidney injury in an animal model. However, the mechanism(s) of renal protection has not been fully elucidated. Here, we report the use of a cell culture model to provide insights into the mechanisms of renal protection. Murine epithelial proximal tubular cells were exposed to polymyxin B. Cell viability, lactate dehydrogenase (LDH) release, polymyxin B uptake, mitochondrial superoxide production, nuclear morphology, and apoptosis activation were evaluated with or without concomitant gelofusine. A megalin knockout cell line was used as an uptake inhibition control. Methionine was included in selected experiments as an antioxidant control. A polymyxin B concentration-dependent reduction in cell viability was observed. Increased viability was observed in megalin knockout cells following comparable polymyxin B exposures. Compared with polymyxin B exposure alone, concomitant gelofusine significantly increased cell viability as well as reduced LDH release, polymyxin B uptake, mitochondrial superoxide, and apoptosis. Gelofusine and methionine were more effective at reducing renal cell injury in combination than either agent alone. In conclusion, the mechanisms of renal protection by gelofusine involve decreasing cellular drug uptake, reducing subsequent oxidative stress and apoptosis activation. These findings would be valuable for translational research into clinical strategies to attenuate drug-associated acute kidney injury.NEW & NOTEWORTHY Gelofusine is a gelatinous saline solution with the potential to attenuate polymyxin-associated nephrotoxicity. We demonstrated that the mechanisms of gelofusine renal protection involve reducing polymyxin B uptake by proximal tubule cells, limiting subsequent oxidative stress and apoptosis activation. In addition, gelofusine was more effective at reducing cellular injury than a known antioxidant control, methionine, and a megalin knockout cell line, indicating that gelofusine likely has additional pharmacological properties besides only megalin inhibition.
Collapse
Affiliation(s)
- Cole S Hudson
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, Texas, United States
| | - Anirban Roy
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, Texas, United States
| | - Qingtian Li
- Division of Nephrology and Selzman Institute for Kidney Health, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States
| | - Aniket S Joshi
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, Texas, United States
| | - Taijun Yin
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, Texas, United States
| | - Ashok Kumar
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, Texas, United States
| | - David Sheikh-Hamad
- Division of Nephrology and Selzman Institute for Kidney Health, Department of Medicine, Baylor College of Medicine, Houston, Texas, United States
- Center for Translational Research on Inflammatory Diseases, Michael E Debakey Veterans Affairs Medical Center, Houston, Texas, United States
| | - Vincent H Tam
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, Texas, United States
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, United States
| |
Collapse
|
5
|
Pye K, Tasinato E, Shuttleworth S, Devlin C, Brown C. Comparison of the Impact of VRP-034 and Polymyxin B upon Markers of Kidney Injury in Human Proximal Tubule Monolayers In Vitro. Antibiotics (Basel) 2024; 13:530. [PMID: 38927196 PMCID: PMC11201133 DOI: 10.3390/antibiotics13060530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/01/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
In this study, we assessed the impact of commercially available polymyxin B against VRP-034 (novel formulation of polymyxin B) using a validated in vitro human renal model, aProximateTM. Freshly isolated primary proximal tubule cells (PTCs) were cultured in Transwell plates and treated with various concentrations of the formulations for up to 48 h. The functional expression of megalin-cubilin receptors in PTC monolayers was validated using FITC-conjugated albumin uptake assays. Polymyxin B and VRP-034 were evaluated at six concentrations (0.3, 1, 3, 10, 30, and 60 µM), and nephrotoxicity was assessed through measurements of transepithelial electrical resistance (TEER), intracellular adenosine triphosphate (ATP) levels, lactate dehydrogenase (LDH) release, and novel injury biomarkers [kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), and clusterin]. Additionally, histological analysis using annexin V apoptosis staining was performed. Our results indicated a significant decrease in TEER with polymyxin B at concentrations ≥10 μM compared to VRP-034. Toxic effects were observed from ATP and LDH release only at concentrations ≥30 μM for both formulations. Furthermore, injury biomarker release was higher with polymyxin B compared to VRP-034, particularly at concentrations ≥10 µM. Histologically, polymyxin B-treated PTCs showed increased apoptosis compared to VRP-034-treated cells. Overall, VRP-034 demonstrated improved tolerance in the aProximateTM model compared to polymyxin B, suggesting its potential as a safer alternative for renal protection.
Collapse
Affiliation(s)
- Keith Pye
- Newcells Biotech Ltd., The Biosphere, Newcastle-upon-Tyne NE4 5BX, UK
| | | | | | | | | |
Collapse
|
6
|
Zheng EJ, Valeri JA, Andrews IW, Krishnan A, Bandyopadhyay P, Anahtar MN, Herneisen A, Schulte F, Linnehan B, Wong F, Stokes JM, Renner LD, Lourido S, Collins JJ. Discovery of antibiotics that selectively kill metabolically dormant bacteria. Cell Chem Biol 2024; 31:712-728.e9. [PMID: 38029756 PMCID: PMC11031330 DOI: 10.1016/j.chembiol.2023.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 08/13/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
There is a need to discover and develop non-toxic antibiotics that are effective against metabolically dormant bacteria, which underlie chronic infections and promote antibiotic resistance. Traditional antibiotic discovery has historically favored compounds effective against actively metabolizing cells, a property that is not predictive of efficacy in metabolically inactive contexts. Here, we combine a stationary-phase screening method with deep learning-powered virtual screens and toxicity filtering to discover compounds with lethality against metabolically dormant bacteria and favorable toxicity profiles. The most potent and structurally distinct compound without any obvious mechanistic liability was semapimod, an anti-inflammatory drug effective against stationary-phase E. coli and A. baumannii. Integrating microbiological assays, biochemical measurements, and single-cell microscopy, we show that semapimod selectively disrupts and permeabilizes the bacterial outer membrane by binding lipopolysaccharide. This work illustrates the value of harnessing non-traditional screening methods and deep learning models to identify non-toxic antibacterial compounds that are effective in infection-relevant contexts.
Collapse
Affiliation(s)
- Erica J Zheng
- Program in Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Jacqueline A Valeri
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Ian W Andrews
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aarti Krishnan
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Parijat Bandyopadhyay
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Melis N Anahtar
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Alice Herneisen
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA
| | - Fabian Schulte
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Brooke Linnehan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Felix Wong
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jonathan M Stokes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Lars D Renner
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, 01062 Dresden, Germany
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA
| | - James J Collins
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
7
|
Wang J, Li Y, Huang S, Wang M, Jin L, Luo X, Cheng X, Yang N, Zhu H. Mid-dosing interval concentration is important for polymyxin B exposure and acute kidney injury in critically ill patients. CPT Pharmacometrics Syst Pharmacol 2023; 12:1911-1921. [PMID: 37655610 PMCID: PMC10725268 DOI: 10.1002/psp4.13040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/10/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023] Open
Abstract
This study aimed to evaluate the association between polymyxin B (PMB) exposure and acute kidney injury (AKI) and analyze the risk factors for PMB-induced AKI in critically ill patients. Plasma concentrations of PMB were determined using an ultraperformance liquid chromatography-tandem mass spectrometer in intensive care unit patients who were administered PMB. Univariate and multivariate analyses were conducted to identify risk factors. A receiver operating characteristic curve was constructed to assess the discriminant power of the factors and to identify the cutoff value for AKI. The white blood cell count and estimated area under the concentration-time curve (AUC) of patients administered PMB were independent risk factors for PMB-induced AKI, where AUC were calculated using a first-order pharmacokinetic equation based on the mid-dosing interval concentration (C1/2t ) and peak concentration. The area under the receiver operating characteristic curve of the final model was 0.805 (95% confidence interval, 0.690-0.921). The cutoff value for the combined predictor was 0.57. Alternatively, when using C1/2t , which was strongly correlated with AUC, as the only independent risk factor, the analysis showed that the 3.47 μg/ml threshold provides favorable differentiation between the AKI and non-AKI groups. These results provide insightful information for therapeutic drug monitoring-guiding PMB dosing in clinical practice.
Collapse
Affiliation(s)
- Jing Wang
- Department of PharmacyNanjing Drum Tower Hospital the Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Yuanchen Li
- Department of PharmacyChina Pharmaceutical University Nanjing Drum Tower HospitalNanjingChina
| | - Siqi Huang
- Department of PharmacyNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Min Wang
- Department of PharmacyNanjing Drum Tower Hospital the Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Nanjing Medical Center for Clinical PharmacyNanjingChina
| | - Lu Jin
- Department of PharmacyNanjing Drum Tower Hospital the Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Nanjing Medical Center for Clinical PharmacyNanjingChina
| | - Xuemei Luo
- Department of PharmacyNanjing Drum Tower Hospital the Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Nanjing Medical Center for Clinical PharmacyNanjingChina
| | - Xiaoliang Cheng
- Jiangsu Qlife Medical Technology Group Co., Ltd.NanjingChina
| | - Na Yang
- Department of PharmacyNanjing Drum Tower Hospital the Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
- Nanjing Medical Center for Clinical PharmacyNanjingChina
| | - Huaijun Zhu
- Department of PharmacyNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjingChina
- Nanjing Medical Center for Clinical PharmacyNanjingChina
| |
Collapse
|
8
|
Hudson CS, Smith JE, Eales BM, Kajiji S, Liu X, Truong LD, Tam VH. Zileuton ameliorates aminoglycoside and polymyxin-associated acute kidney injury in an animal model. J Antimicrob Chemother 2023; 78:2435-2441. [PMID: 37563789 DOI: 10.1093/jac/dkad246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/15/2023] [Indexed: 08/12/2023] Open
Abstract
OBJECTIVES Aminoglycosides and polymyxins are antibiotics with in vitro activity against MDR Gram-negative bacteria. However, their clinical use is hindered by dose-limiting nephrotoxicity. The objective of this project was to determine if zileuton can reduce nephrotoxicity associated with amikacin and polymyxin B in a rat model of acute kidney injury. METHODS Sprague Dawley rats (n = 10, both genders) were administered either amikacin (300 mg/kg) or polymyxin B (20 mg/kg) daily for 10 days. Zileuton (4 and 10 mg/kg) was delivered intraperitoneally 15 min before antibiotic administration. Blood samples were collected at baseline and daily to determine serum creatinine concentration. Nephrotoxicity was defined as a ≥2× elevation of baseline serum creatinine. Time-to-event analysis and log rank test were used to compare the onset of nephrotoxicity in different cohorts. Histopathological analysis was also conducted to characterize the extent of kidney injury. RESULTS Animals receiving amikacin or polymyxin B alone had nephrotoxicity rates of 90% and 100%, respectively. The overall rate was reduced to 30% in animals receiving adjuvant zileuton. The onset of nephrotoxicity associated with amikacin and polymyxin B was also significantly delayed by zileuton at 4 and 10 mg/kg, respectively. Histopathology confirmed reduced kidney injury in animals receiving amikacin concomitant with zileuton. CONCLUSIONS Our pilot data suggest that zileuton has the potential to attenuate nephrotoxicity associated with last-line antibiotics. This would allow these antibiotics to treat MDR Gram-negative bacterial infections optimally without dose-limiting constraints. Further studies are warranted to optimize drug delivery and dosing in humans.
Collapse
Affiliation(s)
- Cole S Hudson
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston College of Pharmacy, 4849 Martin Luther King Boulevard, Houston, TX, USA
| | - James E Smith
- Department of Pharmacy Practice & Translational Research, University of Houston College of Pharmacy, 4849 Martin Luther King Boulevard, Houston, TX, USA
| | - Brianna M Eales
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston College of Pharmacy, 4849 Martin Luther King Boulevard, Houston, TX, USA
| | - Shama Kajiji
- Emergent System Analytics, LLC, 24 W Main St Suite 216, Clinton, CT, USA
| | - Xinli Liu
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston College of Pharmacy, 4849 Martin Luther King Boulevard, Houston, TX, USA
| | - Luan D Truong
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, 6565 Fannin St, Houston, TX, USA
| | - Vincent H Tam
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston College of Pharmacy, 4849 Martin Luther King Boulevard, Houston, TX, USA
- Department of Pharmacy Practice & Translational Research, University of Houston College of Pharmacy, 4849 Martin Luther King Boulevard, Houston, TX, USA
| |
Collapse
|
9
|
Zheng G, Cai J, Zhou S, Du N, Bai H, He J, Bian X. Risk of polymyxin B-induced acute kidney injury with a non adjusted dose versus adjusted dose based on renal function. Per Med 2022; 19:307-314. [PMID: 35762314 DOI: 10.2217/pme-2021-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: To observe the difference in the risk of polymyxin B (PMB)-induced acute kidney injury (AKI) with or without dose adjustment based on the patients renal function. Materials & methods: This retrospective cohort analysis was carried out in 115 patients treated with PMB from November 2018 to October 2019. Results: No significant difference in the incidence of AKI as well as secondary outcomes was observed between these two groups (47.5 vs 37.14%; p = 0.304). Conclusion: Dosing adjustment based on renal function does not significantly lower the risk of PMB-induced AKI. A non adjusted dosing strategy for PMB is recommended in patients exhibiting various levels of renal impairment.
Collapse
Affiliation(s)
- Guanhao Zheng
- Department of Pharmacy, Ruijin Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, 200000, China.,Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200000, China
| | - Jiaqi Cai
- Department of Clinical Laboratory, Kunshan Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan, 215300, China
| | - Shenghui Zhou
- Department of Pharmacy, Baiyin Central Hospital, Baiyin, 730900, China
| | - Ning Du
- Department of Pharmacy, Qiqihar First Hospital, Qiqihar, 161000, China
| | - Hao Bai
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400000, China
| | - Juan He
- Department of Pharmacy, Ruijin Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, 200000, China
| | - Xiaolan Bian
- Department of Pharmacy, Ruijin Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai, 200000, China.,Department of Pharmacy, Luwan Branch of Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China
| |
Collapse
|
10
|
Wu XL, Long WM, Lu Q, Teng XQ, Qi TT, Qu Q, He GF, Qu J. Polymyxin B-Associated Nephrotoxicity and Its Predictors: A Retrospective Study in Carbapenem-Resistant Gram-Negative Bacterial Infections. Front Pharmacol 2022; 13:672543. [PMID: 35571125 PMCID: PMC9096016 DOI: 10.3389/fphar.2022.672543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Polymyxin B (PMB), a kind of polymyxin, was widely used in carbapenem-resistant Gram-negative bacterial (CR-GNB) infections. However, adverse reactions such as nephrotoxicity and neurotoxicity limit its use in clinical practice. The aim of this study was to explore PMB associated with nephrotoxicity and its predictors. Patients who received PMB intravenous drip for more than 72 h were eligible for the study. Characteristics of patients, concomitant nephrotoxic agents, underlying disease, and antimicrobial susceptibility were submitted for descriptive analysis. Univariate analysis and binary logistic regression were used to assess the factors leading to acute kidney injury (AKI). AKI was assessed with serum creatinine variations according to the classification of risk (stage R), injury (stage I), failure (stage F), loss, and end-stage of kidney disease. Among 234 patients with CR-GNB infections who used PMB in our study, 67 (28.63%) patients developed AKI, including 31 (14.25%) patients in stage R, 15 (6.41%) patients in stage I, and 21 (8.97%) patients in stage F. The incident rate of PMB-related nephrotoxicity in patients with normal renal function was 32.82% (43/131). The higher risk factors of AKI include males [odds ratio (OR) = 3.237; 95% confidence interval (95%CI) = 1.426–7.350], digestive system diseases [OR = 2.481 (1.127–5.463)], using furosemide (>20 mg/day) [OR = 2.473 (1.102–5.551)], and baseline serum creatinine [OR = 0.994 (0.990–0.999)]. Nonparametric tests of K-independent samples showed that baseline serum creatinine and the PMB maintenance dose were associated with the severity of nephrotoxicity (both p < 0.05). Male, digestive system diseases, using furosemide (>20 mg/day), and high baseline serum creatinine were the independent risk factors of PMB-associated AKI development. The maintenance dose of PMB may be related to the severity of AKI. These risk factors should be taken into consideration when initiating PMB-based therapy. The serum creatinine value should be closely monitored when using PMB.
Collapse
Affiliation(s)
- Xiao-Li Wu
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
- Department of Pharmacy, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wen-Ming Long
- Department of Pharmacy, Second People’s Hospital of Huaihua City, Huaihua, China
| | - Qiong Lu
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Xin-Qi Teng
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Ting-Ting Qi
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Ge-Fei He
- Department of Pharmacy, The First Hospital of Changsha, Changsha, China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, China
- *Correspondence: Jian Qu,
| |
Collapse
|
11
|
Kaewpaiboon S, Srichana T. Formulation optimization and stability of polymyxin B based on sodium deoxycholate sulfate micelles. J Pharm Sci 2022; 111:2249-2257. [DOI: 10.1016/j.xphs.2022.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 11/27/2022]
|
12
|
Wen YX, Qu Q, Long WM, Luo Y, Zhuang HH, Teng XQ, Qu J. Nephrotoxicity and Efficacy Assessment of Polymyxin B Use in Renal Transplant Patients. Infect Drug Resist 2022; 15:275-283. [PMID: 35115795 PMCID: PMC8801393 DOI: 10.2147/idr.s348571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/06/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yu-Xin Wen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People’s Republic of China
- Department of Pharmacy, Lixian People’s Hospital in Hunan, Lixian, 415500, People’s Republic of China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410078, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, People’s Republic of China
| | - Wen-Ming Long
- Department of Pharmacy, Jingzhou District, Second People’s Hospital of Huaihua City, Huaihua, 418400, People’s Republic of China
| | - Yue Luo
- Department of Pharmacy, The People’s Hospital of Liuyang, Liuyang, 410300, People’s Republic of China
| | - Hai-Hui Zhuang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People’s Republic of China
| | - Xin-Qi Teng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People’s Republic of China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People’s Republic of China
- Correspondence: Jian Qu, Department of Pharmacy, The Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, No. 139 Middle Renmin Road, Changsha, 410011, People’s Republic of China, Tel +86-15973190614, Fax +86-731-85292072, Email
| |
Collapse
|
13
|
Silva ARO, Salgado DR, Lopes LPN, Castanheira D, Emmerick ICM, Lima EC. Increased Use of Antibiotics in the Intensive Care Unit During Coronavirus Disease (COVID-19) Pandemic in a Brazilian Hospital. Front Pharmacol 2021; 12:778386. [PMID: 34955847 PMCID: PMC8703131 DOI: 10.3389/fphar.2021.778386] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/22/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Microbial drug resistance is one of the biggest public health problems. Antibiotic consumption is an essential factor for the emergence and spread of multiresistant bacteria. Therefore, we aimed to analyze the antibiotics consumption in the Intensive Care Unit (ICU), identifying trends in the antibiotics use profile and microbiological isolates throughout the COVID-19 pandemic. Methods: We performed this retrospective observational study in intensive care units of a Brazilian tertiary hospital from January 2019 to December 2020. The primary outcome was antimicrobial consumption in the ICU, measured by defined daily doses (DDDs) per 100 bed-days. As a secondary outcome, bacterial infections (microbiological isolates) were calculated in the same fashion. Outcomes trends were analyzed using Joinpoint regression models, considering constant variance (homoscedasticity) and first-order autocorrelation assumptions. A monthly percent change (MPC) was estimated for each analyzed segment. Results: Seven thousand and nine hundred fifty-three patients had data available on prescribed and received medications and were included in the analyses. Overall, the use of antibiotics increased over time in the ICU. The reserve group (World Health Organization Classification) had an increasing trend (MPC = 7.24) from February to April 2020. The azithromycin consumption (J01FA) increased rapidly, with a MPC of 5.21 from January to April 2020. Polymyxin B showed a relevant increase from March to June 2020 (MPC = 6.93). The peak of the antibiotic consumption of Reserve group did not overlap with the peak of the pathogenic agents they are intended to treat. Conclusion: Overall antimicrobial consumption in ICU has increased in the context of the COVID-19 pandemic. The peaks in the antimicrobial's use were not associated with the rise of the pathogenic agents they intended to treat, indicating an empirical use, which is especially concerning in the context of treating multidrug-resistant (MDR) infections. This fact may contribute to the depletion of the therapeutic arsenal for MDR treatment.
Collapse
Affiliation(s)
| | - Diamantino Ribeiro Salgado
- Clementino Fraga Filho University Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
14
|
Zou D, Yao G, Shen C, Ji J, Ying C, Wang P, Liu Z, Wang J, Jin Y, Xiao Y. The Monte Carlo Simulation of Three Antimicrobials for Empiric Treatment of Adult Bloodstream Infections With Carbapenem-Resistant Enterobacterales in China. Front Microbiol 2021; 12:738812. [PMID: 34899628 PMCID: PMC8656417 DOI: 10.3389/fmicb.2021.738812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/25/2021] [Indexed: 11/27/2022] Open
Abstract
Introduction: The aim of this study was to predict and evaluate three antimicrobials for treatment of adult bloodstream infections (BSI) with carbapenem-resistant Enterobacterales (CRE) in China, so as to optimize the clinical dosing regimen further. Methods: Antimicrobial susceptibility data of blood isolates were obtained from the Blood Bacterial Resistance Investigation Collaborative Systems in China. Monte Carlo simulation was conducted to estimate the probability target attainment (PTA) and cumulative fraction of response (CFR) of tigecycline, polymyxin B, and ceftazidime/avibactam against CRE. Results: For the results of PTAs, tigecycline following administration of 50 mg every 12 h, 75 mg every 12 h, and 100 mg every 12 h achieved > 90% PTAs when minimum inhibitory concentration (MIC) was 0.25, 0.5, and 0.5 μg/mL, respectively; polymyxin B following administration of all tested regimens achieved > 90% PTAs when MIC was 1 μg/mL with CRE; ceftazidime/avibactam following administration of 1.25 g every 8 h, 2.5 g every 8 h achieved > 90% PTAs when MIC was 4 μg/mL, 8 μg/mL with CRE, respectively. As for CFR values of three antimicrobials, ceftazidime/avibactam achieved the lowest CFR values. The highest CFR value of ceftazidime/avibactam was 77.42%. For tigecycline and ceftazidime/avibactam, with simulated regimens daily dosing increase, the CFR values were both increased; the highest CFR of tigecycline values was 91.88%. For polymyxin B, the most aggressive dosage of 1.5 mg/kg every 12 h could provide the highest CFR values (82.69%) against CRE. Conclusion: This study suggested that measurement of MICs and individualized therapy should be considered together to achieve the optimal drug exposure. In particular, pharmacokinetic and pharmacodynamic modeling based on local antimicrobial resistance data can provide valuable guidance for clinicians for the administration of empirical antibiotic treatments for BSIs.
Collapse
Affiliation(s)
- Dongna Zou
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Guangyue Yao
- Cancer Therapy and Research Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Chengwu Shen
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jinru Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chaoqun Ying
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Peipei Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhiying Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Wang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yan Jin
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Goode A, Yeh V, Bonev BB. Interactions of polymyxin B with lipopolysaccharide-containing membranes. Faraday Discuss 2021; 232:317-329. [PMID: 34550139 PMCID: PMC8704168 DOI: 10.1039/d1fd00036e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bacterial resistance to antibiotics constantly remodels the battlefront between infections and antibiotic therapy. Polymyxin B, a cationic peptide with an anti-Gram-negative spectrum of activity is re-entering use as a last resort measure and as an adjuvant. We use fluorescence dequenching to investigate the role of the rough chemotype bacterial lipopolysaccharide from E. coli BL21 as a molecular facilitator of membrane disruption by LPS. The minimal polymyxin B/lipid ratio required for leakage onset increased from 5.9 × 10−4 to 1.9 × 10−7 in the presence of rLPS. We confirm polymyxin B activity against E. coli BL21 by the agar diffusion method and determined a MIC of 291 μg ml−1. Changes in lipid membrane stability and dynamics in response to polymyxin and the role of LPS are investigated by 31P NMR and high resolution 31P MAS NMR relaxation is used to monitor selective molecular interactions between polymyxin B and rLPS within bilayer lipid membranes. We observe a strong facilitating effect from rLPS on the membrane lytic properties of polymyxin B and a specific, pyrophosphate-mediated process of molecular recognition of LPS by polymyxin B. Polymyxin B uses bacterial LPS as docking receptor to cross the outer membrane.![]()
Collapse
Affiliation(s)
- Alice Goode
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK.
| | - Vivien Yeh
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK.
| | - Boyan B Bonev
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK.
| |
Collapse
|
16
|
Synergistic Antibacterial Effects of Meropenem in Combination with Aminoglycosides against Carbapenem-Resistant Escherichia coli Harboring blaNDM-1 and blaNDM-5. Antibiotics (Basel) 2021; 10:antibiotics10081023. [PMID: 34439073 PMCID: PMC8388987 DOI: 10.3390/antibiotics10081023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 12/21/2022] Open
Abstract
Infections due to carbapenem-resistant Escherichia coli (CREC) are problematic due to limitation in treatment options. Combination therapies of existing antimicrobial agents have become a reliable strategy to control these infections. In this study, the synergistic effects of meropenem in combination with aminoglycosides were assessed by checkerboard and time-kill assays. Of the 35 isolates, 19 isolates (54.3%) were resistant to carbapenems (imipenem and meropenem) with the MIC ranges from 16 to 128 µg/mL. These isolates were resistant to almost all antibiotic classes. Molecular characteristics revealed co-harboring of carbapenemase (blaNDM-1, blaNDM-5 and blaOXA-48) and extended-spectrum β-lactamases (ESBL) genes (blaCTX-M, blaSHV and blaTEM). The checkerboard assay displayed synergistic effects of meropenem and several aminoglycosides against most CREC isolates. Time-kill assays further demonstrated strong synergistic effects of meropenem in combination with either amikacin, gentamicin, kanamycin, streptomycin, and tobramycin. The results suggested that meropenem in combination with aminoglycoside therapy might be an efficient optional treatment for infections cause by CREC.
Collapse
|
17
|
Khatun M, Damgaard BM, Andersen JB, Røntved CM. Effect of polymyxin B on ex vivo tumor necrosis factor-alpha responsiveness of blood leukocytes in Danish Holstein Friesian cows. Vet Immunol Immunopathol 2021; 238:110293. [PMID: 34284224 DOI: 10.1016/j.vetimm.2021.110293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/14/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
Whole blood stimulation assay (WBA) with killed gram-positive and gram-negative udder pathogens were used to investigate the interference of the endotoxin-binding antibiotic polymyxin B (PMB) on the ex vivo TNF-α response. Blood samples were collected from first to third lactating dairy cows in their early lactation (<50 days in milk, n = 32) period. The WBA was stimulated with both inactivated bacteria (e.g., dead Escherichia coli, Staphylococcus aureus, Streptococcus dysgalactiae, Streptococcus uberis), at a concentration of 2.5 × 106/mL; and pathogen-associated molecular pattern molecules, namely E. coli LPS (10 μg/mL), and S. aureus peptidoglycan (PG, 10 μg/mL). The PMB was added at a concentration of 0, 12.5, 25, 50, 100, and 200 μg/mL to each stimulant, respectively. All bacteria stimulants resulted in an increased TNF-α response compared to the negative control. The PMB affected the TNF-α responses of gram-positive (except S. dysgalactaie), gram-negative bacteria; and bacterial cell wall components at a PMB concentration of 25-50 μg/mL. The LPS and E. coli had similar TNF-α response but PG had a lower TNF-α response than gram-positive bacteria. The doses of PMB (≥ 25 μg/mL) should be used with caution when using different types of pathogens or should be avoided in ex vivo TNF-α studies.
Collapse
Affiliation(s)
- Momena Khatun
- Aarhus University, Faculty of Science and Technology, Department of Animal Science, Blichers Allé 20, P.O. Box 50, DK-8300, Tjele, Denmark.
| | - Birthe M Damgaard
- Aarhus University, Faculty of Science and Technology, Department of Animal Science, Blichers Allé 20, P.O. Box 50, DK-8300, Tjele, Denmark.
| | - Jens B Andersen
- Aarhus University, Faculty of Science and Technology, Department of Animal Science, Blichers Allé 20, P.O. Box 50, DK-8300, Tjele, Denmark.
| | - Christine M Røntved
- Aarhus University, Faculty of Science and Technology, Department of Animal Science, Blichers Allé 20, P.O. Box 50, DK-8300, Tjele, Denmark; Christine Røntved, CMR On-Site RD, Graverhusvej 53, Langholt, 9310, Vodskov, Denmark.
| |
Collapse
|
18
|
Synchrotron-based X-ray fluorescence microscopy reveals accumulation of polymyxins in single human alveolar epithelial cells. Antimicrob Agents Chemother 2021; 65:AAC.02314-20. [PMID: 33649114 PMCID: PMC8092916 DOI: 10.1128/aac.02314-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Intravenous administration of the last-line polymyxins results in poor drug exposure in the lungs and potential nephrotoxicity; while inhalation therapy offers better pharmacokinetics/pharmacodynamics for pulmonary infections by delivering the antibiotic to the infection site directly. However, polymyxin inhalation therapy has not been optimized and adverse effects can occur. This study aimed to quantitatively determine the intracellular accumulation and distribution of polymyxins in single human alveolar epithelial A549 cells. Cells were treated with an iodine-labeled polymyxin probe FADDI-096 (5.0 and 10.0 μM) for 1, 4, and 24 h. Concentrations of FADDI-096 in single A549 cells were determined by synchrotron-based X-ray fluorescence microscopy. Concentration- and time-dependent accumulation of FADDI-096 within A549 cells was observed. The intracellular concentrations (mean ± SEM, n ≥ 189) of FADDI-096 were 1.58 ± 0.11, 2.25 ± 0.10, and 2.46 ± 0.07 mM following 1, 4 and 24 h of treatment at 10 μM, respectively. The corresponding intracellular concentrations following the treatment at 5 μM were 0.05 ± 0.01, 0.24 ± 0.04, and 0.25 ± 0.02 mM (n ≥ 189). FADDI-096 was mainly localized throughout the cytoplasm and nuclear region over 24 h. The intracellular zinc concentration increased in a concentration- and time-dependent manner. This is the first study to quantitatively map the accumulation of polymyxins in human alveolar epithelial cells and provides crucial insights for deciphering the mechanisms of their pulmonary toxicity. Importantly, our results may shed light on the optimization of inhaled polymyxins in patients and the development of new-generation safer polymyxins.
Collapse
|
19
|
Abstract
Antibiotic resistance is a major global health challenge and, worryingly, several key Gram negative pathogens can become resistant to most currently available antibiotics. Polymyxins have been revived as a last-line therapeutic option for the treatment of infections caused by multidrug-resistant Gram negative bacteria, in particular Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacterales. Polymyxins were first discovered in the late 1940s but were abandoned soon after their approval in the late 1950s as a result of toxicities (e.g., nephrotoxicity) and the availability of "safer" antibiotics approved at that time. Therefore, knowledge on polymyxins had been scarce until recently, when enormous efforts have been made by several research teams around the world to elucidate the chemical, microbiological, pharmacokinetic/pharmacodynamic, and toxicological properties of polymyxins. One of the major achievements is the development of the first scientifically based dosage regimens for colistin that are crucial to ensure its safe and effective use in patients. Although the guideline has not been developed for polymyxin B, a large clinical trial is currently being conducted to optimize its clinical use. Importantly, several novel, safer polymyxin-like lipopeptides are developed to overcome the nephrotoxicity, poor efficacy against pulmonary infections, and narrow therapeutic windows of the currently used polymyxin B and colistin. This review discusses the latest achievements on polymyxins and highlights the major challenges ahead in optimizing their clinical use and discovering new-generation polymyxins. To save lives from the deadly infections caused by Gram negative "superbugs," every effort must be made to improve the clinical utility of the last-line polymyxins. SIGNIFICANCE STATEMENT: Antimicrobial resistance poses a significant threat to global health. The increasing prevalence of multidrug-resistant (MDR) bacterial infections has been highlighted by leading global health organizations and authorities. Polymyxins are a last-line defense against difficult-to-treat MDR Gram negative pathogens. Unfortunately, the pharmacological information on polymyxins was very limited until recently. This review provides a comprehensive overview on the major achievements and challenges in polymyxin pharmacology and clinical use and how the recent findings have been employed to improve clinical practice worldwide.
Collapse
Affiliation(s)
- Sue C Nang
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Mohammad A K Azad
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Tony Velkov
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Qi Tony Zhou
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| | - Jian Li
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia (S.C.N., M.A.K.A., J.L.); Department of Pharmacology and Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia (T.V.); and Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana (Q.T.Z.)
| |
Collapse
|
20
|
Sun W, Hu B, Zhang X, Wang Y, Xiang Z, Lin G. Effect of Different Dosage Frequency of Polymyxin B on Rat Nephrotoxicity. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:611-616. [PMID: 33623370 PMCID: PMC7896728 DOI: 10.2147/dddt.s287332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/07/2021] [Indexed: 12/30/2022]
Abstract
Background Polymyxin B, as the final treatment against multidrug-resistant Gram-negative bacilli, is widely used in clinical practice. However, little is known about the nephrotoxicity of polymyxin B. The purpose of this study was to elucidate the relationship between polymyxin B nephrotoxicity and daily administration frequency. Methods Sprague–Dawley rats were randomly divided into three groups: 18 mg/kg/q24 h group (Group A, once daily), 9 mg/kg/q12 h group (Group B, twice daily), and normal saline control group (Group C). The rats were injected subcutaneously for 5 consecutive days with the same daily total dose and different frequency of administration. The serum creatinine (SCr) and blood urea nitrogen (BUN) of each group before administration (0 h), and 8 and 24 h after administration, were measured by tail vein blood sampling. On the sixth day, the rats in each group were killed, the left kidney was taken for pathological section observation, and the results of each group were compared. Results After 96 h of administrated polymyxin B, the total average level of SCr in Group A was 56.98±12.42 μmol/L, that of Group B was 52.02±8.68 μmol/L, and that of Group C was 34.36±5.39 μmol/L. BUN was 9.86±4.58, 10.54±4.08, and 3.55±0.73 mmol/L in Groups A, B, and C, respectively. The daily urinary protein excretion was 5004.45±1333.84 μg in Group A, 4608.04±1444.42 μg in Group B, and 2096.33±215.28 μg in Group C. In addition, according to the observation of pathological slices, compared with Group A, the number of exfoliated and necrotic cells of renal tubules in Group B was higher, and the morphological changes were more serious. Conclusion The experimental results showed that the renal toxicity in rats treated with a twice-daily subcutaneous dose of polymyxin B was higher than that in rats treated with once-daily dose of polymyxin B.
Collapse
Affiliation(s)
- Wenrui Sun
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Binchuan Hu
- Yongjia People's Hospital, Wenzhou, 325100, People's Republic of China
| | - Xiaoshan Zhang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China.,Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Yuzhen Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China.,Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Zheng Xiang
- Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| | - Guanyang Lin
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China
| |
Collapse
|
21
|
da Fonseca CD, Watanabe M, Couto SMF, dos Santos AAC, Borges FT, Vattimo MDFF. The renoprotective effects of Heme Oxygenase-1 during contrast-induced acute kidney injury in preclinical diabetic models. Clinics (Sao Paulo) 2021; 76:e3002. [PMID: 34669875 PMCID: PMC8491594 DOI: 10.6061/clinics/2021/e3002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/14/2021] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVES Contrast-induced acute kidney injury (CI-AKI) is an important clinical problem that can be aggravated by diabetes mellitus, a major risk factor. However, heme oxygenase-1 (HO-1), a promising therapeutic target, can exert antioxidant effects against CI-AKI. Thus, we investigated the role of HO-1 in CI-AKI in the presence of diabetes mellitus. METHODS Twenty-eight male Wistar rats weighing 250-300g were subjected to left uninephrectomy, and concomitantly, diabetes induced by streptozotocin (65 mg/kg). After 12 weeks, iodinated contrast (meglumine ioxithalamate, 6 mL/kg) and hemin (HO-1 inducer-10 mg/k) were administered 60 min before iodinated contrast treatment. The rats were randomly divided into four groups: control, diabetes mellitus (DM), DM iodinated contrast (DMIC), and DMIC hemin (DMICH). Kidney function, albuminuria, oxidative profile, and histology were assessed. All experimental data were subjected to statistical analyses. RESULTS CI-AKI in preclinical diabetic models decreased creatinine clearance and increased urinary neutrophil gelatinase-associated lipocalin (NGAL) levels and the degree of albuminuria. Additionally, the levels of oxidative and nitrosative stress metabolites (urinary peroxides, thiobarbituric acid-reactive substances, and NO) were elevated, while thiol levels in kidney tissue were reduced. Kidney histology showed tubular cell vacuolization and edema. HO-1 inducer treatment improved kidney function and reduced urinary the NGAL levels. The oxidative profile showed an increase in the endogenous thiol-based antioxidant levels. Additionally, the tubular injury score was reduced following HO-1 treatment. CONCLUSIONS Our findings highlight the renoprotective effects of HO-1 in CI-AKI and preclinical diabetic models. Therefore, HO-1 ameliorates kidney dysfunction, reduces oxidative stress, and prevents cell necrosis.
Collapse
Affiliation(s)
- Cassiane Dezoti da Fonseca
- Escola Paulista de Enfermagem, Universidade Federal de Sao Paulo, Sao Paulo, SP, BR
- Laboratorio Experimental de Modelos Animais (LEMA), Escola de Enfermagem, Universidade de Sao Paulo, Sao Paulo, SP, BR
- Corresponding author. E-mail:
| | - Mirian Watanabe
- Centro Universitario das Faculdades Metropolitanas Unidas (FMU), Sao Paulo, SP, BR
| | | | | | - Fernanda Teixeira Borges
- Programa de Pos-graduacao Interdisciplinar em Ciencias da Saude, Universidade Cruzeiro do Sul, Sao Paulo SP, BR
- Divisao de Nefrologia, Universidade Federal de Sao Paulo, Sao Paulo, SP, BR
| | | |
Collapse
|
22
|
Yu XB, Jiao Z, Zhang CH, Dai Y, Zhou ZY, Han L, Wen X, Sheng CC, Lin GY, Pan JY. Population pharmacokinetic and optimization of polymyxin B dosing in adult patients with various renal functions. Br J Clin Pharmacol 2020; 87:1869-1877. [PMID: 33002196 DOI: 10.1111/bcp.14576] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/29/2020] [Accepted: 09/11/2020] [Indexed: 11/26/2022] Open
Abstract
AIMS Current FDA-approved label recommends that the dosage of polymyxin B should be adjusted according to renal function. However, the correlation between polymyxin B pharmacokinetics (PK) and creatinine clearance (CrCL) is poor. This study aimed to develop a population PK model of polymyxin B in adult patients with various renal functions and to identify a dosing strategy. METHODS A retrospective PK study was performed in 32 adult patients with various renal function. Nonlinear mixed effects modelling was applied to build a population PK model of polymyxin B followed by Monte Carlo simulations which designed polymyxin B dosing regimens across various renal function. RESULTS Polymyxin B PK analyses included 112 polymyxin B concentrations at steady state from 32 adult patients, in which 71.9% of them were critically ill. In the final PK model, CrCL was the significant covariate on CL (typical value 1.59 L/h; between-subject variability 13%). The mean (SD) individual empirical Bayesian estimate of CL was 1.75 (0.43) L/h. In addition, a new dosing strategy combining the PK/pharmacodynamic (PD) targets and Monte Carlo simulation indicated that the reduction of polymyxin B dose in patients with renal insufficiency improved the probability of achieving optimal exposure. For severe infections caused by organisms with minimum inhibitory concentration (MIC) ≥ 2 mg/L, a high daily dose of polymyxin B might be possible for bacterial eradication, but the risk of nephrotoxicity is increased. CONCLUSIONS Renal function plays a significant role in polymyxin B PK, and the dose of polymyxin B should be adjusted according to CrCL in patients with renal insufficiency.
Collapse
Affiliation(s)
- Xu-Ben Yu
- Department of Pharmacy, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zheng Jiao
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chun-Hong Zhang
- Department of Pharmacy, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ying Dai
- Department of Pharmacy, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zi-Ye Zhou
- Department of Pharmacy, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lu Han
- Department of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Xin Wen
- Department of Pharmacy, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Chang-Cheng Sheng
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Guan-Yang Lin
- Department of Pharmacy, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jing-Ye Pan
- Department of Pharmacy, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Intensive Care Unit, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
23
|
The Effect of Modified Porcine Surfactant Alone or in Combination with Polymyxin B on Lung Homeostasis in LPS-Challenged and Mechanically Ventilated Adult Rats. Molecules 2020; 25:molecules25194356. [PMID: 32977392 PMCID: PMC7582504 DOI: 10.3390/molecules25194356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 01/21/2023] Open
Abstract
The study aimed to prove the hypothesis that exogenous surfactant and an antibiotic polymyxin B (PxB) can more effectively reduce lipopolysaccharide (LPS)-induced acute lung injury (ALI) than surfactant treatment alone, and to evaluate the effect of this treatment on the gene expression of surfactant proteins (SPs). Anesthetized rats were intratracheally instilled with different doses of LPS to induce ALI. Animals with LPS 500 μg/kg have been treated with exogenous surfactant (poractant alfa, Curosurf®, 50 mg PL/kg b.w.) or surfactant with PxB 1% w.w. (PSUR + PxB) and mechanically ventilated for 5 hrs. LPS at 500 μg/kg increased lung edema, oxidative stress, and the levels of proinflammatory mediators in lung tissue and bronchoalveolar lavage fluid (BALF). PSUR reduced lung edema and oxidative stress in the lungs and IL-6 in BALF. This effect was further potentiated by PxB added to PSUR. Exogenous surfactant enhanced the gene expression of SP-A, SP-B, and SP-C, however, gene expression for all SPs was reduced after treatment with PSUR + PxB. In mechanically ventilated rats with LPS-induced ALI, the positive effect of exogenous surfactant on inflammation and oxidative stress was potentiated with PxB. Due to the tendency for reduced SPs gene expression after surfactant/PxB treatment topical use of PxB should be considered with caution.
Collapse
|
24
|
Abstract
Despite efforts to develop new antibiotics, antibacterial resistance still develops too fast for drug discovery to keep pace. Often, resistance against a new drug develops even before it reaches the market. This continued resistance crisis has demonstrated that resistance to antibiotics with single protein targets develops too rapidly to be sustainable. Most successful long-established antibiotics target more than one molecule or possess targets, which are encoded by multiple genes. This realization has motivated a change in antibiotic development toward drug candidates with multiple targets. Some mechanisms of action presuppose multiple targets or at least multiple effects, such as targeting the cytoplasmic membrane or the carrier molecule bactoprenol phosphate and are therefore particularly promising. Moreover, combination therapy approaches are being developed to break antibiotic resistance or to sensitize bacteria to antibiotic action. In this Review, we provide an overview of antibacterial multitarget approaches and the mechanisms behind them.
Collapse
Affiliation(s)
- Declan Alan Gray
- Newcastle University
Biosciences Institute, Newcastle University, NE2 4HH Newcastle
upon Tyne, United Kingdom
| | - Michaela Wenzel
- Division of Chemical
Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
25
|
Ahmed MU, Velkov T, Zhou QT, Fulcher AJ, Callaghan J, Zhou F, Chan K, Azad MAK, Li J. Intracellular localization of polymyxins in human alveolar epithelial cells. J Antimicrob Chemother 2020; 74:48-57. [PMID: 30357331 DOI: 10.1093/jac/dky409] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/06/2018] [Indexed: 01/05/2023] Open
Abstract
Background Current inhaled polymyxin therapy is empirical and often large doses are administered, which can lead to pulmonary adverse effects. There is a dearth of information on the mechanisms of polymyxin-induced lung toxicity and their intracellular localization in lung epithelial cells. Objectives To investigate the intracellular localization of polymyxins in human lung epithelial A549 cells. Methods A549 cells were treated with polymyxin B and intracellular organelles (early and late endosomes, endoplasmic reticulum, mitochondria, lysosomes and autophagosomes), ubiquitin protein and polymyxin B were visualized using immunostaining and confocal microscopy. Fluorescence intensities of the organelles and polymyxin B were quantified and correlated for co-localization using ImageJ and Imaris platforms. Results Polymyxin B co-localized with early endosomes, lysosomes and ubiquitin at 24 h. Significantly increased lysosomal activity and the autophagic protein LC3A were observed after 0.5 and 1.0 mM polymyxin B treatment at 24 h. Polymyxin B also significantly co-localized with mitochondria (Pearson's R = 0.45) and led to the alteration of mitochondrial morphology from filamentous to fragmented form (n = 3, P < 0.001). These results are in line with the polymyxin-induced activation of the mitochondrial apoptotic pathway observed in A549 cells. Conclusions Accumulation of polymyxins on mitochondria probably caused mitochondrial toxicity, resulting in increased oxidative stress and cell death. The formation of autophagosomes and lysosomes was likely a cellular response to the polymyxin-induced stress and played a defensive role by disassembling dysfunctional organelles and proteins. Our study provides new mechanistic information on polymyxin-induced lung toxicity, which is vital for optimizing inhaled polymyxins in the clinic.
Collapse
Affiliation(s)
- Maizbha U Ahmed
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.,Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Victoria, Australia
| | - Tony Velkov
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Alex J Fulcher
- Monash Micro Imaging, Monash University, Victoria, Australia
| | - Judy Callaghan
- Monash Micro Imaging, Monash University, Victoria, Australia
| | - Fanfan Zhou
- School of Pharmacy, The University of Sydney, Camperdown, NSW, Australia
| | - Kim Chan
- School of Pharmacy, The University of Sydney, Camperdown, NSW, Australia
| | - Mohammad A K Azad
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Victoria, Australia
| | - Jian Li
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Victoria, Australia
| |
Collapse
|
26
|
Downes KJ, Hayes M, Fitzgerald JC, Pais GM, Liu J, Zane NR, Goldstein SL, Scheetz MH, Zuppa AF. Mechanisms of antimicrobial-induced nephrotoxicity in children. J Antimicrob Chemother 2020; 75:1-13. [PMID: 31369087 PMCID: PMC6910165 DOI: 10.1093/jac/dkz325] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Drug-induced nephrotoxicity is responsible for 20% to 60% of cases of acute kidney injury in hospitalized patients and is associated with increased morbidity and mortality in both children and adults. Antimicrobials are one of the most common classes of medications prescribed globally and also among the most common causes of nephrotoxicity. A broad range of antimicrobial agents have been associated with nephrotoxicity, but the features of kidney injury vary based on the agent, its mechanism of injury and the site of toxicity within the kidney. Distinguishing nephrotoxicity caused by an antimicrobial agent from other potential inciting factors is important to facilitate both early recognition of drug toxicity and prompt cessation of an offending drug, as well as to avoid unnecessary discontinuation of an innocuous therapy. This review will detail the different types of antimicrobial-induced nephrotoxicity: acute tubular necrosis, acute interstitial nephritis and obstructive nephropathy. It will also describe the mechanism of injury caused by specific antimicrobial agents and classes (vancomycin, aminoglycosides, polymyxins, antivirals, amphotericin B), highlight the toxicodynamics of these drugs and provide guidance on administration or monitoring practices that can mitigate toxicity, when known. Particular attention will be paid to paediatric patients, when applicable, in whom nephrotoxin exposure is an often-underappreciated cause of kidney injury.
Collapse
Affiliation(s)
- Kevin J Downes
- Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Clinical Pharmacology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Pediatric Clinical Effectiveness, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Molly Hayes
- Antimicrobial Stewardship Program, Center for Healthcare Quality & Analytics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Julie C Fitzgerald
- Division of Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Anesthesiology and Critical Care, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Gwendolyn M Pais
- Department of Pharmacy Practice, Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, USA
- Pharmacometrics Center of Excellence, Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, USA
| | - Jiajun Liu
- Department of Pharmacy Practice, Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, USA
- Pharmacometrics Center of Excellence, Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, USA
- Department of Pharmacy, Northwestern Memorial Hospital, Chicago, IL, USA
| | - Nicole R Zane
- Center for Clinical Pharmacology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stuart L Goldstein
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
- Center for Acute Care Nephrology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Marc H Scheetz
- Department of Pharmacy Practice, Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, USA
- Pharmacometrics Center of Excellence, Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, USA
- Department of Pharmacy, Northwestern Memorial Hospital, Chicago, IL, USA
- Department of Pharmacology, College of Graduate Studies, Midwestern University, Downers Grove, IL, USA
| | - Athena F Zuppa
- Center for Clinical Pharmacology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Anesthesiology and Critical Care, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
27
|
To CZ, Bhunia AK. Three Dimensional Vero Cell-Platform for Rapid and Sensitive Screening of Shiga-Toxin Producing Escherichia coli. Front Microbiol 2019; 10:949. [PMID: 31134009 PMCID: PMC6514307 DOI: 10.3389/fmicb.2019.00949] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 04/15/2019] [Indexed: 01/27/2023] Open
Abstract
Shiga-toxin producing Escherichia coli (STEC) is a serious public health concern. Current Vero cell assay, although sensitive, is lengthy and requires 48-72 h to assess STEC presence in a sample. In this study, we investigated if Vero cells in a three-dimensional (3D) platform would provide improved sensitivity for rapid screening of STEC. Vero cells (epithelial kidney cell line) were grown as a monolayer (2D) or in a collagen-matrix (3D) and exposed to Shiga-toxin (Stx) preparation or STEC cells that were pre-exposed to antibiotics (mitomycin C, ciprofloxacin, or polymyxin B) for toxin induction. Lactate dehydrogenase (LDH) release from Vero cells was used as a biomarker for cytotoxicity. Modified tryptic soy broth (mTSB) as enrichment broth containing mitomycin C (2 μg/ml) or ciprofloxacin (100 ng/ml) significantly induced Stx production, which was further confirmed by the dot-immunoblot assay. The 3D Vero platform detected STEC after 6 h post-infection with cytotoxicity values ranging from 33 to 79%, which is considerably faster than the traditional 2D platform, when tested with STEC. The cytotoxicity for non-Stx producing bacteria, Salmonella, Listeria, Citrobacter, Serratia, and Hafnia was found to be below the cytotoxicity cutoff value of 15%. The detection limit for the 3D Vero cell assay was estimated to be 107 CFU/ml for bacteria and about 32 ng/ml for Stx in 6 h. STEC-inoculated ground beef samples (n = 27) resulted in 38-46% cytotoxicity, and the bacterial isolates (n = 42) from ground beef samples were further confirmed to be stx1 and stx2 positive in a multiplex PCR yielding a very low false-positive result. This 3D cell-based screening assay relies on mammalian cell pathogen interaction that can complement other molecular techniques for the detection of cell-free Stx or STEC cells from food samples for early detection and prevention.
Collapse
Affiliation(s)
- Celina Z. To
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, United States
| | - Arun K. Bhunia
- Molecular Food Microbiology Laboratory, Department of Food Science, Purdue University, West Lafayette, IN, United States
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, United States
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
28
|
Abstract
Sepsis and septic shock are life-threating conditions, which form a continuum of the body's response to overwhelming infection. The current treatment consists of fluid and metabolic resuscitation, hemodynamic and end-organ support, and timely initiation of antibiotics. However, these measures may be ineffective and the sepsis-related mortality toll remains substantial; therefore, an urgent need exists for new therapies. Recently, several nanoparticle (NP) systems have shown excellent protective effects against sepsis in preclinical models, suggesting a potential utility in the management of sepsis and septic shock. These NPs serve as antibacterial agents, provide platforms to immobilize endotoxin adsorbents, interact with inflammatory cells to restore homeostasis and detect biomarkers of sepsis for timely diagnosis. This review discusses the recent developments in NP-based approaches for the treatment of sepsis.
Collapse
|
29
|
Mesoporous silica nanoparticles carrying multiple antibiotics provide enhanced synergistic effect and improved biocompatibility. Colloids Surf B Biointerfaces 2019; 175:498-508. [DOI: 10.1016/j.colsurfb.2018.12.035] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022]
|
30
|
Azad MAK, Nation RL, Velkov T, Li J. Mechanisms of Polymyxin-Induced Nephrotoxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1145:305-319. [PMID: 31364084 DOI: 10.1007/978-3-030-16373-0_18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polymyxin-induced nephrotoxicity is the major dose-limiting factor and can occur in up to 60% of patients after intravenous administration. This chapter reviews the latest literature on the mechanisms of polymyxin-induced nephrotoxicity and its amelioration. After filtration by glomeruli, polymyxins substantially accumulate in renal proximal tubules via receptor-mediated endocytosis mainly by megalin and PEPT2. It is believed that subsequently, a cascade of interconnected events occur, including the activation of death receptor and mitochondrial apoptotic pathways, mitochondrial damage, endoplasmic reticulum stress, oxidative stress and cell cycle arrest. The current literature shows that oxidative stress plays a key role in polymyxin-induced kidney damage. Use of antioxidants have a potential in the attenuation of polymyxin-induced nephrotoxicity, thereby widening the therapeutic window. Mechanistic findings on polymyxin-induced nephrotoxicity are critical for the optimization of their use in the clinic and the discovery of safer polymyxin-like antibiotics.
Collapse
Affiliation(s)
- Mohammad A K Azad
- Biomedicine Discovery Institute, Infection & Immunity Program and Department of Microbiology, Monash University, Clayton Campus, Melbourne, VIC, Australia
| | - Roger L Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, Melbourne, VIC, Australia
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Jian Li
- Biomedicine Discovery Institute, Infection & Immunity Program and Department of Microbiology, Monash University, Clayton Campus, Melbourne, VIC, Australia.
| |
Collapse
|
31
|
Weber EJ, Lidberg KA, Wang L, Bammler TK, MacDonald JW, Li MJ, Redhair M, Atkins WM, Tran C, Hines KM, Herron J, Xu L, Monteiro MB, Ramm S, Vaidya V, Vaara M, Vaara T, Himmelfarb J, Kelly EJ. Human kidney on a chip assessment of polymyxin antibiotic nephrotoxicity. JCI Insight 2018; 3:123673. [PMID: 30568031 DOI: 10.1172/jci.insight.123673] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/06/2018] [Indexed: 12/22/2022] Open
Abstract
Drug-induced kidney injury, largely caused by proximal tubular intoxicants, limits development and clinical use of new and approved drugs. Assessing preclinical nephrotoxicity relies on animal models that are frequently insensitive; thus, potentially novel techniques - including human microphysiological systems, or "organs on chips" - are proposed to accelerate drug development and predict safety. Polymyxins are potent antibiotics against multidrug-resistant microorganisms; however, clinical use remains restricted because of high risk of nephrotoxicity and limited understanding of toxicological mechanisms. To mitigate risks, structural analogs of polymyxins (NAB739 and NAB741) are currently in clinical development. Using a microphysiological system to model human kidney proximal tubule, we exposed cells to polymyxin B (PMB) and observed significant increases of injury signals, including kidney injury molecule-1 KIM-1and a panel of injury-associated miRNAs (each P < 0.001). Surprisingly, transcriptional profiling identified cholesterol biosynthesis as the primary cellular pathway induced by PMB (P = 1.22 ×10-16), and effluent cholesterol concentrations were significantly increased after exposure (P < 0.01). Additionally, we observed no upregulation of the nuclear factor (erythroid derived-2)-like 2 pathway, despite this being a common pathway upregulated in response to proximal tubule toxicants. In contrast with PMB exposure, minimal changes in gene expression, injury biomarkers, and cholesterol concentrations were observed in response to NAB739 and NAB741. Our findings demonstrate the preclinical safety of NAB739 and NAB741 and reveal cholesterol biosynthesis as a potentially novel pathway for PMB-induced injury. To our knowledge, this is the first demonstration of a human-on-chip platform used for simultaneous safety testing of new chemical entities and defining unique toxicological pathway responses of an FDA-approved molecule.
Collapse
Affiliation(s)
| | | | - Lu Wang
- Department of Environmental and Occupational Health Sciences, and
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, and
| | | | - Mavis J Li
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Michelle Redhair
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Cecilia Tran
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Kelly M Hines
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Josi Herron
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Libin Xu
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Maria Beatriz Monteiro
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, Massachusetts, USA
| | - Susanne Ramm
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, Massachusetts, USA
| | - Vishal Vaidya
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, Massachusetts, USA
| | - Martti Vaara
- Northern Antibiotics Ltd., Espoo, Finland.,Division of Clinical Microbiology, Helsinki University Hospital, Helsinki, Finland.,Department of Bacteriology and Immunology, Helsinki University Medical School, Helsinki, Finland
| | - Timo Vaara
- Northern Antibiotics Ltd., Espoo, Finland
| | - Jonathan Himmelfarb
- Department of Medicine, Division of Nephrology, Kidney Research Institute, Seattle, Washington, USA
| | | |
Collapse
|
32
|
Mendez J, Sun D, Tuo W, Xiao Z. Bovine neutrophils form extracellular traps in response to the gastrointestinal parasite Ostertagia ostertagi. Sci Rep 2018; 8:17598. [PMID: 30514873 PMCID: PMC6279769 DOI: 10.1038/s41598-018-36070-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/15/2018] [Indexed: 12/15/2022] Open
Abstract
Ostertagia ostertagi (OO) is a widespread parasite that causes chronic infection in cattle and leads to annual losses of billions of dollars in the cattle industry. It remains unclear why cattle are unable to mount an effective immune response despite a large influx of immune cells to the infected abomasal mucosa and draining lymph nodes. Neutrophils, the immune system’s first responders, have the capacity to release neutrophil extracellular traps (NETs) to contain various pathogens, including some parasites. In the present study, the mechanisms by which O. ostertagi influences bovine NET formation were investigated. O. ostertagi larval soluble extract (OO extract) was able to induce typical NETs by purified neutrophils in vitro, confirmed by co-localization of extracellular DNA with typical NET-associated proteins histone and neutrophil elastase (NE). Consistent with existing literature, inhibition assays demonstrated that these OO extract-induced NETs were dependent upon the enzymes NADPH oxidase and myeloperoxidase (MPO). Live OO stage 4 larvae (L4) stimulated neutrophils to form NETs similar to those induced by OO extract. Bovine neutrophils also released NETs in response to Caenorhabditis elegans, a free-living soil nematode, suggesting that bovine NET production may be a conserved mechanism against a broad range of nematodes. This is the first report demonstrating O. ostertagi-induced NET formation by bovine neutrophils, a potentially underappreciated mechanism in the early immune response against nematode infections.
Collapse
Affiliation(s)
- Jonatan Mendez
- Department of Avian and Animal Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Donglei Sun
- Department of Veterinary Medicine, University of Maryland, College Park, MD, 20742, USA
| | - Wenbin Tuo
- Animal Parasitic Diseases Laboratory, USDA/ARS, Beltsville, MD, 20705, USA.
| | - Zhengguo Xiao
- Department of Avian and Animal Sciences, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
33
|
Sakolish C, Weber EJ, Kelly EJ, Himmelfarb J, Mouneimne R, Grimm FA, House JS, Wade T, Han A, Chiu WA, Rusyn I. Technology Transfer of the Microphysiological Systems: A Case Study of the Human Proximal Tubule Tissue Chip. Sci Rep 2018; 8:14882. [PMID: 30291268 PMCID: PMC6173737 DOI: 10.1038/s41598-018-33099-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/21/2018] [Indexed: 01/08/2023] Open
Abstract
The adoption of a new technology into basic research, and industrial and clinical settings requires rigorous testing to build confidence in the reproducibility, reliability, robustness, and relevance of these models. Tissue chips are promising new technology, they have the potential to serve as a valuable tool in biomedical research, as well as pharmaceutical development with regards to testing for efficacy and safety. The principal goals of this study were to validate a previously established proximal tubule tissue chip model in an independent laboratory and to extend its utility to testing of nephrotoxic compounds. Here, we evaluated critical endpoints from the tissue chip developer laboratory, focusing on biological relevance (long-term viability, baseline protein and gene expression, ammoniagenesis, and vitamin D metabolism), and toxicity biomarkers. Tissue chip experiments were conducted in parallel with traditional 2D culture conditions using two different renal proximal tubule epithelial cell sources. The results of these studies were then compared to the findings reported by the tissue chip developers. While the overall transferability of this advanced tissue chip platform was a success, the reproducibility with the original report was greatly dependent on the cell source. This study demonstrates critical importance of developing microphysiological platforms using renewable cell sources.
Collapse
Affiliation(s)
- Courtney Sakolish
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Elijah J Weber
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Edward J Kelly
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Jonathan Himmelfarb
- Division of Nephrology, University of Washington Kidney Research Institute, Seattle, WA, USA
| | - Roula Mouneimne
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Fabian A Grimm
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - John S House
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Terry Wade
- Geochemical and Environmental Research Group, Texas A&M University, College Station, TX, USA
| | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Weihsueh A Chiu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
34
|
Nephrotoxicity Associated with Intravenous Polymyxin B Once- versus Twice-Daily Dosing Regimen. Antimicrob Agents Chemother 2018; 62:AAC.00025-18. [PMID: 29844039 DOI: 10.1128/aac.00025-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/19/2018] [Indexed: 11/20/2022] Open
Abstract
Nephrotoxicity is a known adverse effect of polymyxin B (PMB). Animal data suggest that once-daily dosing may reduce the rate and delay the onset of acute kidney injury (AKI). In a multicenter retrospective study, we evaluated adult patients with a creatinine clearance (CrCl) of ≥30 ml/min who received ≥48 h of PMB therapy. The primary endpoint was the difference in rate of AKI comparing once- and twice-daily PMB dosing. The secondary endpoints included the time to AKI and the recovery of renal function. Of 273 eligible patients, 100 from each group were matched on the basis of propensity scores. In the matched groups, nephrotoxicity, defined according to risk, injury, failure, loss, and end-stage renal disease (RIFLE) criteria, was more frequent with once- than with twice-daily dosing (47% versus 17%, respectively; P = 0.0005). After adjusting for residual differences by multivariate conditional logistic regression, once-daily dosing was more likely to result in nephrotoxicity (adjusted odds ratio, 2.5; 95% confidence interval [CI], 1.413 to 4.541; P = 0.002). Among 64 patients who developed AKI, the median onsets were similar between the groups (7 days with once versus 6 days with twice-daily dosing, P = 0.095). Of 37 patients who had their serum creatinine evaluated subsequently, 29/37 (78%) had recovery of renal function. No patient required renal replacement therapy. Our findings suggest that AKI is significantly more common with PMB once daily than with twice-daily dosing with no difference in time to AKI. A prospective randomized study is warranted to validate these results.
Collapse
|
35
|
Blaskovich MAT, Pitt ME, Elliott AG, Cooper MA. Can octapeptin antibiotics combat extensively drug-resistant (XDR) bacteria? Expert Rev Anti Infect Ther 2018; 16:485-499. [PMID: 29848132 DOI: 10.1080/14787210.2018.1483240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
INTRODUCTION The octapeptins are a family of cyclic lipopeptides first reported in the 1970s then largely ignored. At the time, their reported antibiotic activity against polymyxin-resistant bacteria was a curiosity. Today, the advent of widespread drug resistance in Gram-negative bacteria has prompted their 'rediscovery.' The paucity of new antibiotics in the clinical pipeline is coupled with a global spread of increasing antibiotic resistance, particularly to meropenem and polymyxins B and E (colistin). Areas covered: We review the original discovery of octapeptins, their recent first chemical syntheses, and their mode of action, then discuss their potential as a new class of antibiotics to treat extensively drug-resistant (XDR) Gram-negative infections, with direct comparisons to the closely related polymyxins. Expert commentary: Cyclic lipopeptides in clinical use (polymyxin antibiotics) have significant dose-limiting nephrotoxicity inherent to their chemotype. This toxicity has prevented improved polymyxin analogs from progressing to the clinic, and tainted the perception of lipopeptide antibiotics in general. We argue that the octapeptins are fundamentally different from the polymyxins, with a disparate mode of action, spectra of action against MDR and XDR bacteria and a superior preclinical safety profile. They represent early-stage candidates that can help prime the antibiotic discovery pipeline.
Collapse
Affiliation(s)
- Mark A T Blaskovich
- a Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland , Australia
| | - Miranda E Pitt
- a Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland , Australia
| | - Alysha G Elliott
- a Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland , Australia
| | - Matthew A Cooper
- a Institute for Molecular Bioscience , The University of Queensland , Brisbane , Queensland , Australia
| |
Collapse
|
36
|
Dai C, Tang S, Wang Y, Velkov T, Xiao X. Baicalein acts as a nephroprotectant that ameliorates colistin-induced nephrotoxicity by activating the antioxidant defence mechanism of the kidneys and down-regulating the inflammatory response. J Antimicrob Chemother 2018; 72:2562-2569. [PMID: 28859441 DOI: 10.1093/jac/dkx185] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 05/19/2017] [Indexed: 01/05/2023] Open
Abstract
Background Nephrotoxicity is the major adverse effect patients experience during colistin therapy. The development of effective nephroprotective agents that can be co-administered during polymyxin therapy remains a priority area in antimicrobial chemotherapy. Objectives To investigate the nephroprotective effect of baicalein, a component of the root of Scutellaria baicalensis, against colistin-induced nephrotoxicity using a mouse model. Methods C57BL/6 mice were randomly divided into the following groups: control, baicalein 100 mg/kg/day (administered orally), colistin (18 mg/kg/day administered intraperitoneally) and colistin (18 mg/kg/day) plus baicalein (25, 50 and 100 mg/kg/day). After 7 day treatments, histopathological damage, the markers of renal functions, oxidative stress and inflammation were examined. The expressions of Nrf2, HO-1 and NF-κB mRNAs were also further examined using quantitative RT-PCR examination. Results Baicalein co-administration markedly attenuated colistin-induced oxidative and nitrative stress, apoptosis, the infiltration of inflammatory cells, and caused decreases in IL-1β and TNF-α levels (all P < 0.05 or 0.01) in the kidney tissues. Baicalein co-administration up-regulated expression of Nrf2 and HO-1 mRNAs and down-regulated the expression of NF-κB mRNA, compared with those in the colistin alone group. Conclusions To the best of our knowledge, this is the first study demonstrating the protective effect of baicalein on colistin-induced nephrotoxicity and apoptosis by activating the antioxidant defence mechanism in kidneys and down-regulating the inflammatory response. Our study highlights that oral baicalein could potentially ameliorate nephrotoxicity in patients undergoing polymyxin therapy.
Collapse
Affiliation(s)
- Chongshan Dai
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Shusheng Tang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Yang Wang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Tony Velkov
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Xilong Xiao
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing 100193, P. R. China.,Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
37
|
Erekat NS. Autophagy precedes apoptosis among at risk cerebellar Purkinje cells in the shaker mutant rat: an ultrastructural study. Ultrastruct Pathol 2018; 42:162-169. [PMID: 29419349 DOI: 10.1080/01913123.2018.1424744] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cerebellar Purkinje cell (PC) death has been shown to occur in essential tremor, ataxia, and many other neurodegenerative diseases in humans. Shaker mutant rats have an X-linked recessive mutation that causes hereditary degeneration of "at risk" cerebellar PCs. This defect can occur in the restricted anterior (ADC) and posterior (PDC) vermal degeneration compartments postnatally within 7 to 14 weeks of age as a natural phenotype in the shaker mutant rat. "Secure" PCs persist in a flocculonodular survival compartment (FNSC). Because we have previously shown that "at risk" PCs die due to apoptosis in the shaker mutant rat, we hypothesized that the PC death observed in the hereditary shaker mutant rat may be due to the activation of more than one type of death pathway. This ultrastructural investigation suggests that "at risk" PCs die due to apoptosis as a result of autophagic activation. Moreover, our data suggest that both apoptosis and autophagy must be simultaneously inhibited to rescue "at risk" PCs from death.
Collapse
Affiliation(s)
- Nour S Erekat
- a Department of Anatomy, Faculty of Medicine , Jordan University of Science and Technology (JUST) , Irbid , Jordan
| |
Collapse
|
38
|
Loading of polymyxin B onto anionic mesoporous silica nanoparticles retains antibacterial activity and enhances biocompatibility. Int J Pharm 2017; 537:148-161. [PMID: 29278732 DOI: 10.1016/j.ijpharm.2017.12.039] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 11/22/2022]
Abstract
Polymyxin B is a polycationic antibiotic used as the last line treatment against antibiotic-resistant Gram negative bacteria. However, application of polymyxin B is limited because of its toxicity effects. Herein, we used bare and surface modified mesoporous silica nanoparticles (MSNs) with an average diameter of 72.29 ± 8.17 nm as adsorbent for polymyxin B to improve its therapeutic properties. The polymyxin B adsorption onto MSN surfaces was explained as a function of pH, type of buffer and surface charge of nanoparticles, according to the ζ-potential of silica nanoparticles and adsorption kinetics results. The highest value of the adsorption capacity (about 401 ± 15.38 mg polymyxin B/ g silica nanoparticles) was obtained for the bare nanoparticles in Tris buffer, pH 9. Release profiles of polymyxin B showed a sustained release pattern, fitting Power law and Hill models. The antibiotic molecules-loaded nanoparticles showed enhanced antibacterial activity compared to free antibiotic against different Gram negative bacteria. Biocompatibility evaluation results revealed that loading of polymyxin B onto MSNs can decrease the cytotoxicity effects of the drug by reducing ROS generation. Our results suggest that formulation of drugs by adsorption onto MSNs may offer a way forward to overcome the adverse effects of some antibiotics such as polymyxin B without compromising their antimicrobial properties.
Collapse
|
39
|
Wang L, Li X, Sun T, Tsou Y, Chen H, Xu X. Dual‐Functional Dextran‐PEG Hydrogel as an Antimicrobial Biomedical Material. Macromol Biosci 2017; 18. [DOI: 10.1002/mabi.201700325] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Lei Wang
- Country State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials College of Chemistry Chemical Engineering and Materials Science Soochow University 199 Ren'ai Road Suzhou 215123 P. R. China
- Otto H. York Department of Chemical Biological and Pharmaceutical Engineering New Jersey Institute and Technology University Heights Newark NJ 07102 USA
| | - Xin Li
- Otto H. York Department of Chemical Biological and Pharmaceutical Engineering New Jersey Institute and Technology University Heights Newark NJ 07102 USA
| | - Tianyu Sun
- Otto H. York Department of Chemical Biological and Pharmaceutical Engineering New Jersey Institute and Technology University Heights Newark NJ 07102 USA
| | - Yung‐Hao Tsou
- Otto H. York Department of Chemical Biological and Pharmaceutical Engineering New Jersey Institute and Technology University Heights Newark NJ 07102 USA
| | - Hong Chen
- Country State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials College of Chemistry Chemical Engineering and Materials Science Soochow University 199 Ren'ai Road Suzhou 215123 P. R. China
| | - Xiaoyang Xu
- Otto H. York Department of Chemical Biological and Pharmaceutical Engineering New Jersey Institute and Technology University Heights Newark NJ 07102 USA
| |
Collapse
|
40
|
Rabanal F, Cajal Y. Recent advances and perspectives in the design and development of polymyxins. Nat Prod Rep 2017. [PMID: 28628170 DOI: 10.1039/c7np00023e] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: 1947-early 2017, particularly from 2005-early 2017The rise of bacterial pathogens with acquired resistance to almost all available antibiotics is becoming a serious public health issue. Polymyxins, antibiotics that were mostly abandoned a few decades ago because of toxicity concerns, are ultimately considered as a last-line therapy to treat infections caused by multi-drug resistant Gram-negative bacteria. This review surveys the progress in understanding polymyxin structure, and their chemistry, mechanisms of antibacterial activity and nephrotoxicity, biomarkers, synergy and combination with other antimicrobial agents and antibiofilm properties. An update of recent efforts in the design and development of a new generation of polymyxin drugs is also discussed. A novel approach considering the modification of the scaffold of polymyxins to integrate metabolism and detoxification issues into the drug design process is a promising new line to potentially prevent accumulation in the kidneys and reduce nephrotoxicity.
Collapse
Affiliation(s)
- Francesc Rabanal
- Organic Chemistry Section, Department of Inorganic and Organic Chemistry, Faculty of Chemistry, University of Barcelona, Spain.
| | | |
Collapse
|
41
|
Potential Toxicity of Polymyxins in Human Lung Epithelial Cells. Antimicrob Agents Chemother 2017; 61:AAC.02690-16. [PMID: 28416543 DOI: 10.1128/aac.02690-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/01/2017] [Indexed: 01/10/2023] Open
Abstract
Inhaled polymyxins are of considerable utility in achieving optimal exposure in the respiratory tract for the treatment of lung infections caused by multidrug-resistant Gram-negative pathogens. Current inhaled polymyxin therapy is empirical, and often large doses are used that may lead to potential pulmonary adverse effects. This study aimed to investigate the effect of polymyxins on human lung epithelial (A549) cells. The viability of A549 cells was examined after treatment with polymyxins by flow cytometry. Activation of caspases 3, 8, and 9, expression of Fas ligand (FasL), loss of mitochondrial membrane potential, and mitochondrial oxidative stress induced by polymyxin B were evaluated. The concentration of polymyxin B required to induce 50% of maximal cell death was 1.74 mM (95% confidence interval, 1.60 to 1.90 mM). Colistin was at least 2-fold less toxic than polymyxin B, while colistimethate was nontoxic. With 2.0 mM polymyxin B, 30.6% ± 11.5% (mean ± standard deviation) of the cells were apoptotic at 8 h and this increased to 71.3% ± 3.72% at 24 h. Concentration- and time-dependent activation of caspases 3, 8, and 9 was evident, while the activation of caspase 9 was more dramatic. Furthermore, polymyxin B caused concentration- and time-dependent FasL expression, production of mitochondrial reactive oxygen species, and changes in mitochondrial membrane potential. This is the first study to demonstrate that both extrinsic death receptor and intrinsic mitochondrial pathways are involved in polymyxin-induced toxicity in A549 cells. This knowledge base is critical for the development of novel strategies for the safe and effective inhalation therapy of polymyxins against Gram-negative "superbugs."
Collapse
|