1
|
Jung ES, Ellinghaus D, Degenhardt F, Meguro A, Khor SS, Mucha S, Wendorff M, Juzenas S, Mizuki N, Tokunaga K, Kim SW, Lee MG, Schreiber S, Kim WH, Franke A, Cheon JH. Genome-wide association analysis reveals the associations of NPHP4, TYW1-AUTS2 and SEMA6D for Behçet's disease and HLA-B*46:01 for its intestinal involvement. Dig Liver Dis 2024; 56:994-1001. [PMID: 37977914 DOI: 10.1016/j.dld.2023.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Intestinal involvement in Behçet's disease (BD) is associated with poor prognosis and is more prevalent in East Asian than in Mediterranean populations. Identifying the genetic causes of intestinal BD is important for understanding the pathogenesis and for appropriate treatment of BD patients. METHODS We performed genome-wide association studies (GWAS) and imputation/replication genotyping of human leukocyte antigen (HLA) alleles for 1,689 Korean and Turkish patients with BD (including 379 patients with intestinal BD) and 2,327 healthy controls, followed by replication using 593 Japanese patients with BD (101 patients with intestinal BD) and 737 healthy controls. Stratified cross-phenotype analyses were performed for 1) overall BD, 2) intestinal BD, and 3) intestinal BD without association of overall BD. RESULTS We identified three novel genome-wide significant susceptibility loci including NPHP4 (rs74566205; P=1.36 × 10-8), TYW1-AUTS2 (rs60021986; P=1.14 × 10-9), and SEMA6D (rs4143322; P=5.54 × 10-9) for overall BD, and a new association with HLA-B*46:01 for intestinal BD (P=1.67 × 10-8) but not for BD without intestinal involvement. HLA peptide binding analysis revealed that Mycobacterial peptides, have a stronger binding affinity to HLA-B*46:01 compared to the known risk allele HLA-B*51:01. CONCLUSIONS HLA-B*46:01 is associated with the development of intestinal BD; NPHP4, TYW1-AUTS2, and SEMA6D are susceptibility loci for overall BD.
Collapse
Affiliation(s)
- Eun Suk Jung
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea; Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany.
| | - Frauke Degenhardt
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Akira Meguro
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Seik-Soon Khor
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Sören Mucha
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Mareike Wendorff
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Simonas Juzenas
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany; Institute of Biotechnology, Life Science Centre, Vilnius University, Vilnius, Lithuania
| | - Nobuhisa Mizuki
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Seung Won Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | - Min Goo Lee
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Won Ho Kim
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Jae Hee Cheon
- Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
2
|
Guan Y, Li F, Li N, Yang P. Decoding Behcet's Uveitis: an In-depth review of pathogenesis and therapeutic advances. J Neuroinflammation 2024; 21:133. [PMID: 38778397 PMCID: PMC11112928 DOI: 10.1186/s12974-024-03123-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
Behcet's disease (BD) is a rare but globally distributed vasculitis that primarily affects populations in the Mediterranean and Asian regions. Behcet's uveitis (BU) is a common manifestation of BD, occurring in over two-thirds of the patients. BU is characterized by bilateral, chronic, recurrent, non-granulomatous uveitis in association with complications such as retinal ischemia and atrophy, optic atrophy, macular ischemia, macular edema, and further neovascular complications (vitreous hemorrhage, neovascular glaucoma). Although the etiology and pathogenesis of BU remain unclear, numerous studies reveal that genetic factors (such as HLA-B51), dysregulated immune responses of both the innate and adaptive immune systems, infections (such as streptococcus), and environmental factors (such as GDP) are all involved in its development. Innate immunity, including hyperactivity of neutrophils and γδT cells and elevated NK1/NK2 ratios, has been shown to play an essential role in this disease. Adaptive immune system disturbance, including homeostatic perturbations, Th1, Th17 overaction, and Treg cell dysfunction, is thought to be involved in BU pathogenesis. Treatment of BU requires a tailored approach based on the location, severity of inflammation, and systemic manifestations. The therapy aims to achieve rapid inflammation suppression, preservation of vision, and prevention of recurrence. Systemic corticosteroids combined with other immunosuppressive agents have been widely used to treat BU, and beneficial effects are observed in most patients. Recently, biologics have been shown to be effective in treating refractory BU cases. Novel therapeutic targets for treating BU include the LCK gene, Th17/Treg balance, JAK pathway inhibition, and cytokines such as IL-17 and RORγt. This article summarizes the recent studies on BU, especially in terms of pathogenesis, diagnostic criteria and classification, auxiliary examination, and treatment options. A better understanding of the significance of microbiome composition, genetic basis, and persistent immune mechanisms, as well as advancements in identifying new biomarkers and implementing objective quantitative detection of BU, may greatly contribute to improving the adequate management of BU patients.
Collapse
Affiliation(s)
- Yuxuan Guan
- Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Zhengzhou, 450052, People's Republic of China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
| | - Fuzhen Li
- Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Zhengzhou, 450052, People's Republic of China
| | - Na Li
- Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Zhengzhou, 450052, People's Republic of China
| | - Peizeng Yang
- Department of Ophthalmology, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, The First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Zhengzhou, 450052, People's Republic of China.
| |
Collapse
|
3
|
Liu X, Zheng X, Shu Y, Qu X, Wang Q, Liu X, Hu FY, Liu J, Lian Y, He BM, Li C, Zhou D, Qiu W, Sun L, Hong Z. Genome-Wide Association Study Identifies IFIH1 and HLA-DQB1*05:02 Loci Associated With Anti-NMDAR Encephalitis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200221. [PMID: 38579189 PMCID: PMC11010247 DOI: 10.1212/nxi.0000000000200221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/19/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND AND OBJECTIVES Anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis is a rare autoimmune neurologic disorder, the genetic etiology of which remains poorly understood. Our study aims to investigate the genetic basis of this disease in the Chinese Han population. METHODS We performed a genome-wide association study and fine-mapping study within the major histocompatibility complex (MHC) region of 413 Chinese patients with anti-NMDAR encephalitis recruited from 6 large tertiary hospitals and 7,127 healthy controls. RESULTS Our genome-wide association analysis identified a strong association at the IFIH1 locus on chromosome 2q24.2 (rs3747517, p = 1.06 × 10-8, OR = 1.55, 95% CI, 1.34-1.80), outside of the human leukocyte antigen (HLA) region. Furthermore, through a fine-mapping study of the MHC region, we discovered associations for 3 specific HLA class I and II alleles. Notably, HLA-DQB1*05:02 (p = 1.43 × 10-12; OR, 2.10; 95% CI 1.70-2.59) demonstrates the strongest association among classical HLA alleles, closely followed by HLA-A*11:01 (p = 4.36 × 10-7; OR, 1.52; 95% CI 1.29-1.79) and HLA-A*02:07 (p = 1.28 × 10-8; OR, 1.87; 95% CI 1.50-2.31). In addition, we uncovered 2 main HLA amino acid variation associated with anti-NMDAR encephalitis including HLA-DQβ1-126H (p = 1.43 × 10-12; OR, 2.10; 95% CI 1.70-2.59), exhibiting a predisposing effect, and HLA-B-97R (p = 3.40 × 10-8; OR, 0.63; 95% CI 0.53-0.74), conferring a protective effect. Computational docking analysis suggested a close relationship between the NR1 subunit of NMDAR and DQB1*05:02. DISCUSSION Our findings indicate that genetic variation in IFIH1, involved in the type I interferon signaling pathway and innate immunity, along with variations in the HLA class I and class II genes, has substantial implications for the susceptibility to anti-NMDAR encephalitis in the Chinese Han population.
Collapse
Affiliation(s)
- Xu Liu
- From the Department of Neurology (X. Liu, F.-Y.H., D.Z., Z.H.), West China Hospital, Sichuan University, Chengdu; Department of Dermatology (X.Z., L.S.), the First Affiliated Hospital of Anhui Medical University; Key Laboratory of Dermatology (Anhui Medical University) (X.Z., L.S.), Ministry of Education; Anhui Province Laboratory of Inflammation and Immune Mediated Diseases (X.Z.); Anhui Provincial Institute of Translational Medicine (X.Z.), Hefei; Department of Neurology (Y.S., W.Q.), The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou; Genesky Biotechnologies Inc. (X.Q., C.L.), Shanghai; Department of Neurology (Q.W., X. Liu), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (J.L., B.-M.H.), Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu; Department of Neurology (Y.L.), First Affiliated Hospital of Zhengzhou University; Institute of Brain Science and Brain-Inspired Technology of West China Hospital (D.Z.), Sichuan University, Chengdu; North China University of Science and Technology Affiliated Hospital (L.S.); Health Science Center (L.S.), North China University of Science and Technology; School of Public Health (L.S.), North China University of Science and Technology, Tangshan; Inflammation and Immune Diseases Laboratory of North China University of Science and Technology (L.S.); and Department of Neurology (Z.H.), Chengdu Shangjin Nanfu Hospital, China
| | - Xiaodong Zheng
- From the Department of Neurology (X. Liu, F.-Y.H., D.Z., Z.H.), West China Hospital, Sichuan University, Chengdu; Department of Dermatology (X.Z., L.S.), the First Affiliated Hospital of Anhui Medical University; Key Laboratory of Dermatology (Anhui Medical University) (X.Z., L.S.), Ministry of Education; Anhui Province Laboratory of Inflammation and Immune Mediated Diseases (X.Z.); Anhui Provincial Institute of Translational Medicine (X.Z.), Hefei; Department of Neurology (Y.S., W.Q.), The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou; Genesky Biotechnologies Inc. (X.Q., C.L.), Shanghai; Department of Neurology (Q.W., X. Liu), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (J.L., B.-M.H.), Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu; Department of Neurology (Y.L.), First Affiliated Hospital of Zhengzhou University; Institute of Brain Science and Brain-Inspired Technology of West China Hospital (D.Z.), Sichuan University, Chengdu; North China University of Science and Technology Affiliated Hospital (L.S.); Health Science Center (L.S.), North China University of Science and Technology; School of Public Health (L.S.), North China University of Science and Technology, Tangshan; Inflammation and Immune Diseases Laboratory of North China University of Science and Technology (L.S.); and Department of Neurology (Z.H.), Chengdu Shangjin Nanfu Hospital, China
| | - Yaqing Shu
- From the Department of Neurology (X. Liu, F.-Y.H., D.Z., Z.H.), West China Hospital, Sichuan University, Chengdu; Department of Dermatology (X.Z., L.S.), the First Affiliated Hospital of Anhui Medical University; Key Laboratory of Dermatology (Anhui Medical University) (X.Z., L.S.), Ministry of Education; Anhui Province Laboratory of Inflammation and Immune Mediated Diseases (X.Z.); Anhui Provincial Institute of Translational Medicine (X.Z.), Hefei; Department of Neurology (Y.S., W.Q.), The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou; Genesky Biotechnologies Inc. (X.Q., C.L.), Shanghai; Department of Neurology (Q.W., X. Liu), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (J.L., B.-M.H.), Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu; Department of Neurology (Y.L.), First Affiliated Hospital of Zhengzhou University; Institute of Brain Science and Brain-Inspired Technology of West China Hospital (D.Z.), Sichuan University, Chengdu; North China University of Science and Technology Affiliated Hospital (L.S.); Health Science Center (L.S.), North China University of Science and Technology; School of Public Health (L.S.), North China University of Science and Technology, Tangshan; Inflammation and Immune Diseases Laboratory of North China University of Science and Technology (L.S.); and Department of Neurology (Z.H.), Chengdu Shangjin Nanfu Hospital, China
| | - Xiao Qu
- From the Department of Neurology (X. Liu, F.-Y.H., D.Z., Z.H.), West China Hospital, Sichuan University, Chengdu; Department of Dermatology (X.Z., L.S.), the First Affiliated Hospital of Anhui Medical University; Key Laboratory of Dermatology (Anhui Medical University) (X.Z., L.S.), Ministry of Education; Anhui Province Laboratory of Inflammation and Immune Mediated Diseases (X.Z.); Anhui Provincial Institute of Translational Medicine (X.Z.), Hefei; Department of Neurology (Y.S., W.Q.), The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou; Genesky Biotechnologies Inc. (X.Q., C.L.), Shanghai; Department of Neurology (Q.W., X. Liu), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (J.L., B.-M.H.), Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu; Department of Neurology (Y.L.), First Affiliated Hospital of Zhengzhou University; Institute of Brain Science and Brain-Inspired Technology of West China Hospital (D.Z.), Sichuan University, Chengdu; North China University of Science and Technology Affiliated Hospital (L.S.); Health Science Center (L.S.), North China University of Science and Technology; School of Public Health (L.S.), North China University of Science and Technology, Tangshan; Inflammation and Immune Diseases Laboratory of North China University of Science and Technology (L.S.); and Department of Neurology (Z.H.), Chengdu Shangjin Nanfu Hospital, China
| | - Qun Wang
- From the Department of Neurology (X. Liu, F.-Y.H., D.Z., Z.H.), West China Hospital, Sichuan University, Chengdu; Department of Dermatology (X.Z., L.S.), the First Affiliated Hospital of Anhui Medical University; Key Laboratory of Dermatology (Anhui Medical University) (X.Z., L.S.), Ministry of Education; Anhui Province Laboratory of Inflammation and Immune Mediated Diseases (X.Z.); Anhui Provincial Institute of Translational Medicine (X.Z.), Hefei; Department of Neurology (Y.S., W.Q.), The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou; Genesky Biotechnologies Inc. (X.Q., C.L.), Shanghai; Department of Neurology (Q.W., X. Liu), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (J.L., B.-M.H.), Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu; Department of Neurology (Y.L.), First Affiliated Hospital of Zhengzhou University; Institute of Brain Science and Brain-Inspired Technology of West China Hospital (D.Z.), Sichuan University, Chengdu; North China University of Science and Technology Affiliated Hospital (L.S.); Health Science Center (L.S.), North China University of Science and Technology; School of Public Health (L.S.), North China University of Science and Technology, Tangshan; Inflammation and Immune Diseases Laboratory of North China University of Science and Technology (L.S.); and Department of Neurology (Z.H.), Chengdu Shangjin Nanfu Hospital, China
| | - Xiao Liu
- From the Department of Neurology (X. Liu, F.-Y.H., D.Z., Z.H.), West China Hospital, Sichuan University, Chengdu; Department of Dermatology (X.Z., L.S.), the First Affiliated Hospital of Anhui Medical University; Key Laboratory of Dermatology (Anhui Medical University) (X.Z., L.S.), Ministry of Education; Anhui Province Laboratory of Inflammation and Immune Mediated Diseases (X.Z.); Anhui Provincial Institute of Translational Medicine (X.Z.), Hefei; Department of Neurology (Y.S., W.Q.), The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou; Genesky Biotechnologies Inc. (X.Q., C.L.), Shanghai; Department of Neurology (Q.W., X. Liu), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (J.L., B.-M.H.), Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu; Department of Neurology (Y.L.), First Affiliated Hospital of Zhengzhou University; Institute of Brain Science and Brain-Inspired Technology of West China Hospital (D.Z.), Sichuan University, Chengdu; North China University of Science and Technology Affiliated Hospital (L.S.); Health Science Center (L.S.), North China University of Science and Technology; School of Public Health (L.S.), North China University of Science and Technology, Tangshan; Inflammation and Immune Diseases Laboratory of North China University of Science and Technology (L.S.); and Department of Neurology (Z.H.), Chengdu Shangjin Nanfu Hospital, China
| | - Fa-Yun Hu
- From the Department of Neurology (X. Liu, F.-Y.H., D.Z., Z.H.), West China Hospital, Sichuan University, Chengdu; Department of Dermatology (X.Z., L.S.), the First Affiliated Hospital of Anhui Medical University; Key Laboratory of Dermatology (Anhui Medical University) (X.Z., L.S.), Ministry of Education; Anhui Province Laboratory of Inflammation and Immune Mediated Diseases (X.Z.); Anhui Provincial Institute of Translational Medicine (X.Z.), Hefei; Department of Neurology (Y.S., W.Q.), The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou; Genesky Biotechnologies Inc. (X.Q., C.L.), Shanghai; Department of Neurology (Q.W., X. Liu), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (J.L., B.-M.H.), Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu; Department of Neurology (Y.L.), First Affiliated Hospital of Zhengzhou University; Institute of Brain Science and Brain-Inspired Technology of West China Hospital (D.Z.), Sichuan University, Chengdu; North China University of Science and Technology Affiliated Hospital (L.S.); Health Science Center (L.S.), North China University of Science and Technology; School of Public Health (L.S.), North China University of Science and Technology, Tangshan; Inflammation and Immune Diseases Laboratory of North China University of Science and Technology (L.S.); and Department of Neurology (Z.H.), Chengdu Shangjin Nanfu Hospital, China
| | - Jie Liu
- From the Department of Neurology (X. Liu, F.-Y.H., D.Z., Z.H.), West China Hospital, Sichuan University, Chengdu; Department of Dermatology (X.Z., L.S.), the First Affiliated Hospital of Anhui Medical University; Key Laboratory of Dermatology (Anhui Medical University) (X.Z., L.S.), Ministry of Education; Anhui Province Laboratory of Inflammation and Immune Mediated Diseases (X.Z.); Anhui Provincial Institute of Translational Medicine (X.Z.), Hefei; Department of Neurology (Y.S., W.Q.), The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou; Genesky Biotechnologies Inc. (X.Q., C.L.), Shanghai; Department of Neurology (Q.W., X. Liu), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (J.L., B.-M.H.), Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu; Department of Neurology (Y.L.), First Affiliated Hospital of Zhengzhou University; Institute of Brain Science and Brain-Inspired Technology of West China Hospital (D.Z.), Sichuan University, Chengdu; North China University of Science and Technology Affiliated Hospital (L.S.); Health Science Center (L.S.), North China University of Science and Technology; School of Public Health (L.S.), North China University of Science and Technology, Tangshan; Inflammation and Immune Diseases Laboratory of North China University of Science and Technology (L.S.); and Department of Neurology (Z.H.), Chengdu Shangjin Nanfu Hospital, China
| | - Yajun Lian
- From the Department of Neurology (X. Liu, F.-Y.H., D.Z., Z.H.), West China Hospital, Sichuan University, Chengdu; Department of Dermatology (X.Z., L.S.), the First Affiliated Hospital of Anhui Medical University; Key Laboratory of Dermatology (Anhui Medical University) (X.Z., L.S.), Ministry of Education; Anhui Province Laboratory of Inflammation and Immune Mediated Diseases (X.Z.); Anhui Provincial Institute of Translational Medicine (X.Z.), Hefei; Department of Neurology (Y.S., W.Q.), The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou; Genesky Biotechnologies Inc. (X.Q., C.L.), Shanghai; Department of Neurology (Q.W., X. Liu), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (J.L., B.-M.H.), Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu; Department of Neurology (Y.L.), First Affiliated Hospital of Zhengzhou University; Institute of Brain Science and Brain-Inspired Technology of West China Hospital (D.Z.), Sichuan University, Chengdu; North China University of Science and Technology Affiliated Hospital (L.S.); Health Science Center (L.S.), North China University of Science and Technology; School of Public Health (L.S.), North China University of Science and Technology, Tangshan; Inflammation and Immune Diseases Laboratory of North China University of Science and Technology (L.S.); and Department of Neurology (Z.H.), Chengdu Shangjin Nanfu Hospital, China
| | - Bao-Ming He
- From the Department of Neurology (X. Liu, F.-Y.H., D.Z., Z.H.), West China Hospital, Sichuan University, Chengdu; Department of Dermatology (X.Z., L.S.), the First Affiliated Hospital of Anhui Medical University; Key Laboratory of Dermatology (Anhui Medical University) (X.Z., L.S.), Ministry of Education; Anhui Province Laboratory of Inflammation and Immune Mediated Diseases (X.Z.); Anhui Provincial Institute of Translational Medicine (X.Z.), Hefei; Department of Neurology (Y.S., W.Q.), The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou; Genesky Biotechnologies Inc. (X.Q., C.L.), Shanghai; Department of Neurology (Q.W., X. Liu), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (J.L., B.-M.H.), Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu; Department of Neurology (Y.L.), First Affiliated Hospital of Zhengzhou University; Institute of Brain Science and Brain-Inspired Technology of West China Hospital (D.Z.), Sichuan University, Chengdu; North China University of Science and Technology Affiliated Hospital (L.S.); Health Science Center (L.S.), North China University of Science and Technology; School of Public Health (L.S.), North China University of Science and Technology, Tangshan; Inflammation and Immune Diseases Laboratory of North China University of Science and Technology (L.S.); and Department of Neurology (Z.H.), Chengdu Shangjin Nanfu Hospital, China
| | - Caihua Li
- From the Department of Neurology (X. Liu, F.-Y.H., D.Z., Z.H.), West China Hospital, Sichuan University, Chengdu; Department of Dermatology (X.Z., L.S.), the First Affiliated Hospital of Anhui Medical University; Key Laboratory of Dermatology (Anhui Medical University) (X.Z., L.S.), Ministry of Education; Anhui Province Laboratory of Inflammation and Immune Mediated Diseases (X.Z.); Anhui Provincial Institute of Translational Medicine (X.Z.), Hefei; Department of Neurology (Y.S., W.Q.), The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou; Genesky Biotechnologies Inc. (X.Q., C.L.), Shanghai; Department of Neurology (Q.W., X. Liu), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (J.L., B.-M.H.), Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu; Department of Neurology (Y.L.), First Affiliated Hospital of Zhengzhou University; Institute of Brain Science and Brain-Inspired Technology of West China Hospital (D.Z.), Sichuan University, Chengdu; North China University of Science and Technology Affiliated Hospital (L.S.); Health Science Center (L.S.), North China University of Science and Technology; School of Public Health (L.S.), North China University of Science and Technology, Tangshan; Inflammation and Immune Diseases Laboratory of North China University of Science and Technology (L.S.); and Department of Neurology (Z.H.), Chengdu Shangjin Nanfu Hospital, China
| | - Dong Zhou
- From the Department of Neurology (X. Liu, F.-Y.H., D.Z., Z.H.), West China Hospital, Sichuan University, Chengdu; Department of Dermatology (X.Z., L.S.), the First Affiliated Hospital of Anhui Medical University; Key Laboratory of Dermatology (Anhui Medical University) (X.Z., L.S.), Ministry of Education; Anhui Province Laboratory of Inflammation and Immune Mediated Diseases (X.Z.); Anhui Provincial Institute of Translational Medicine (X.Z.), Hefei; Department of Neurology (Y.S., W.Q.), The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou; Genesky Biotechnologies Inc. (X.Q., C.L.), Shanghai; Department of Neurology (Q.W., X. Liu), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (J.L., B.-M.H.), Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu; Department of Neurology (Y.L.), First Affiliated Hospital of Zhengzhou University; Institute of Brain Science and Brain-Inspired Technology of West China Hospital (D.Z.), Sichuan University, Chengdu; North China University of Science and Technology Affiliated Hospital (L.S.); Health Science Center (L.S.), North China University of Science and Technology; School of Public Health (L.S.), North China University of Science and Technology, Tangshan; Inflammation and Immune Diseases Laboratory of North China University of Science and Technology (L.S.); and Department of Neurology (Z.H.), Chengdu Shangjin Nanfu Hospital, China
| | - Wei Qiu
- From the Department of Neurology (X. Liu, F.-Y.H., D.Z., Z.H.), West China Hospital, Sichuan University, Chengdu; Department of Dermatology (X.Z., L.S.), the First Affiliated Hospital of Anhui Medical University; Key Laboratory of Dermatology (Anhui Medical University) (X.Z., L.S.), Ministry of Education; Anhui Province Laboratory of Inflammation and Immune Mediated Diseases (X.Z.); Anhui Provincial Institute of Translational Medicine (X.Z.), Hefei; Department of Neurology (Y.S., W.Q.), The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou; Genesky Biotechnologies Inc. (X.Q., C.L.), Shanghai; Department of Neurology (Q.W., X. Liu), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (J.L., B.-M.H.), Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu; Department of Neurology (Y.L.), First Affiliated Hospital of Zhengzhou University; Institute of Brain Science and Brain-Inspired Technology of West China Hospital (D.Z.), Sichuan University, Chengdu; North China University of Science and Technology Affiliated Hospital (L.S.); Health Science Center (L.S.), North China University of Science and Technology; School of Public Health (L.S.), North China University of Science and Technology, Tangshan; Inflammation and Immune Diseases Laboratory of North China University of Science and Technology (L.S.); and Department of Neurology (Z.H.), Chengdu Shangjin Nanfu Hospital, China
| | - Liangdan Sun
- From the Department of Neurology (X. Liu, F.-Y.H., D.Z., Z.H.), West China Hospital, Sichuan University, Chengdu; Department of Dermatology (X.Z., L.S.), the First Affiliated Hospital of Anhui Medical University; Key Laboratory of Dermatology (Anhui Medical University) (X.Z., L.S.), Ministry of Education; Anhui Province Laboratory of Inflammation and Immune Mediated Diseases (X.Z.); Anhui Provincial Institute of Translational Medicine (X.Z.), Hefei; Department of Neurology (Y.S., W.Q.), The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou; Genesky Biotechnologies Inc. (X.Q., C.L.), Shanghai; Department of Neurology (Q.W., X. Liu), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (J.L., B.-M.H.), Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu; Department of Neurology (Y.L.), First Affiliated Hospital of Zhengzhou University; Institute of Brain Science and Brain-Inspired Technology of West China Hospital (D.Z.), Sichuan University, Chengdu; North China University of Science and Technology Affiliated Hospital (L.S.); Health Science Center (L.S.), North China University of Science and Technology; School of Public Health (L.S.), North China University of Science and Technology, Tangshan; Inflammation and Immune Diseases Laboratory of North China University of Science and Technology (L.S.); and Department of Neurology (Z.H.), Chengdu Shangjin Nanfu Hospital, China
| | - Zhen Hong
- From the Department of Neurology (X. Liu, F.-Y.H., D.Z., Z.H.), West China Hospital, Sichuan University, Chengdu; Department of Dermatology (X.Z., L.S.), the First Affiliated Hospital of Anhui Medical University; Key Laboratory of Dermatology (Anhui Medical University) (X.Z., L.S.), Ministry of Education; Anhui Province Laboratory of Inflammation and Immune Mediated Diseases (X.Z.); Anhui Provincial Institute of Translational Medicine (X.Z.), Hefei; Department of Neurology (Y.S., W.Q.), The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou; Genesky Biotechnologies Inc. (X.Q., C.L.), Shanghai; Department of Neurology (Q.W., X. Liu), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (J.L., B.-M.H.), Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu; Department of Neurology (Y.L.), First Affiliated Hospital of Zhengzhou University; Institute of Brain Science and Brain-Inspired Technology of West China Hospital (D.Z.), Sichuan University, Chengdu; North China University of Science and Technology Affiliated Hospital (L.S.); Health Science Center (L.S.), North China University of Science and Technology; School of Public Health (L.S.), North China University of Science and Technology, Tangshan; Inflammation and Immune Diseases Laboratory of North China University of Science and Technology (L.S.); and Department of Neurology (Z.H.), Chengdu Shangjin Nanfu Hospital, China
| |
Collapse
|
4
|
Wang X, Zhang Q, Hou S, Qi J, Du L, Li F, Cao Q, Yang P. Association of Long Non-coding RNA C1RL-AS1 and PTPN6 Gene Polymorphisms with Ocular Behcet's Disease in Han Chinese. Ocul Immunol Inflamm 2024; 32:336-341. [PMID: 36745681 DOI: 10.1080/09273948.2023.2170887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 11/15/2022] [Accepted: 01/16/2023] [Indexed: 02/07/2023]
Abstract
PURPOSE To explore the association of the polymorphisms in PTPN6 and LncRNA C1RL-AS1 genes with ocular BD in Han Chinese patients. METHODS Correlation study was performed using the iPLEX system on a cohort of ocular BD patients andcontrols. The genotyping of 7 SNPs for LncRNA C1RL-AS1 and PTPN6 genes in ocular BD patients was performed using the iPLEX Gold genotype. RESULTS The frequencies of rs4013722 AG genotype/A allele in LncRNA C1RL-AS1 were significantly decreased in BD patients, and the frequency of GG genotype was significantly increased in BD patients. The rs4013722 was associated with ocular BD in male patients, but not in female patients. The AG and GG genotype of rs4013722 were associated with skin lesions in male patients. The gene polymorphisms of PTPN6 were not associated with BD patients. CONCLUSIONS The LncRNA C1RL-AS1/rs4013722 polymorphism conferred susceptibility to ocular BD in Han Chinese patients, which was influenced by sex.Abbreviations: LncRNA: Long Non-coding RNA; BD: Behcet's disease; SNP: single nucleotide polymorphism; PBMCs: peripheral blood mononuclear cells; PTPs: Protein tyrosine phosphatases; PTPN6: protein tyrosine phosphatase non-receptor 6; GWAS: genome-wide association study; HWE: Hardy-Weinberg equilibrium; LD: linkage disequilibrium; OR: odds ratio; CI: confidence interval; eQTL: expression quantitative trait loci; IBD: inflammatory bowel disease; RA: rheumatoid arthritis; Padj: Bonferroni corrected P value; NS: non-significant.
Collapse
Affiliation(s)
- Xiaotang Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipal Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Qi Zhang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipal Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipal Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Jian Qi
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipal Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Liping Du
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, People's Republic of China
| | - Fuzhen Li
- Department of Ophthalmology, the First Affiliated Hospital of Zhengzhou University, Henan Province Eye Hospital, Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, People's Republic of China
| | - Qingfeng Cao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipal Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipal Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| |
Collapse
|
5
|
Khoshbakht S, Başkurt D, Vural A, Vural S. Behçet's Disease: A Comprehensive Review on the Role of HLA-B*51, Antigen Presentation, and Inflammatory Cascade. Int J Mol Sci 2023; 24:16382. [PMID: 38003572 PMCID: PMC10671634 DOI: 10.3390/ijms242216382] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/04/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Behçet's disease (BD) is a complex, recurring inflammatory disorder with autoinflammatory and autoimmune components. This comprehensive review aims to explore BD's pathogenesis, focusing on established genetic factors. Studies reveal that HLA-B*51 is the primary genetic risk factor, but non-HLA genes (ERAP1, IL-10, IL23R/IL-12RB2), as well as innate immunity genes (FUT2, MICA, TLRs), also contribute. Genome-wide studies emphasize the significance of ERAP1 and HLA-I epistasis. These variants influence antigen presentation, enzymatic activity, and HLA-I peptidomes, potentially leading to distinct autoimmune responses. We conducted a systematic review of the literature to identify studies exploring the association between HLA-B*51 and BD and further highlighted the roles of innate and adaptive immunity in BD. Dysregulations in Th1/Th2 and Th17/Th1 ratios, heightened clonal cytotoxic (CD8+) T cells, and reduced T regulatory cells characterize BD's complex immune responses. Various immune cell types (neutrophils, γδ T cells, natural killer cells) further contribute by releasing cytokines (IL-17, IL-8, GM-CSF) that enhance neutrophil activation and mediate interactions between innate and adaptive immunity. In summary, this review advances our understanding of BD pathogenesis while acknowledging the research limitations. Further exploration of genetic interactions, immune dysregulation, and immune cell roles is crucial. Future studies may unveil novel diagnostic and therapeutic strategies, offering improved management for this complex disease.
Collapse
Affiliation(s)
- Saba Khoshbakht
- Koç University Research Center for Translational Medicine, Istanbul 34010, Turkey; (S.K.); (A.V.)
| | - Defne Başkurt
- School of Medicine, Koç University, Istanbul 34010, Turkey;
| | - Atay Vural
- Koç University Research Center for Translational Medicine, Istanbul 34010, Turkey; (S.K.); (A.V.)
- Department of Neurology, Koç University School of Medicine, Istanbul 34010, Turkey
| | - Seçil Vural
- Koç University Research Center for Translational Medicine, Istanbul 34010, Turkey; (S.K.); (A.V.)
- Department of Dermatology and Venereology, Koç University School of Medicine, Istanbul 34010, Turkey
| |
Collapse
|
6
|
Zhong Z, Su G, Yang P. Risk factors, clinical features and treatment of Behçet's disease uveitis. Prog Retin Eye Res 2023; 97:101216. [PMID: 37734442 DOI: 10.1016/j.preteyeres.2023.101216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
Behçet's disease is a systemic vasculitis frequently associated with intraocular inflammation. Recent findings identified independent clinical clusters in Behçet's disease, each involving distinct combinations of affected organs. Ocular Behçet's disease, mainly manifested as uveitis, is characterized as an independent cluster with a low likelihood of association with other system involvements, such as intestinal, cardiovascular, or central nervous system. A prevailing theory suggests that the pathogenesis of the disease is multifactorial, where a variety of genetic and infectious agents may interact with each other to cause the disease. Among sporadic cases, the human leukocyte antigen (HLA) genes, including HLA-B51, HLA-A26, HLA-B15, and HLA-B5701, have been found to be a key component conferring genetic susceptibility. Outside the HLA region, a set of susceptibility variants are identified, closely related to interleukin (IL)-23/IL-17 pathway, tumor necrosis factor (TNF) signaling, and pattern recognition receptor systems. Microbial infections, such as Streptococcus sanguinis, Mycobacterium tuberculosis, and Herpes simplex virus (HSV), are linked to play the triggering of disease in immunogenetically predisposed individuals. Clinically, due to the notable relapsing-remitting course of ocular Behçet's disease, the prevention of recurrent attack would be the primary treatment goal. Combination of corticosteroids and immunomodulatory drugs, such as anti-TNF agents, interferon, and conventional immunosuppressants (e.g. cyclosporine, azathioprine), have been the mainstream regimen for the disease. Future research may focus on comparing the effectiveness of immunomodulatory drugs and identifying the most suitable subgroups for a specific drug on the basis of the knowledge of the molecular heterogeneity of the disease.
Collapse
Affiliation(s)
- Zhenyu Zhong
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, China.
| |
Collapse
|
7
|
Lin S, Xu Z, Lin Z, Xie B, Feng J. Advances in pathogenesis and treatment of ocular involvement in Behcet's disease. Front Immunol 2023; 14:1206959. [PMID: 37841268 PMCID: PMC10570607 DOI: 10.3389/fimmu.2023.1206959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/08/2023] [Indexed: 10/17/2023] Open
Abstract
Behcet's disease (BD) is a chronic multi-systemic disease characterized by relapsing-remitting oral ulcers, genital ulcers, ocular inflammatory involvements, and numerous other systemic features. Ocular involvements are quite common in BD and may cause severe tissue damage and potentially blindness. Even though the pathogenesis of BD remains ambiguous, growing evidences have shown that genetic factors, environmental triggers and immunological abnormalities play significant roles in its development and progression. Novel biotherapies targeting IFN-γ, TNF-α and interleukins have been used in recent years. In this review, we mainly pay attention to the ocular involvement of BD, and discuss the current understanding of mechanisms and advances in therapeutic approaches, especially novel biologics. Finally, we discuss the management in patients with pregnancy.
Collapse
Affiliation(s)
- Suibin Lin
- Department of Gynaecology and Obstetrics, Zhangpu Hospital, Zhangzhou, China
| | - Zhirong Xu
- Department of Internal Medicine, Zhangpu Hospital, Zhangzhou, China
| | - Zhiming Lin
- Department of Rheumatology and Immunology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Baozhao Xie
- Department of Rheumatology and Immunology, the Seventh Affiliated Hospital of Guangxi Medical University (Wuzhou Gongren Hospital), Wuzhou, China
| | - Junmei Feng
- Department of Rheumatology and Immunology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
- Department of Rheumatology and Immunology, Nanfang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Castaño-Núñez ÁL, Montes-Cano MA, García-Lozano JR, Ortego-Centeno N, García-Hernández FJ, Espinosa G, Graña-Gil G, Sánchez-Bursón J, Juliá MR, Solans R, Blanco R, Barnosi-Marín AC, Gómez de la Torre R, Fanlo P, Rodríguez-Carballeira M, Rodríguez-Rodríguez L, Camps T, Castañeda S, Alegre-Sancho JJ, Martín J, González-Escribano MF. The complex HLA-E-nonapeptide in Behçet disease. Front Immunol 2023; 14:1080047. [PMID: 37638008 PMCID: PMC10449640 DOI: 10.3389/fimmu.2023.1080047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/04/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction The knowledge of the aetiology of Behçet disease (BD), an immune-mediated vasculitis, is limited. HLA-B, mainly HLA-B51, and HLA-A molecules are associated with disease, but the ultimate cause of this association remains obscure. There is evidence that NK cells participate in the etiopathology of BD. NK cells have activator and inhibitor surface receptors, like the KIR and the NKG2 families. Classical HLA-class I molecules (A, B and C) are keys in the activity control of the NK because they are KIR ligands. Most NKG2 receptors bind HLA-E, which presents only nonapeptides derived from the signal peptide of other class-I molecules. Objective This study investigates the contribution of the pair HLA-E and ligand, nonapeptide derived from the 3-11 sequence of the signal peptides of class I classical molecules, to the susceptibility to BD. Methods We analyzed the frequency of the HLA-derivated nonapeptide forms in 466 BD patients and 444 controls and an HLA-E functional dimorphism in a subgroup of patients and controls. Results: In B51 negative patients, the frequency of VMAPRTLLL was lower (70.4% versus 80.0% in controls; P=0.006, Pc=0.04, OR=0.60, 95%CI 0.41-0.86), and the frequency of VMAPRTLVL was higher (81.6% versus 71.4% in controls; P=0.004, Pc=0.03, OR=1.78, 95%CI 1.20-2.63). In homozygosity, VMAPRTLLL is protective, and VMAPRTLVL confers risk. The heterozygous condition is neutral. There were no significant differences in the distribution of the HLA-E dimorphism. Discussion Our results explain the association of BD with diverse HLA-A molecules, reinforce the hypothesis of the involvement of the NK cells in the disease and do not suggest a significant contribution of the HLA-E polymorphism to disease susceptibility.
Collapse
Affiliation(s)
- Ángel Luís Castaño-Núñez
- Department of Immunology, Hospital Universitario Virgen del Rocío (IBiS, CSIC, US), Sevilla, Spain
| | | | - José-Raúl García-Lozano
- Department of Immunology, Hospital Universitario Virgen del Rocío (IBiS, CSIC, US), Sevilla, Spain
| | | | | | - Gerard Espinosa
- Department Autoimmune Diseases, Hospital Universitari Clínic, Barcelona, Spain
| | - Genaro Graña-Gil
- Department of Rheumatology, Complejo Hospitalario Universitario A Coruña, Coruña, Spain
| | | | - María Rosa Juliá
- Department of Immunology, Hospital Universitari Son Espases, Palma de Mallorca, Spain
| | - Roser Solans
- Department of Internal Medicine, Autoimmune Systemic Diseases Unit, Hospital Vall d’Hebron, Universidad Autonoma de Barcelona, Barcelona, Spain
| | - Ricardo Blanco
- Department of Rheumatology, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | | | | | - Patricia Fanlo
- Department of Internal Medicine, Hospital Virgen del Camino, Pamplona, Spain
| | | | | | - Teresa Camps
- Department of Internal Medicine, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Santos Castañeda
- Department of Rheumatology, Hospital de la Princesa, IIS-Princesa, Madrid, Spain
| | | | - Javier Martín
- Instituto de Parasitología y Biomedicina “López-Neyra”, CSIC, PTS Granada, Granada, Spain
| | | |
Collapse
|
9
|
Casares-Marfil D, Esencan D, Alibaz-Oner F, Çefle A, Yazıcı A, Duzgun N, Aşık MA, Özbek S, Cinar M, Alpsoy E, Bilge SY, Kasifoglu T, Saruhan-Direskeneli G, Direskeneli H, Sawalha AH. Clinical trait-specific genetic analysis in Behçet's disease identifies novel loci associated with ocular and neurological involvement. Clin Immunol 2023; 253:109657. [PMID: 37271218 PMCID: PMC10529450 DOI: 10.1016/j.clim.2023.109657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/26/2023] [Accepted: 05/25/2023] [Indexed: 06/06/2023]
Abstract
Behçet's disease is a complex inflammatory vasculitis with a broad spectrum of clinical manifestations. The purpose of this study was to investigate the genetics underlying specific clinical features of Behçet's disease. A total of 436 patients with Behçet's disease from Turkey were studied. Genotyping was performed using the Infinium ImmunoArray-24 BeadChip. After imputation and quality control measures, logistic regressions adjusting for sex and the first five principal components were performed for each clinical trait using a case-case genetic analysis approach. A weighted genetic risk score was calculated for each clinical feature. Genetic association analyses of previously identified susceptibility loci in Behçet's disease revealed a genetic association between ocular lesions and HLA-B/MICA (rs116799036: OR = 1.85 [95% CI = 1.35-2.52], p-value = 1.1 × 10-4). The genetic risk score was significantly higher in Behçet's disease patients with ocular lesions compared to those without ocular involvement, which is explained by the genetic variation in the HLA region. New genetic loci predisposing to specific clinical features in Behçet's disease were suggested when genome-wide variants were evaluated. The most significant associations were observed in ocular involvement with SLCO4A1 (rs6062789: OR = 0.41 [95% CI = 0.30-0.58], p-value = 1.92 × 10-7), and neurological involvement with DDX60L (rs62334264: OR = 4.12 [95% CI 2.34 to 7.24], p-value = 8.85 × 10-7). Our results emphasize the role of genetic factors in predisposing to specific clinical manifestations in Behçet's disease, and might shed additional light into disease heterogeneity, pathogenesis, and variability of Behçet's disease presentation across populations.
Collapse
Affiliation(s)
- Desiré Casares-Marfil
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Deren Esencan
- Division of Rheumatology, Department of Internal Medicine, Marmara University, School of Medicine, Istanbul, Turkey
| | - Fatma Alibaz-Oner
- Division of Rheumatology, Department of Internal Medicine, Marmara University, School of Medicine, Istanbul, Turkey
| | - Ayşe Çefle
- Division of Rheumatology, Department of Internal Medicine, Kocaeli University, School of Medicine, Kocaeli, Turkey
| | - Ayten Yazıcı
- Division of Rheumatology, Department of Internal Medicine, Kocaeli University, School of Medicine, Kocaeli, Turkey
| | - Nursen Duzgun
- Division of Rheumatology, Department of Internal Medicine, Ankara University, School of Medicine, Ankara, Turkey
| | - Mehmet Ali Aşık
- Division of Rheumatology, Department of Internal Medicine, Çukurova University, School of Medicine, Adana, Turkey
| | - Süleyman Özbek
- Division of Rheumatology, Department of Internal Medicine, Çukurova University, School of Medicine, Adana, Turkey
| | - Muhammet Cinar
- Division of Rheumatology, Department of Internal Medicine, University of Health Sciences Turkey, Gulhane Faculty of Medicine, Ankara, Turkey
| | - Erkan Alpsoy
- Department of Dermatology and Venereology, Akdeniz University, School of Medicine, Antalya, Turkey
| | - Sule Yasar Bilge
- Division of Rheumatology, Department of Internal Medicine, Osmangazi University, School of Medicine, Eskisehir, Turkey
| | - Timucin Kasifoglu
- Division of Rheumatology, Department of Internal Medicine, Osmangazi University, School of Medicine, Eskisehir, Turkey
| | | | - Haner Direskeneli
- Division of Rheumatology, Department of Internal Medicine, Marmara University, School of Medicine, Istanbul, Turkey
| | - Amr H Sawalha
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA; Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Maccora I, Marrani E, Pagnini I, Mastrolia MV, de Libero C, Caputo R, Simonini G. Challenges and management of childhood non-infectious chronic uveitis. Expert Rev Clin Immunol 2023; 19:599-611. [PMID: 36996498 DOI: 10.1080/1744666x.2023.2198210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
INTRODUCTION Childhood uveitis is a sight-threatening condition, because if not properly recognized and treated can lead to several ocular complications and blindness. It represents a real challenge not only from an etiologic/diagnostic point of view, but also for management and therapy. AREAS COVERED In this review we will discuss the main etiologies, the diagnostic approach, risk factors associated to childhood non-infectious uveitis (cNIU), and the difficulties in eye examination in childhood. Moreover, we will discuss the treatment of cNIU in term of therapeutic choice, timing of initiation and withdrawal. EXPERT OPINION Identification of specific diagnosis is mandatory to prevent severe complications, thus a thorough differential diagnosis is essential. Pediatric eye examination may be extremely challenging due to the scarce collaboration, but novel techniques and biomarkers will help in identify low grade of inflammation, eventually modify long-term outcomes. Once identified the appropriate diagnosis, recognition of children who may benefit of a systemic treatment is crucial. What, When and how long are the key questions to address in this field. Current evidence and future results of ongoing clinical trials will help in driving treatment. A proper ocular screening, not only in the context of systemic disease, should be discussed by experts.
Collapse
Affiliation(s)
- Ilaria Maccora
- Pediatric Rheumatology Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- NeuroFARBA department, University of Florence, Florence, Italy
| | - Edoardo Marrani
- Pediatric Rheumatology Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Ilaria Pagnini
- Pediatric Rheumatology Unit, Meyer Children's Hospital IRCCS, Florence, Italy
| | | | | | - Roberto Caputo
- Ophthalmology Unit, Meyer Children's Hospital, Florence, Italy
| | - Gabriele Simonini
- Pediatric Rheumatology Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- NeuroFARBA department, University of Florence, Florence, Italy
| |
Collapse
|
11
|
Kuiper JJ, Prinz JC, Stratikos E, Kuśnierczyk P, Arakawa A, Springer S, Mintoff D, Padjen I, Shumnalieva R, Vural S, Kötter I, van de Sande MG, Boyvat A, de Boer JH, Bertsias G, de Vries N, Krieckaert CL, Leal I, Vidovič Valentinčič N, Tugal-Tutkun I, El Khaldi Ahanach H, Costantino F, Glatigny S, Mrazovac Zimak D, Lötscher F, Kerstens FG, Bakula M, Viera Sousa E, Böhm P, Bosman K, Kenna TJ, Powis SJ, Breban M, Gul A, Bowes J, Lories RJ, Nowatzky J, Wolbink GJ, McGonagle DG, Turkstra F. EULAR study group on ‘MHC-I-opathy’: identifying disease-overarching mechanisms across disciplines and borders. Ann Rheum Dis 2023:ard-2022-222852. [PMID: 36987655 DOI: 10.1136/ard-2022-222852] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/25/2023] [Indexed: 03/29/2023]
Abstract
The ‘MHC-I (major histocompatibility complex class I)-opathy’ concept describes a family of inflammatory conditions with overlapping clinical manifestations and a strong genetic link to the MHC-I antigen presentation pathway. Classical MHC-I-opathies such as spondyloarthritis, Behçet’s disease, psoriasis and birdshot uveitis are widely recognised for their strong association with certain MHC-I alleles and gene variants of the antigen processing aminopeptidases ERAP1 and ERAP2 that implicates altered MHC-I peptide presentation to CD8+T cells in the pathogenesis. Progress in understanding the cause and treatment of these disorders is hampered by patient phenotypic heterogeneity and lack of systematic investigation of the MHC-I pathway.Here, we discuss new insights into the biology of MHC-I-opathies that strongly advocate for disease-overarching and integrated molecular and clinical investigation to decipher underlying disease mechanisms. Because this requires transformative multidisciplinary collaboration, we introduce the EULAR study group on MHC-I-opathies to unite clinical expertise in rheumatology, dermatology and ophthalmology, with fundamental and translational researchers from multiple disciplines such as immunology, genomics and proteomics, alongside patient partners. We prioritise standardisation of disease phenotypes and scientific nomenclature and propose interdisciplinary genetic and translational studies to exploit emerging therapeutic strategies to understand MHC-I-mediated disease mechanisms. These collaborative efforts are required to address outstanding questions in the etiopathogenesis of MHC-I-opathies towards improving patient treatment and prognostication.
Collapse
Affiliation(s)
- Jonas Jw Kuiper
- Department of Ophthalmology, Center for Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jörg C Prinz
- University Hospital, department of Dermatology and Allergy, Ludwig Maximilians University Munich, Munchen, Germany
| | - Efstratios Stratikos
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Piotr Kuśnierczyk
- Laboratory of Immunogenetics and Tissue Immunology, Institute of Immunology and Experimental Therapy Ludwik Hirszfeld Polish Academy of Sciences, Wroclaw, Poland
| | - Akiko Arakawa
- University Hospital, department of Dermatology and Allergy, Ludwig Maximilians University Munich, Munchen, Germany
| | | | - Dillon Mintoff
- Department of Dermatology, Mater Dei Hospital, Msida, Malta
- Department of Pathology, University of Malta Faculty of Medicine and Surgery, Msida, Malta
| | - Ivan Padjen
- Division of Clinical Immunology and Rheumatology, University Hospital Centre Zagreb Department of Internal Medicine, Zagreb, Croatia
- University of Zagreb School of Medicine, Zagreb, Croatia
| | - Russka Shumnalieva
- Clinic of Rheumatology, Department of Rheumatology, Medical University of Sofia, Sofia, Bulgaria
| | - Seçil Vural
- School of Medicine, Department of Dermatology, Koç University, Istanbul, Turkey
| | - Ina Kötter
- Clinic for Rheumatology and Immunology, Bad Bramdsted Hospital, Bad Bramstedt, Germany
- Division of Rheumatology and Systemic Inflammatory Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marleen G van de Sande
- University of Amsterdam, Department of Rheumatology & Clinical Immunology and Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
- Amsterdam Rheumatology and Immunology Center (ARC) | Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ayşe Boyvat
- Department of Dermatology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Joke H de Boer
- Department of Ophthalmology, Center for Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - George Bertsias
- Department of Rheumatology and Clinical Immunology, University of Crete School of Medicine, Iraklio, Greece
- Laboratory of Autoimmunity-Inflammation, Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| | - Niek de Vries
- University of Amsterdam, Department of Rheumatology & Clinical Immunology and Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
- Amsterdam Rheumatology and Immunology Center (ARC) | Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Charlotte Lm Krieckaert
- Amsterdam Rheumatology and immunology Center (ARC)| Reade, Amsterdam, The Netherlands
- Department of Rheumatology, Reade Hoofdlocatie Dr Jan van Breemenstraat, Amsterdam, The Netherlands
| | - Inês Leal
- Department of Ophthalmology, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte EPE, Lisboa, Portugal
- Centro de Estudeos das Ciencias da Visão, Universidade de Lisboa Faculdade de Medicina, Lisboa, Portugal
| | - Nataša Vidovič Valentinčič
- University Eye Clinic, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Ilknur Tugal-Tutkun
- Department of Ophthalmology, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Hanane El Khaldi Ahanach
- Departement of Ophthalmology, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
- Department of Ophthalmology, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands
| | - Félicie Costantino
- Service de Rheumatology, Hospital Ambroise-Pare, Boulogne-Billancourt, France
- Infection & Inflammation, UMR 1173, Inserm, UVSQ, University Paris-Saclay, Montigny-le-Bretonneux, France
| | - Simon Glatigny
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/Université Paris Saclay, Montigny-le-Bretonneux, France
- Laboratoire d'Excellence Inflamex, Paris, France
| | | | - Fabian Lötscher
- Department of Rheumatology and Immunology, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland
| | - Floor G Kerstens
- Amsterdam Rheumatology and immunology Center (ARC)| Reade, Amsterdam, The Netherlands
- Department of Rheumatology, Reade Hoofdlocatie Dr Jan van Breemenstraat, Amsterdam, The Netherlands
| | - Marija Bakula
- Division of Clinical Immunology and Rheumatology, University Hospital Centre Zagreb Department of Internal Medicine, Zagreb, Croatia
| | - Elsa Viera Sousa
- Rheumatology Research Unit Molecular João Lobo Antunes, University of Lisbon Medical Faculty, Lisboa, Portugal
- Rheumatology DepartmentSanta Maria Centro Hospital, Academic Medical Centre of Lisbon, Lisboa, Portugal
| | - Peter Böhm
- Patientpartner, German League against Rheumatism, Bonn, Germany
| | - Kees Bosman
- Patientpartner, Nationale Vereniging ReumaZorg, Nijmegen, The Netherlands
| | - Tony J Kenna
- Translational Research Institute, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Simon J Powis
- School of Medicine, University of St Andrews School of Medicine, St Andrews, UK
| | - Maxime Breban
- Service de Rheumatology, Hospital Ambroise-Pare, Boulogne-Billancourt, France
- Infection & Inflammation, UMR 1173, Inserm, UVSQ, University Paris-Saclay, Montigny-le-Bretonneux, France
| | - Ahmet Gul
- Division of Rheumatology, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
| | - John Bowes
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Center, The University of Manchester, Manchester, UK
- NIHR Manchester Musculoskeletal Biomedical Research Unit, Manchester University NHS Foundation Trust, Manchester, UK
| | - Rik Ju Lories
- Department of Rheumatology, KU Leuven University Hospitals Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Johannes Nowatzky
- Department of Medicine, Division of Rheumatology, NYU Langone Behçet's Disease Program, NYU Langone Ocular Rheumatology Program, New York University Grossman School of Medicine, New York University, New York, New York, USA
- Department of Pathology, New York University Grossman School of Medicine, New York, New York, USA
| | - Gerrit Jan Wolbink
- Amsterdam Rheumatology and immunology Center (ARC)| Reade, Amsterdam, The Netherlands
- Department Immunopathology, Sanquin Research, Amsterdam, The Netherlands
| | - Dennis G McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Franktien Turkstra
- Amsterdam Rheumatology and immunology Center (ARC)| Reade, Amsterdam, The Netherlands
- Department of Rheumatology, Reade Hoofdlocatie Dr Jan van Breemenstraat, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Yang CA, Li JP, Lai YH, Huang YL, Lin CY, Lan JL. Assessing the Immune Cell Subset and Genetic Mutations in Patients With Palindromic Rheumatism Seronegative for Rheumatoid Factor and Anti-Cyclic Citrullinated Peptide. Arthritis Rheumatol 2023; 75:187-200. [PMID: 35819819 DOI: 10.1002/art.42297] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/17/2022] [Accepted: 07/07/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The etiology underlying cases of palindromic rheumatism (PR) not associated with other rheumatic diseases in patients who are seronegative for rheumatoid factor and anti-cyclic citrullinated peptide (seronegative PR) is unclear. We aimed to investigate the immune cells and genes involved. METHODS This was a single-center comparative study of 48 patients with seronegative PR and 48 healthy controls. Mass cytometry and RNA sequencing were used to identify distinct immune cell subsets in blood. Among the 48 seronegative PR patients, plasma samples from 40 patients were evaluated by enzyme-linked immunosorbent assay for cytokine levels, and peripheral blood samples from 25 patients were evaluated by flow cytometry for mononuclear cell subsets. Plasma samples from 21 patients were evaluated by real-time polymerase chain reaction for differential gene and protein expression, and samples from 3 patients were analyzed with whole-exome sequencing for gene mutations. RESULTS Immunophenotyping revealed a markedly increased frequency of CD14+CD11b+CD36+ and CD4+CD25-CD69+ cells in seronegative PR patients with active flares compared with healthy controls (P < 0.0001 for both cell subset comparisons). Gene enrichment analyses of RNA-sequencing data from sorted CD14+CD11b+CD36+ and CD4+CD25-CD69+ cells showed involvement of the inflammatory/stress response, phagocytosis, and regulation of apoptosis functional pathways. Up-regulated expression of CXCL16 and IL10RA was observed in monocytes from PR patients. Up-regulation of PFKFB3, DDIT4, and TGFB1, and down-regulation of PDIA6 were found in monocytes and lymphocytes from PR patients with active flares and PR patients in intercritical periods. Plasma levels of S100A8/A9 and interleukin-1β were elevated in PR patients. Whole-exome sequencing revealed novel polygenic mutations in HACL1, KDM5A, RASAL1, HAVCR2, PRDM9, MBOAT4, and JRKL. CONCLUSION In seronegative PR patients, we identified a distinct CD14+CD11b+CD36+ cell subset that can induce an inflammatory response under stress and exert antiinflammatory effects after phagocytosis of apoptotic cells, and a CD4+CD25-CD69+ T cell subset with pro- and antiinflammatory properties. Individuals with genetic mutations involving epigenetic modification, potentiation and resolution of stress-induced inflammation/apoptosis, and a dysregulated endoplasmic reticulum stress response could be predisposed to seronegative PR.
Collapse
Affiliation(s)
- Chin-An Yang
- College of Medicine, China Medical University, Division of Laboratory Medicine, China Medical University Hsinchu Hospital, and Departments of Medical Education and Pediatrics, China Medical University Hsinchu Hospital, Zhubei City, Taiwan, and Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Taiwan
| | - Ju-Pi Li
- Rheumatic Diseases Research Center, China Medical University Hospital, Department of Pathology, School of Medicine, Chung Shan Medical University and Chung Shan Medical University Hospital, Taiwan
| | - Yi-Hua Lai
- College of Medicine, China Medical University, Rheumatic Diseases Research Center, China Medical University Hospital, and Rheumatology and Immunology Center, China Medical University Hospital, Taiwan
| | - Ya-Ling Huang
- Division of Laboratory Medicine, China Medical University Hsinchu Hospital, Zhubei City, Taiwan
| | - Chien-Yu Lin
- Division of Laboratory Medicine, China Medical University Hsinchu Hospital, Zhubei City, Taiwan
| | - Joung-Liang Lan
- College of Medicine, China Medical University, Rheumatic Diseases Research Center, China Medical University Hospital, and Rheumatology and Immunology Center, China Medical University Hospital, Taiwan
| |
Collapse
|
13
|
Li S, Yuan S, Schooling CM, Larsson SC. A Mendelian randomization study of genetic predisposition to autoimmune diseases and COVID-19. Sci Rep 2022; 12:17703. [PMID: 36271292 PMCID: PMC9587049 DOI: 10.1038/s41598-022-22711-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 10/18/2022] [Indexed: 01/18/2023] Open
Abstract
Autoimmune diseases and coronavirus disease 2019 (COVID-19) share many similarities. Concerns have arisen that autoimmune diseases may increase the susceptibility and severity of COVID-19. We used Mendelian randomization to investigate whether liability to autoimmune diseases is related to COVID-19 susceptibility and severity. Genetic instruments for 8 autoimmune diseases, including type 1 diabetes mellitus, rheumatoid arthritis, systemic lupus erythematosus, psoriasis, multiple sclerosis, primary sclerosing cholangitis, primary biliary cirrhosis and juvenile idiopathic arthritis, were obtained from published genome-wide association studies. Two-sample Mendelian randomization analyses of the associations of liability to each autoimmune disease with COVID-19 infection, hospitalized COVID-19, and very severe COVID-19 were performed using the latest publicly available genome-wide association study for COVID-19. Genetic liability to each of the autoimmune diseases was largely not associated with COVID-19 infection, hospitalized COVID-19, or very severe COVID-19 after accounting for multiple comparison. Sensitivity analysis excluding genetic variants in the human leukocyte antigen gene, which has an important role in the immune response, showed similar results. The autoimmune diseases examined were largely not genetically associated with the susceptibility or severity of COVID-19. Further investigations are warranted.
Collapse
Affiliation(s)
- Shun Li
- Clinical Epidemiology and EBM Unit, Beijing Friendship Hospital, Capital Medical University, Beijing Clinical Research Institute, Beijing, China
- National Clinical Research Center for Digestive Diseases, Beijing, China
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 7 Sassoon Rd, Hong Kong, China
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Nobelsväg 13, 17177, Stockholm, Sweden
| | - C M Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 7 Sassoon Rd, Hong Kong, China
- School of Public Health and Health Policy, The City University of New York, 55 W 125 St, New York, NY, 10027, USA
| | - Susanna C Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Nobelsväg 13, 17177, Stockholm, Sweden.
- Department of Surgical Sciences, Uppsala University, Dag Hammarskjölds Väg 14B, Uppsala, Sweden.
| |
Collapse
|
14
|
Jo YG, Ortiz-Fernández L, Coit P, Yilmaz V, Yentür SP, Alibaz-Oner F, Aksu K, Erken E, Düzgün N, Keser G, Cefle A, Yazici A, Ergen A, Alpsoy E, Salvarani C, Kısacık B, Kötter I, Henes J, Çınar M, Schaefer A, Nohutcu RM, Takeuchi F, Harihara S, Kaburaki T, Messedi M, Song YW, Kaşifoğlu T, Martin J, González Escribano MF, Saruhan-Direskeneli G, Direskeneli H, Sawalha AH. Sex-specific analysis in Behçet's disease reveals higher genetic risk in male patients. J Autoimmun 2022; 132:102882. [PMID: 35987173 PMCID: PMC10614427 DOI: 10.1016/j.jaut.2022.102882] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Behçet's disease tends to be more severe in men than women. This study was undertaken to investigate sex-specific genetic effects in Behçet's disease. METHODS A total of 1762 male and 1216 female patients with Behçet's disease from six diverse populations were studied, with the majority of patients of Turkish origin. Genotyping was performed using an Infinium ImmunoArray-24 BeadChip, or extracted from available genotyping data. Following imputation and extensive quality control measures, genome-wide association analysis was performed comparing male to female patients in the Turkish cohort, followed by a meta-analysis of significant results in all six populations. In addition, a weighted genetic risk score for Behçet's disease was calculated and compared between male and female patients. RESULTS Genetic association analysis comparing male to female patients with Behçet's disease from Turkey revealed an association with male sex in HLA-B/MICA within the HLA region with a GWAS level of significance (rs2848712, OR = 1.46, P = 1.22 × 10-8). Meta-analysis of the effect in rs2848712 across six populations confirmed these results. Genetic risk score for Behçet's disease was significantly higher in male compared to female patients from Turkey. Higher genetic risk for Behçet's disease was observed in male patients in HLA-B/MICA (rs116799036, OR = 1.45, P = 1.95 × 10-8), HLA-C (rs12525170, OR = 1.46, P = 5.66 × 10-7), and KLRC4 (rs2617170, OR = 1.20, P = 0.019). In contrast, IFNGR1 (rs4896243, OR = 0.86, P = 0.011) was shown to confer higher genetic risk in female patients. CONCLUSIONS Male patients with Behçet's disease are characterized by higher genetic risk compared to female patients. This genetic difference, primarily derived from our Turkish cohort, is largely explained by risk within the HLA region. These data suggest that genetic factors might contribute to differences in disease presentation between men and women with Behçet's disease.
Collapse
Affiliation(s)
- Yun Gun Jo
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lourdes Ortiz-Fernández
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patrick Coit
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vuslat Yilmaz
- Department of Physiology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Sibel P Yentür
- Department of Physiology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Fatma Alibaz-Oner
- Division of Rheumatology, Department of Internal Medicine, Marmara University, School of Medicine, Istanbul, Turkey
| | - Kenan Aksu
- Division of Rheumatology, Department of Internal Medicine, Ege University, School of Medicine, Izmir, Turkey
| | - Eren Erken
- Division of Rheumatology, Department of Internal Medicine, Çukurova University, School of Medicine, Adana, Turkey
| | - Nursen Düzgün
- Division of Rheumatology, Department of Internal Medicine, Ankara University, School of Medicine, Ankara, Turkey
| | - Gokhan Keser
- Division of Rheumatology, Department of Internal Medicine, Ege University, School of Medicine, Izmir, Turkey
| | - Ayse Cefle
- Division of Rheumatology, Department of Internal Medicine, Kocaeli University, School of Medicine, Kocaeli, Turkey
| | - Ayten Yazici
- Division of Rheumatology, Department of Internal Medicine, Kocaeli University, School of Medicine, Kocaeli, Turkey
| | - Andac Ergen
- Ophthalmology Clinic, Okmeydanı Research and Education Hospital, Istanbul, Turkey
| | - Erkan Alpsoy
- Department of Dermatology and Venereology, Akdeniz University, School of Medicine, Antalya, Turkey
| | - Carlo Salvarani
- Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia and Università di Modena e Reggio Emilia, Modena, Italy
| | - Bünyamin Kısacık
- Division of Rheumatology, Department of Internal Medicine, Gaziantep University, Faculty of Medicine, Gaziantep, Turkey
| | - Ina Kötter
- Division of Rheumatology and Systemic Inflammatory Diseases, University Hospital Eppendorf, Hamburg, and Clinic for Rheumatology and Immunology, Bad Bramstedt, Germany
| | - Jörg Henes
- Center for Interdisciplinary Rheumatology, Immunology and Autoinflammatory Diseases (INDIRA) and Internal Medicine II (hematology, Oncology, Rheumatology and Immunology), University Hospital Tuebingen, Tuebingen, Germany
| | - Muhammet Çınar
- Division of Rheumatology, Department of Internal Medicine, University of Health Sciences Turkey, Gulhane Faculty of Medicine, Ankara, Turkey
| | - Arne Schaefer
- Department of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité-University Medicine Berlin, Berlin, Germany
| | - Rahime M Nohutcu
- Department of Periodontology, Faculty of Dentistry, Hacettepe University Sihhiye, Ankara, Turkey
| | - Fujio Takeuchi
- School of Pharmaceutical Science, University of Shizuoka, Shizuoka, Japan
| | - Shinji Harihara
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Toshikatsu Kaburaki
- Department of Ophthalmology, Jichi Medical University Saitama Medical Center, Japan
| | - Meriam Messedi
- Research Laboratory of Molecular Bases of Human Diseases, 12ES17, Faculty of Medicine of Sfax, University of Sfax, 3029 Sfax, Sfax, Tunisia
| | - Yeong-Wook Song
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, And College of Medicine, Medical Research Center, Seoul National University, Seoul, South Korea
| | - Timuçin Kaşifoğlu
- Division of Rheumatology, Department of Internal Medicine, Osmangazi University, School of Medicine, Eskisehir, Turkey
| | - Javier Martin
- Instituto de Parasitología y Biomedicina 'López-Neyra', IPBLN-CSIC, PTS Granada, Granada, Spain
| | | | | | - Haner Direskeneli
- Division of Rheumatology, Department of Internal Medicine, Marmara University, School of Medicine, Istanbul, Turkey
| | - Amr H Sawalha
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA; Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
15
|
Gao Y, Zhong Z, Yang P. Genetics in Behcet's Disease: An Update Review. FRONTIERS IN OPHTHALMOLOGY 2022; 2:916887. [PMID: 38983559 PMCID: PMC11182159 DOI: 10.3389/fopht.2022.916887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/04/2022] [Indexed: 07/11/2024]
Abstract
Behcet's disease (BD) is one of the most vision-threatening clinical entities of uveitis. Although the etiopathogenesis of BD remains obscure, accumulating evidence has demonstrated that both genetic and environmental factors may contribute to the development of BD. Genome-wide association studies (GWAS) and candidate association studies have identified several genetic variants strongly associated with BD, including variants in human leukocyte antigen (HLA) -A02, -A03, -A24, -A26, -A31, -B15, -B27, -B35, -B49, -B51, -B57, -B58, -C0704, CIITA, ERAP1, MICA, IL1A-IL1B, IL10, IL12, IL23R, IL-23R/IL-12RB2, IL1RL1-IL18R1, STAT4, TFCP2L1, TRAF5, TNFAIP3, CCR1/CCR3, RIPK2, ADO-ZNF365-EGR2, KLRC4, LACC1, MEFV, IRF8, FUT2, CEBPB-PTPN1, ZMIZ1, RPS6KA4, IL10RA, SIPA1-FIBP-FOSL1, VAMP1, JRKL/CTCN5, IFNGR1 and miRNA-146a. Epigenetic modifications are also reported to play essential roles in the development of BD, including DNA methylation and histone modification. We review here the recent advances in the genetic and epigenetic factors associated with the BD pathogenesis.
Collapse
Affiliation(s)
| | | | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, and Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| |
Collapse
|
16
|
The Immunogenetics of Behcet’s Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:335-347. [DOI: 10.1007/978-3-030-92616-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Shenoi SJ, Baker EJ. Using hierarchical similarity to examine the genetics of Behçet's disease. BMC Res Notes 2021; 14:353. [PMID: 34507623 PMCID: PMC8434716 DOI: 10.1186/s13104-021-05767-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/31/2021] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE Behçet's disease (BD) is a multisystem inflammatory disease that affects patients along the historic silk road. Thus far, the pathogenesis of the disease has proved elusive due to the complex genetic interactions of the disease. In this paper, we seek to clarify the genetic factors of the disease while also uncovering other diseases of interest that present with a similar genotype as BD. RESULTS To do this, we employ a convergent functional genomics approach by leveraging the hierarchical similarity tool available in Geneweaver. Through our analysis, we were able to ascertain 7 BD consensus genes and 16 autoimmune diseases with genetic overlap with BD. The results of our study will inform further research into the pathogenesis of Behçet's disease.
Collapse
Affiliation(s)
- Samuel J. Shenoi
- Department of Computer Science, Baylor University, One Bear Place, Waco, TX USA
| | - Erich J. Baker
- Department of Computer Science, Baylor University, One Bear Place, Waco, TX USA
| |
Collapse
|
18
|
Ortiz Fernández L, Coit P, Yilmaz V, Yentür SP, Alibaz-Oner F, Aksu K, Erken E, Düzgün N, Keser G, Cefle A, Yazici A, Ergen A, Alpsoy E, Salvarani C, Casali B, Kısacık B, Kötter I, Henes J, Çınar M, Schaefer A, Nohutcu RM, Zhernakova A, Wijmenga C, Takeuchi F, Harihara S, Kaburaki T, Messedi M, Song YW, Kaşifoğlu T, Carmona FD, Guthridge JM, James JA, Martin J, González Escribano MF, Saruhan-Direskeneli G, Direskeneli H, Sawalha AH. Genetic Association of a Gain-of-Function IFNGR1 Polymorphism and the Intergenic Region LNCAROD/DKK1 With Behçet's Disease. Arthritis Rheumatol 2021; 73:1244-1252. [PMID: 33393726 PMCID: PMC8238846 DOI: 10.1002/art.41637] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Behçet's disease is a complex systemic inflammatory vasculitis of incompletely understood etiology. This study was undertaken to investigate genetic associations with Behçet's disease in a diverse multiethnic population. METHODS A total of 9,444 patients and controls from 7 different populations were included in this study. Genotyping was performed using an Infinium ImmunoArray-24 v.1.0 or v.2.0 BeadChip. Analysis of expression data from stimulated monocytes, and epigenetic and chromatin interaction analyses were performed. RESULTS We identified 2 novel genetic susceptibility loci for Behçet's disease, including a risk locus in IFNGR1 (rs4896243) (odds ratio [OR] 1.25; P = 2.42 × 10-9 ) and within the intergenic region LNCAROD/DKK1 (rs1660760) (OR 0.78; P = 2.75 × 10-8 ). The risk variants in IFNGR1 significantly increased IFNGR1 messenger RNA expression in lipopolysaccharide-stimulated monocytes. In addition, our results replicated the association (P < 5 × 10-8 ) of 6 previously identified susceptibility loci in Behçet's disease: IL10, IL23R, IL12A-AS1, CCR3, ADO, and LACC1, reinforcing the notion that these loci are strong genetic factors in Behçet's disease shared across ancestries. We also identified >30 genetic susceptibility loci with a suggestive level of association (P < 5 × 10-5 ), which will require replication. Finally, functional annotation of genetic susceptibility loci in Behçet's disease revealed their possible regulatory roles and suggested potential causal genes and molecular mechanisms that could be further investigated. CONCLUSION We performed the largest genetic association study in Behçet's disease to date. Our findings reveal novel putative functional variants associated with the disease and replicate and extend the genetic associations in other loci across multiple ancestries.
Collapse
Affiliation(s)
- Lourdes Ortiz Fernández
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patrick Coit
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vuslat Yilmaz
- Department of Physiology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Sibel P. Yentür
- Department of Physiology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Fatma Alibaz-Oner
- Division of Rheumatology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Kenan Aksu
- Division of Rheumatology, Ege University, School of Medicine, Izmir, Turkey
| | - Eren Erken
- Cukurova University, Medical School, Division of Rheumatology, Adana, Turkey
| | - Nursen Düzgün
- Department of Rheumatology, Ankara University, School of Medicine, Ankara, Turkey
| | - Gokhan Keser
- Division of Rheumatology, Ege University, School of Medicine, Izmir, Turkey
| | - Ayse Cefle
- Division of Rheumatology, Kocaeli University, School of Medicine, Kocaeli, Turkey
| | - Ayten Yazici
- Division of Rheumatology, Kocaeli University, School of Medicine, Kocaeli, Turkey
| | - Andac Ergen
- Ophthalmology Clinic, Okmeydanı Research and Education Hospital, Istanbul, Turkey
| | - Erkan Alpsoy
- Department of Dermatology and Venereology, Akdeniz University, School of Medicine, Antalya, Turkey
| | - Carlo Salvarani
- Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia and Università di Modena e Reggio Emilia, Modena, Italy
| | - Bruno Casali
- Azienda Ospedaliera Arcispedale Santa Maria Nuova-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Bünyamin Kısacık
- Division of Rheumatology, Gaziantep University, Faculty of Medicine, Gaziantep, Turkey
| | - Ina Kötter
- Division of Rheumatology and Systemic Inflammatory Diseases, University Hospital Eppendorf, Hamburg, and Clinic for Rheumatology and Immunology, Bad Bramstedt, Germany
| | - Jörg Henes
- Center for Interdisciplinary Rheumatology, Immunology and Autoinflammatory diseases (INDIRA) and Internal Medicine II (hematology, oncology, rheumatology and immunology), University Hospital Tuebingen, Tuebingen, Germany
| | - Muhammet Çınar
- Division of Rheumatology, Department of Internal Medicine, Gulhane Faculty of Medicine, University of Health Sciences Turkey, Ankara, Turkey
| | - Arne Schaefer
- Department of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité–University Medicine Berlin, Berlin, Germany
| | - Rahime M. Nohutcu
- Department of Periodontology, Faculty of Dentistry, Hacettepe University Sihhiye, Ankara, Turkey
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Fujio Takeuchi
- Faculty of Health and Nutrition, Tokyo Seiei University, Tokyo, Japan
| | - Shinji Harihara
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Toshikatsu Kaburaki
- Department of Ophthalmology, Jichi Medical University Saitama Medical Center, Japan
| | - Meriam Messedi
- Research Laboratory of Molecular Bases of Human Diseases, 12ES17, Faculty of Medicine of Sfax, University of Sfax, 3029 Sfax, Sfax, Tunisia
| | - Yeong-Wook Song
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine, Medical Research Center, Seoul National University, Seoul, South Korea
| | - Timuçin Kaşifoğlu
- Osmangazi University, Medical School, Division of Rheumatology, Eskisehir, Turkey
| | - F. David Carmona
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Spain. Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Joel M. Guthridge
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Judith A. James
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Javier Martin
- Instituto de Parasitología y Biomedicina ‘López-Neyra’, IPBLN-CSIC, PTS Granada, Granada, Spain
| | | | | | - Haner Direskeneli
- Division of Rheumatology, Marmara University, School of Medicine, Istanbul, Turkey
| | - Amr H. Sawalha
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
19
|
Clinical Relevance of Corticosteroid Withdrawal on Graft Histological Lesions in Low-Immunological-Risk Kidney Transplant Patients. J Clin Med 2021; 10:jcm10092005. [PMID: 34067039 PMCID: PMC8125434 DOI: 10.3390/jcm10092005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
The impact of corticosteroid withdrawal on medium-term graft histological changes in kidney transplant (KT) recipients under standard immunosuppression is uncertain. As part of an open-label, multicenter, prospective, phase IV, 24-month clinical trial (ClinicalTrials.gov, NCT02284464) in low-immunological-risk KT recipients, 105 patients were randomized, after a protocol-biopsy at 3 months, to corticosteroid continuation (CSC, n = 52) or corticosteroid withdrawal (CSW, n = 53). Both groups received tacrolimus and MMF and had another protocol-biopsy at 24 months. The acute rejection rate, including subclinical inflammation (SCI), was comparable between groups (21.2 vs. 24.5%). No patients developed dnDSA. Inflammatory and chronicity scores increased from 3 to 24 months in patients with, at baseline, no inflammation (NI) or SCI, regardless of treatment. CSW patients with SCI at 3 months had a significantly increased chronicity score at 24 months. HbA1c levels were lower in CSW patients (6.4 ± 1.2 vs. 5.7 ± 0.6%; p = 0.013) at 24 months, as was systolic blood pressure (134.2 ± 14.9 vs. 125.7 ± 15.3 mmHg; p = 0.016). Allograft function was comparable between groups and no patients died or lost their graft. An increase in chronicity scores at 2-years post-transplantation was observed in low-immunological-risk KT recipients with initial NI or SCI, but CSW may accelerate chronicity changes, especially in patients with early SCI. This strategy did, however, improve the cardiovascular profiles of patients.
Collapse
|
20
|
Takeuchi M, Mizuki N, Ohno S. Pathogenesis of Non-Infectious Uveitis Elucidated by Recent Genetic Findings. Front Immunol 2021; 12:640473. [PMID: 33912164 PMCID: PMC8072111 DOI: 10.3389/fimmu.2021.640473] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/22/2021] [Indexed: 01/01/2023] Open
Abstract
Uveitis is a generic term for inflammation of the uvea, which includes the iris, ciliary body, and choroid. Prevalence of underlying non-infectious uveitis varies by race and region and is a major cause of legal blindness in developed countries. Although the etiology remains unclear, the involvement of both genetic and environmental factors is considered important for the onset of many forms of non-infectious uveitis. Major histocompatibility complex (MHC) genes, which play a major role in human immune response, have been reported to be strongly associated as genetic risk factors in several forms of non-infectious uveitis. Behçet’s disease, acute anterior uveitis (AAU), and chorioretinopathy are strongly correlated with MHC class I-specific alleles. Moreover, sarcoidosis and Vogt-Koyanagi-Harada (VKH) disease are associated with MHC class II-specific alleles. These correlations can help immunogenetically classify the immune pathway involved in each form of non-infectious uveitis. Genetic studies, including recent genome-wide association studies, have identified several susceptibility genes apart from those in the MHC region. These genetic findings help define the common or specific pathogenesis of ocular inflammatory diseases by comparing the susceptibility genes of each form of non-infectious uveitis. Interestingly, genome-wide association of the interleukin (IL)23R region has been identified in many of the major forms of non-infectious uveitis, such as Behçet’s disease, ocular sarcoidosis, VKH disease, and AAU. The interleukin-23 (IL-23) receptor, encoded by IL23R, is expressed on the cell surface of Th17 cells. IL-23 is involved in the homeostasis of Th17 cells and the production of IL-17, which is an inflammatory cytokine, indicating that a Th17 immune response is a common key in the pathogenesis of non-infectious uveitis. Based on the findings from the immunogenetics of non-infectious uveitis, a personalized treatment approach based on the patient’s genetic make-up is expected.
Collapse
Affiliation(s)
- Masaki Takeuchi
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuhisa Mizuki
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shigeaki Ohno
- Department of Ophthalmology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
21
|
Rodríguez-Carrio J, Nucera V, Masala IF, Atzeni F. Behçet disease: From pathogenesis to novel therapeutic options. Pharmacol Res 2021; 167:105593. [PMID: 33826948 DOI: 10.1016/j.phrs.2021.105593] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/17/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
Behçet disease (BD) is a complex, multi-systemic inflammatory condition mainly hallmarked by oral and genital ulcers which can also affect the vessels, gastrointestinal tract, central nervous system and even the axial skeleton. Without a clear classification among autoimmune or autoinflammatory conditions, BD has been recently classified as a MHC-I-opathy. BD aetiology is still obscure, but it is thought that certain microorganisms can elicit an aberrant adaptive immune response in the presence of a permissive genetic background. Altered T-cell homeostasis, mostly Th1/Th17 expansion and Treg impairment, could lead to an overactivation of the innate immunity, which underlies tissue damage and thus, signs and symptoms. Immunosuppression and/or immunomodulation are central to the BD management. A complex armamentarium ranging from classical synthetic disease-modifying antirrheumatic drugs to new-era biologic agents or small molecules is available in BD, with different therapeutic outcomes depending on disease manifestations. However, the precise disease mechanisms that underlie BD symptoms are not fully deciphered, which may limit their therapeutic potential and add a significant layer of complexity to the treatment decision-making process. The aim of the present review is to provide an exhaustive overview of the latest breakthroughs in BD pathogenesis and therapeutic options.
Collapse
Affiliation(s)
- Javier Rodríguez-Carrio
- Department of Functional Biology, Immunology Area, Faculty of Medicine, University of Oviedo, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Valeria Nucera
- Rheumatology Unit, Department of Experimental and Internal Medicine, University of Messina, Messina, Italy
| | - Ignazio Francesco Masala
- Rheumatology Unit, Department of Experimental and Internal Medicine, University of Messina, Messina, Italy; Trauma and Orthopedic Unit, Santissima Trinità Hospital, Cagliari, Italy
| | - Fabiola Atzeni
- Rheumatology Unit, Department of Experimental and Internal Medicine, University of Messina, Messina, Italy.
| |
Collapse
|
22
|
Ortiz-Fernández L, Sawalha AH. Genetics of Behçet's Disease: Functional Genetic Analysis and Estimating Disease Heritability. Front Med (Lausanne) 2021; 8:625710. [PMID: 33644100 PMCID: PMC7907152 DOI: 10.3389/fmed.2021.625710] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/14/2021] [Indexed: 01/17/2023] Open
Abstract
Behçet's disease is a chronic multisystemic inflammatory disorder characterized by recurrent oral and genital ulcers. Although its etiology remains unclear, it is thought that both genetic and environmental factors contribute to the onset and progression of Behçet's disease. Here, we provide an updated view of the genetic landscape and architecture of Behçet's disease. Large-scale genetic studies performed to date revealed 21 genetic susceptibility loci associated with the disease at a GWAS level of significance (p-value = 5 × 10−8). We performed epigenetic pattern enrichment analysis in Behçet's disease associated loci, providing new insights into the molecular mechanisms underlying its pathophysiology. Our data suggest the crucial involvement of several immune cell types, including natural killer cells, monocytes, and B cells in the pathogenesis of the disease. Pathway enrichment analysis identified important biological processes involved. Using large-scale genetic data available from ~200 immune-related loci (Immunochip), we estimate Behçet's disease heritability to be at least 16%. We further used the same approach to estimate the heritability explained by the known Behçet's disease-associated loci, suggesting that they explain ~ 60% of the genetic component underlying Behçet's disease. These results indicate a significant role of non-genetic factors in causing Behçet's disease and that additional genetic variation influencing the risk of Behçet's disease remains to be identified. Finally, we calculated a cumulative genetic risk score across populations reinforcing the link between geographic variations in disease prevalence with its genetic component.
Collapse
Affiliation(s)
- Lourdes Ortiz-Fernández
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Amr H Sawalha
- Division of Rheumatology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
23
|
Mahmoudi M, Aslani S, Meguro A, Akhtari M, Fatahi Y, Mizuki N, Shahram F. A comprehensive overview on the genetics of Behçet's disease. Int Rev Immunol 2020; 41:84-106. [PMID: 33258398 DOI: 10.1080/08830185.2020.1851372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Behçet's disease (BD) is a systemic and inflammatory disease, characterized mainly by recurrent oral and genital ulcers, eye involvement, and skin lesions. Although the exact etiopathogenesis of BD remains unrevealed, a bulk of studies have implicated the genetic contributing factors as critical players in disease predisposition. In countries along the Silk Road, human leukocyte antigen (HLA)-B51 has been reported as the strongest genetically associated factor for BD. Genome-wide association studies, local genetic polymorphism studies, and meta-analysis of combined data from Turkish, Iranian, and Japanese populations have also identified new genetic associations with BD. Among these, other HLA alleles such as HLA-B*15, HLA-B*27, HLA-B*57, and HLA-A*26 have been found as independent risk factors for BD, whereas HLA-B*49 and HLA-A*03 are independent protective alleles for BD. Moreover, other genes have also reached the genome-wide significance level of association with BD susceptibility, including IL10, IL23R-IL12RB2, IL12A, CCR1-CCR3, STAT4, TNFAIP3, ERAP1, KLRC4, and FUT2. Also, several rare nonsynonymous variants in TLR4, IL23R, NOD2, and MEFV genes have been reported to be involved in BD pathogenesis. According to genetic determinants in the loci outside the MHC region that are contributed to the host defense, immunity, and inflammation pathways, it is suggested that immune responses to the pathogen as an important environmental factor and mucosal immunity contribute to BD susceptibility.
Collapse
Affiliation(s)
- Mahdi Mahmoudi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Akira Meguro
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Maryam Akhtari
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Faculty of Pharmacy, Department of Pharmaceutical Nanotechnology, Tehran University of Medical Sciences, Tehran, Iran.,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nobuhisa Mizuki
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Farhad Shahram
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Charles J, Castellino FJ, Ploplis VA. Past and Present Behçet's Disease Animal Models. Curr Drug Targets 2020; 21:1652-1663. [PMID: 32682369 PMCID: PMC7746599 DOI: 10.2174/1389450121666200719010425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022]
Abstract
Behçet's disease (BD) is presumably an autoinflammatory disease of unknown etiology for which several animal models have been described over the years. Agents and methods used for the development of these models have ranged from the herpes simplex type one virus (hsv-1) pathogen to the use of transgenic mice. Other models have also been used to investigate a possible autoimmune component. Each model possesses its own unique set of benefits and shortcomings, with no one model fully being able to recapitulate the disease phenotype. Here, we review the proposed models and provide commentary on their effectiveness and usefulness in studying the disease.
Collapse
Affiliation(s)
- Jermilia Charles
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Francis J. Castellino
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Victoria A. Ploplis
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
25
|
Castaño-Núñez Á, Montes-Cano MA, García-Lozano JR, Ortego-Centeno N, García-Hernández FJ, Espinosa G, Graña-Gil G, Sánchez-Bursón J, Juliá MR, Solans R, Blanco R, Barnosi-Marín AC, Gómez de la Torre R, Fanlo P, Rodríguez-Carballeira M, Rodríguez-Rodríguez L, Camps T, Castañeda S, Alegre-Sancho JJ, Martín J, González-Escribano MF. Association of Functional Polymorphisms of KIR3DL1/DS1 With Behçet's Disease. Front Immunol 2019; 10:2755. [PMID: 31849952 PMCID: PMC6896819 DOI: 10.3389/fimmu.2019.02755] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/11/2019] [Indexed: 11/27/2022] Open
Abstract
Behçet's disease (BD) is an immune-mediated vasculitis related to imbalances between the innate and adaptive immune response. Infectious agents or environmental factors may trigger the disease in genetically predisposed individuals. HLA-B51 is the genetic factor stronger associated with the disease, although the bases of this association remain elusive. NK cells have also been implicated in the etiopathogenesis of BD. A family of NK receptors, Killer-cell Immunoglobulin-like Receptor (KIR), with a very complex organization, is very important in the education and control of the NK cells by the union to their ligands, most of them, HLA class I molecules. This study aimed to investigate the contribution of certain KIR functional polymorphisms to the susceptibility to BD. A total of 466 BD patients and 444 healthy individuals were genotyped in HLA class I (A, B, and C). The set of KIR genes and the functional variants of KIR3DL1/DS1 and KIR2DS4 were also determined. Frequency of KIR3DL1*004 was lower in patients than in controls (0.15 vs. 0.20, P = 0.005, Pc = 0.015; OR = 0.70; 95% CI 0.54–0.90) in both B51 positive and negative individuals. KIR3DL1*004, which encodes a misfolded protein, is included in a common telomeric haplotype with only one functional KIR gene, KIR3DL2. Both, KIR3DL1 and KIR3DL2 sense pathogen-associated molecular patterns but they have different capacities to eliminate them. The education of the NK cells depending on the HLA, the balance of KIR3DL1/KIR3DL2 licensed NK cells and the different capacities of these receptors to eliminate pathogens could be involved in the etiopathogenesis of BD.
Collapse
Affiliation(s)
- Ángel Castaño-Núñez
- Department of Immunology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBiS), CSIC, Universidad de Sevilla, Seville, Spain
| | - Marco-Antonio Montes-Cano
- Department of Immunology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBiS), CSIC, Universidad de Sevilla, Seville, Spain
| | - José-Raúl García-Lozano
- Department of Immunology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBiS), CSIC, Universidad de Sevilla, Seville, Spain
| | | | | | - Gerard Espinosa
- Department Autoimmune Diseases, Hospital Universitari Clínic, Barcelona, Spain
| | - Genaro Graña-Gil
- Department of Rheumatology, Complejo Hospitalario Universitario A Coruña, A Coruña, Spain
| | | | - María-Rosa Juliá
- Department of Immunology, Hospital Universitari Son Espases, Palma de Mallorca, Spain
| | - Roser Solans
- Department of Internal Medicine, Autoimmune Systemic Diseases Unit, Hospital Vall d'Hebron, Universidad Autonoma de Barcelona, Barcelona, Spain
| | - Ricardo Blanco
- Department of Rheumatology, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | | | | | - Patricia Fanlo
- Department of Internal Medicine, Hospital Virgen del Camino, Pamplona, Spain
| | | | | | - Teresa Camps
- Department of Internal Medicine, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Santos Castañeda
- Department of Rheumatology, Hospital de la Princesa, IIS-Princesa, Madrid, Spain
| | | | - Javier Martín
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, PTS Granada, Granada, Spain
| | - María-Francisca González-Escribano
- Department of Immunology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBiS), CSIC, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
26
|
Kawamura Y, Nakaoka H, Nakayama A, Okada Y, Yamamoto K, Higashino T, Sakiyama M, Shimizu T, Ooyama H, Ooyama K, Nagase M, Hidaka Y, Shirahama Y, Hosomichi K, Nishida Y, Shimoshikiryo I, Hishida A, Katsuura-Kamano S, Shimizu S, Kawaguchi M, Uemura H, Ibusuki R, Hara M, Naito M, Takao M, Nakajima M, Iwasawa S, Nakashima H, Ohnaka K, Nakamura T, Stiburkova B, Merriman TR, Nakatochi M, Ichihara S, Yokota M, Takada T, Saitoh T, Kamatani Y, Takahashi A, Arisawa K, Takezaki T, Tanaka K, Wakai K, Kubo M, Hosoya T, Ichida K, Inoue I, Shinomiya N, Matsuo H. Genome-wide association study revealed novel loci which aggravate asymptomatic hyperuricaemia into gout. Ann Rheum Dis 2019; 78:1430-1437. [PMID: 31289104 PMCID: PMC6788923 DOI: 10.1136/annrheumdis-2019-215521] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 01/06/2023]
Abstract
OBJECTIVE The first ever genome-wide association study (GWAS) of clinically defined gout cases and asymptomatic hyperuricaemia (AHUA) controls was performed to identify novel gout loci that aggravate AHUA into gout. METHODS We carried out a GWAS of 945 clinically defined gout cases and 1003 AHUA controls followed by 2 replication studies. In total, 2860 gout cases and 3149 AHUA controls (all Japanese men) were analysed. We also compared the ORs for each locus in the present GWAS (gout vs AHUA) with those in the previous GWAS (gout vs normouricaemia). RESULTS This new approach enabled us to identify two novel gout loci (rs7927466 of CNTN5 and rs9952962 of MIR302F) and one suggestive locus (rs12980365 of ZNF724) at the genome-wide significance level (p<5.0×10-8). The present study also identified the loci of ABCG2, ALDH2 and SLC2A9. One of them, rs671 of ALDH2, was identified as a gout locus by GWAS for the first time. Comparing ORs for each locus in the present versus the previous GWAS revealed three 'gout vs AHUA GWAS'-specific loci (CNTN5, MIR302F and ZNF724) to be clearly associated with mechanisms of gout development which distinctly differ from the known gout risk loci that basically elevate serum uric acid level. CONCLUSIONS This meta-analysis is the first to reveal the loci associated with crystal-induced inflammation, the last step in gout development that aggravates AHUA into gout. Our findings should help to elucidate the molecular mechanisms of gout development and assist the prevention of gout attacks in high-risk AHUA individuals.
Collapse
Affiliation(s)
- Yusuke Kawamura
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
- Department of General Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hirofumi Nakaoka
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Akiyoshi Nakayama
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
- Medical Squadron, Air Base Group, Western Aircraft Control and Warning Wing, Japan Air Self-Defense Force, Kasuga, Fukuoka, Japan
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Osaka, Japan
| | - Ken Yamamoto
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Toshihide Higashino
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Masayuki Sakiyama
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
- Department of Defense Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Toru Shimizu
- Midorigaoka Hospital, Takatsuki, Osaka, Japan
- Kyoto Industrial Health Association, Kyoto, Japan
| | | | | | | | | | - Yuko Shirahama
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yuichiro Nishida
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Ippei Shimoshikiryo
- Department of International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Asahi Hishida
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Sakurako Katsuura-Kamano
- Department of Preventive Medicine, Institute of Health Biosciences, the University of Tokushima Graduate School, Tokushima, Japan
| | - Seiko Shimizu
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Makoto Kawaguchi
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
- Department of Urology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hirokazu Uemura
- Department of Preventive Medicine, Institute of Health Biosciences, the University of Tokushima Graduate School, Tokushima, Japan
| | - Rie Ibusuki
- Department of International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Megumi Hara
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Mariko Naito
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Department of Oral Epidemiology, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Mikiya Takao
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Mayuko Nakajima
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Satoko Iwasawa
- Department of Preventive Medicine and Public Health, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hiroshi Nakashima
- Department of Preventive Medicine and Public Health, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Keizo Ohnaka
- Department of Geriatric Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro Nakamura
- Laboratory for Mathematics, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Blanka Stiburkova
- Institute of Rheumatology, Prague, Czech Republic
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Tony R Merriman
- Department of Biochemisty, University of Otago, Dunedin, New Zealand
| | - Masahiro Nakatochi
- Data Science Division, Data Coordinating Center, Department of Advanced Medicine, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Mitsuhiro Yokota
- Department of Genome Science, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Tappei Takada
- Department of Pharmacy, the University of Tokyo Hospital, Tokyo, Japan
| | - Tatsuya Saitoh
- Laboratory of Bioresponse Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
- Division of Inflammation Biology, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Atsushi Takahashi
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Department of Genomic Medicine, Research Institute, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Kokichi Arisawa
- Department of Preventive Medicine, Institute of Health Biosciences, the University of Tokushima Graduate School, Tokushima, Japan
| | - Toshiro Takezaki
- Department of International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Keitaro Tanaka
- Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Tatsuo Hosoya
- Division of Kidney and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
- Department of Pathophysiology and Therapy in Chronic Kidney Disease, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Kimiyoshi Ichida
- Division of Kidney and Hypertension, Department of Internal Medicine, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Ituro Inoue
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Nariyoshi Shinomiya
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hirotaka Matsuo
- Department of Integrative Physiology and Bio-Nano Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
27
|
Acosta-Herrera M, González-Gay MA, Martín J, Márquez A. Leveraging Genetic Findings for Precision Medicine in Vasculitis. Front Immunol 2019; 10:1796. [PMID: 31428096 PMCID: PMC6687877 DOI: 10.3389/fimmu.2019.01796] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/16/2019] [Indexed: 12/19/2022] Open
Abstract
Vasculitides are a heterogeneous group of low frequent disorders, mainly characterized by the inflammation of blood vessels that narrows or occlude the lumen and limits the blood flow, leading eventually to significant tissue and organ damage. These disorders are classified depending on the size of the affected blood vessels in large, medium, and small vessel vasculitis. Currently, it is known that these syndromes show a complex etiology in which both environmental and genetic factors play a major role in their development. So far, these conditions are not curable and the therapeutic approaches are mainly symptomatic. Moreover, a percentage of the patients do not adequately respond to standard treatments. Over the last years, numerous genetic studies have been carried out to identify susceptibility loci and biological pathways involved in vasculitis pathogenesis as well as potential genetic predictors of treatment response. The ultimate goal of these studies is to identify new therapeutic targets and to improve the use of existing drugs to achieve more effective treatments. This review will focus on the main advances made in the field of genetics and pharmacogenetics of vasculitis and their potential application for ameliorating long-term outcomes in patient management and in the development of precision medicine.
Collapse
Affiliation(s)
| | - Miguel A González-Gay
- Division of Rheumatology and Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Hospital Universitario Marqués de Valdecilla, IDIVAL, University of Cantabria, Santander, Spain
| | - Javier Martín
- Instituto de Parasitología y Biomedicina "López-Neyra," CSIC, Granada, Spain
| | - Ana Márquez
- Instituto de Parasitología y Biomedicina "López-Neyra," CSIC, Granada, Spain.,Systemic Autoimmune Disease Unit, Hospital Clínico San Cecilio, Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| |
Collapse
|
28
|
Nieto IG, Alabau JLC. Immunopathogenesis of Behçet Disease. Curr Rheumatol Rev 2019; 16:12-20. [PMID: 30987569 DOI: 10.2174/1573397115666190415142426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Behçet's Disease (BD, OMIM 109650) is a chronic relapsing inflammatory disease of unknown etiology with unpredictable exacerbations and remissions. First described in 1937 by the Turkish dermatologist HulusiBehçet, as a trisympton complex (oral and genital ulcers and uveitis), it is now recognized as a multisystemic disease. The syndrome can manifest in diverse ways and can involve nearly every organ system. Several studies have implicated T cells and monocytes in the pathogenesis of BD especially when these cells are stimulated by heat shock proteins and streptococcal antigen. This article presents a review of the relevant published literature about the immunopathogenesis of BD. RESULT The authors used MeSH terms "Behçet's disease" with "pathophysiology," "pathogenesis," "genetic", "epigenetic", "immunogenetic" or "immune response" to search the PubMed database. All the relevant studies identified were included.
Collapse
Affiliation(s)
- Israel Gañán Nieto
- Department of Immunology. Hospital Universitario Ramon y Cajal, Ctra. Colmenar Viejo, Km 9,100. C.P. 28034. Madrid, Spain
| | - José Luis Castañer Alabau
- Department of Immunology. Hospital Universitario Ramon y Cajal, Ctra. Colmenar Viejo, Km 9,100. C.P. 28034. Madrid, Spain
| |
Collapse
|
29
|
Abstract
"Vasculitides are a heterogeneous group of inflammatory diseases of blood vessels in which genetic variation plays an important role in their susceptibility and clinical spectrum. Because of the use of novel technologies and the increase of the sample size of the study cohorts, the knowledge of the genetic background of vasculitides has considerably expanded during the last years. However, few insights have been obtained regarding the genetics underlying severe clinical phenotypes, such as those related to the nervous system. In this review the authors provide an updated overview of the genetic landscape behind vasculitis predisposition and development of neurologic manifestations."
Collapse
|
30
|
Burillo-Sanz S, Montes-Cano MA, García-Lozano JR, Olivas-Martínez I, Ortego-Centeno N, García-Hernández FJ, Espinosa G, Graña-Gil G, Sánchez-Bursón J, Juliá MR, Solans R, Blanco R, Barnosi-Marín AC, Gómez de la Torre R, Fanlo P, Rodríguez-Carballeira M, Rodríguez-Rodríguez L, Camps T, Castañeda S, Alegre-Sancho JJ, Martín J, González-Escribano MF. Behçet's disease and genetic interactions between HLA-B*51 and variants in genes of autoinflammatory syndromes. Sci Rep 2019; 9:2777. [PMID: 30808881 PMCID: PMC6391494 DOI: 10.1038/s41598-019-39113-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/14/2019] [Indexed: 12/16/2022] Open
Abstract
Behçet’s disease (BD) is an immune-mediated systemic disorder with a well-established genetic base. In a previous study, using a next generation sequencing approach, we found many rare variants and some functional polymorphisms in genes related to autoinflammatory syndromes (AID): CECR1, MEFV, MVK, NLRP3, NOD2, PSTPIP1 and TNFRSF1A in our BD cohort. Our strategy did not allow us to establish either number of patients with variants, proportion of individuals accumulating them or relationship with other genetic factors. With the goal to answer these questions, the individual samples were sequenced. Additionally, three functional polymorphisms: NLRP3 p.Gln703Lys, NOD2 p.Arg702Trp and p.Val955Ile were genotyped using TaqMan assays. A total of 98 patients (27.6%) carried at least one rare variant and 13 of them (3.7%) accumulated two or three. Functional regression model analysis suggests epistatic interaction between B51 and MEFV (P = 0.003). A suggestive protective association of the minor allele of NOD2 p.Arg702Trp (P = 0.01) was found in both, B51 positive and negative individuals. Therefore, a high percentage of patients with BD have rare variants in AID genes. Our results suggest that the association of MEFV with BD could be modulated by the HLA molecules; whereas the protective effect of NOD2 p.Arg702Trp would be independent of HLA.
Collapse
Affiliation(s)
- Sergio Burillo-Sanz
- Department of Immunology, Hospital Universitario Virgen del Rocío (IBiS, CSIC, US), Sevilla, 41013, Spain
| | - Marco-Antonio Montes-Cano
- Department of Immunology, Hospital Universitario Virgen del Rocío (IBiS, CSIC, US), Sevilla, 41013, Spain
| | - José-Raúl García-Lozano
- Department of Immunology, Hospital Universitario Virgen del Rocío (IBiS, CSIC, US), Sevilla, 41013, Spain
| | - Israel Olivas-Martínez
- Department of Immunology, Hospital Universitario Virgen del Rocío (IBiS, CSIC, US), Sevilla, 41013, Spain
| | | | | | - Gerard Espinosa
- Department Autoimmune Diseases, Hospital Clinic Universitari, Barcelona, 08036, Spain
| | - Genaro Graña-Gil
- Department of Rheumatology, Complejo Hospitalario Universitario, A Coruña, 15006, Spain
| | - Juan Sánchez-Bursón
- Department of Rheumatology, Hospital Universitario de Valme, Sevilla, 41014, Spain
| | - María Rosa Juliá
- Department of Immunology, Hospital Universitari Son Espases, Palma de Mallorca, Illes Balears, 07120, Spain
| | - Roser Solans
- Department of Internal Medicine, Autoimmune Systemic Diseases Unit, Hospital Vall d'Hebron, Universidad Autonoma de Barcelona, Barcelona, 08035, Spain
| | - Ricardo Blanco
- Department of Rheumatology, Hospital Universitario Marqués de Valdecilla, Santander, 39008, Spain
| | | | | | - Patricia Fanlo
- Department of Internal Medicine, Hospital Virgen del Camino, Pamplona, 31008, Spain
| | | | | | - Teresa Camps
- Department of Internal Medicine, Hospital Regional Universitario, Málaga, 29010, Spain
| | - Santos Castañeda
- Department of Rheumatology, Hospital de la Princesa, IIS-Princesa, Madrid, 28006, Spain
| | | | - Javier Martín
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, PTS, Granada, 18016, Spain
| | | |
Collapse
|
31
|
Deng Y, Zhu W, Zhou X. Immune Regulatory Genes Are Major Genetic Factors to Behcet Disease: Systematic Review. Open Rheumatol J 2018; 12:70-85. [PMID: 30069262 PMCID: PMC6040213 DOI: 10.2174/1874312901812010070] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/04/2018] [Accepted: 06/04/2018] [Indexed: 12/15/2022] Open
Abstract
Behcet's disease (BD) is a chronic refractory multi-system autoimmune disorder that occurs in a genetically susceptible host. Multiple genetic factors have been identified that may contribute to the pathogenesis of BD. The major genes with polymorphisms associated with BD include HLA-B and -A, CIITA, ERAP1, MICA, IL10, IL12A, IL12RB2, IL23R, MEFV, IRF8, TNFAIP3, REL, TLR4, NOD1,2, CCR1,CCR3, GIMAP1,2,4, KLRC4, STAT4, NCOA5, FOXP3, PSORS1C1, FUT2, UBAC2, SUMO4, ADO-EGR2, CEBPB-PTPN1, and JPKL-CNTN5. These genes encode proteins involved mainly in immune regulation and inflammation, and some in transcription and post-translational modification. A complete view of these BD-associated genes may provide a clue to this complex disease in terms of its pathogenesis and exploring potentially targeted therapies for BD.
Collapse
Affiliation(s)
- Yan Deng
- The Second Affiliated Hospital of Nanchang University, Nanchangine>, China.,Department of Internal Medicine/Rheumatology, University of Texas Health Science Center at Houston McGovern Medical School, USA
| | - Weifeng Zhu
- Department of Internal Medicine/Rheumatology, University of Texas Health Science Center at Houston McGovern Medical School, USA.,College of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Xiaodong Zhou
- Department of Internal Medicine/Rheumatology, University of Texas Health Science Center at Houston McGovern Medical School, USA
| |
Collapse
|
32
|
Wu P, Du L, Hou S, Su G, Yang L, Hu J, Deng J, Cao Q, Yuan G, Zhou C, Kijlstra A, Yang P. Association of LACC1, CEBPB- PTPN1, RIPK2 and ADO-EGR2 with ocular Behcet's disease in a Chinese Han population. Br J Ophthalmol 2018; 102:1308-1314. [PMID: 29907633 PMCID: PMC6104672 DOI: 10.1136/bjophthalmol-2017-311753] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 04/23/2018] [Accepted: 05/24/2018] [Indexed: 02/06/2023]
Abstract
Background An Immunochip study recently identified the association of a number of new genetic loci with Behcet’s disease (BD). Objective To confirm the association between new genetic loci reported in an Immunochip study and BD in a Han Chinese population. Methods A two-stage association study was carried out in 1238 patients with BD and 1458 healthy controls. Twenty-two candidate single nucleotide polymorphisms (SNPs) were selected for genotyping by iPLEXGold genotyping or TaqMan SNP assays and a meta-analysis was performed for significantly associated markers. Results The results showed that four SNPs (LACC1/rs9316059, CEBPB-PTPN1/rs913678, ADO-EGR2/rs224127 and RIPK2/rs10094579) were associated with BD in an allelic association test (rs9316059 T allele: pc=4.95×10−8, OR=0.687; rs913678 C allele: pc=3.01×10−4, OR=1.297; rs224127 A allele: pc=3.77×10−4, OR=1.274; rs10094579 A allele: pc=6.93×10−4, OR=1.302). For four SNPs tested by meta-analysis, the association with BD was strengthened and all exceeded genome-wide significance (rs9316059: p=2.96×10−16; rs913678: p=2.09×10−16; rs224127: p=5.28×10−13; rs10094579: p=9.21×10−11). Conclusions Our findings confirmed the association of four loci (LACC1, CEBPB-PTPN1, ADO-EGR2 and RIPK2) in Chinese Han patients with BD.
Collapse
Affiliation(s)
- Pengcheng Wu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing, China.,Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Liping Du
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Lu Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing, China.,Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Jiayue Hu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing, China.,Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Jing Deng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Qingfeng Cao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Gangxiang Yuan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Chunjiang Zhou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Aize Kijlstra
- University Eye Clinic Maastricht, Maastricht, The Netherlands
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| |
Collapse
|
33
|
Ortiz-Fernández L, Carmona FD, López-Mejías R, González-Escribano MF, Lyons PA, Morgan AW, Sawalha AH, Smith KGC, González-Gay MA, Martín J. Cross-phenotype analysis of Immunochip data identifies KDM4C as a relevant locus for the development of systemic vasculitis. Ann Rheum Dis 2018; 77:589-595. [PMID: 29374629 PMCID: PMC5849568 DOI: 10.1136/annrheumdis-2017-212372] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/13/2017] [Accepted: 11/19/2017] [Indexed: 12/14/2022]
Abstract
OBJETIVE Systemic vasculitides represent a heterogeneous group of rare complex diseases of the blood vessels with a poorly understood aetiology. To investigate the shared genetic component underlying their predisposition, we performed the first cross-phenotype meta-analysis of genetic data from different clinically distinct patterns of vasculitis. METHODS Immunochip genotyping data from 2465 patients diagnosed with giant cell arteritis, Takayasu's arteritis, antineutrophil cytoplasmic antibody-associated vasculitis or IgA vasculitis as well as 4632 unaffected controls were analysed to identify common susceptibility loci for vasculitis development. The possible functional consequences of the associated variants were interrogated using publicly available annotation data. RESULTS The strongest association signal corresponded with an intergenic polymorphism located between HLA-DQB1 and HLA-DQA2 (rs6932517, P=4.16E-14, OR=0.74). This single nucleotide polymorphism is in moderate linkage disequilibrium with the disease-specific human leucocyte antigen (HLA) class II associations of each type of vasculitis and could mark them. Outside the HLA region, we identified the KDM4C gene as a common risk locus for vasculitides (highest peak rs16925200, P=6.23E-07, OR=1.75). This gene encodes a histone demethylase involved in the epigenetic control of gene expression. CONCLUSIONS Through a combined analysis of Immunochip data, we have identified KDM4C as a new risk gene shared between systemic vasculitides, consistent with the increasing evidences of the crucial role that the epigenetic mechanisms have in the development of complex immune-mediated conditions.
Collapse
Affiliation(s)
| | - Francisco David Carmona
- Departamento de Genética e Instituto de
Biotecnología, Universidad de Granada, Granada, Spain
| | - Raquel López-Mejías
- Epidemiology, Genetics and Atherosclerosis Research Group on
Systemic Inflammatory Diseases, Rheumatology Division, Hospital Universitario
Marqués de Valdecilla, IDIVAL, Santander, Spain
| | | | - Paul A Lyons
- Department of Medicine, University of Cambridge School of Clinical
Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Ann W Morgan
- Leeds Institute of Rheumatic and Musculoskeletal Medicine,
University of Leeds, and NIHR Leeds Biomedical Research Centre, Leeds Teaching
Hospitals NHS Trust, Leeds, UK
| | - Amr H Sawalha
- Division of Rheumatology, Department of Internal Medicine,
University of Michigan, Ann Arbor, Michigan, USA
| | - Kenneth G C Smith
- Department of Medicine, University of Cambridge School of Clinical
Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Miguel A González-Gay
- Epidemiology, Genetics and Atherosclerosis Research Group on
Systemic Inflammatory Diseases, Rheumatology Division, Hospital Universitario
Marqués de Valdecilla, IDIVAL, Santander, Spain
- School of Medicine, University of Cantabria, Santander, Spain
| | - Javier Martín
- Instituto de Parasitologia y Biomedicina Lopez-Neyra, Granada,
Spain
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Since the discovery of HLA 60 years ago, it has contributed to the understanding of the immune system as well as of the pathogenesis of several diseases. Aside from its essential role in determining donor-recipient immune compatibility in organ transplantation, HLA genotyping is meanwhile performed routinely as part of the diagnostic work-up of certain autoimmune diseases. Considering the ability of HLA to influence thymic selection as well as peripheral anergy of T cells, its role in the pathogenesis of autoimmunity is understandable. The aim of this paper is to provide a brief overview of the role and current clinical relevance of HLA-B27 in spondyloarthritis and HLA-B51 in Behçet's disease as well as HLA-DQ2/DQ8 in celiac disease and HLA-DRB1 in rheumatoid arthritis and to discuss possible future implications.
Collapse
Affiliation(s)
- Gergely Bodis
- Division of Rheumatology and Clinical Immunology, University Hospital, Mainz, Germany.,Institut für Medizinische Diagnostik GmbH, Bioscientia Labor Ingelheim, Ingelheim Am Rhein, Germany
| | - Victoria Toth
- Division of Rheumatology and Clinical Immunology, University Hospital, Mainz, Germany.,Institut für Medizinische Diagnostik GmbH, Bioscientia Labor Ingelheim, Ingelheim Am Rhein, Germany
| | - Andreas Schwarting
- Division of Rheumatology and Clinical Immunology, University Hospital, Mainz, Germany. .,ACURA Center for Rheumatic Diseases, Bad Kreuznach, Germany.
| |
Collapse
|
35
|
Abstract
The aim of this review is to provide a brief overview of the role and current clinical relevance of HLA-B27 in spondyloarthritis and HLA-B51 in Behcet's disease as well as HLA-DQ2/DQ8 in celiac disease and HLA-DRB1 in rheumatoid arthritis and to discuss possible future implications.
Collapse
Affiliation(s)
- Gergely Bodis
- Bioscientia Institut für Medizinische Diagnostik GmbH, Ingelheim, Germany
- Acura Rheumatology Center Rhineland Palatine, Bad Kreuznach, Germany
| | - Victoria Toth
- Bioscientia Institut für Medizinische Diagnostik GmbH, Ingelheim, Germany
- Acura Rheumatology Center Rhineland Palatine, Bad Kreuznach, Germany
| | - Andreas Schwarting
- Acura Rheumatology Center Rhineland Palatine, Bad Kreuznach, Germany.
- Division of Rheumatology and Clinical Immunology, Department of Internal Medicine I, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
36
|
Burillo-Sanz S, Montes-Cano MA, García-Lozano JR, Ortiz-Fernández L, Ortego-Centeno N, García-Hernández FJ, Espinosa G, Graña-Gil G, Sánchez-Bursón J, Rosa Juliá M, Solans R, Blanco R, Barnosi-Marín AC, Gómez De la Torre R, Fanlo P, Rodríguez-Carballeira M, Rodríguez-Rodríguez L, Camps T, Castañeda S, Alegre-Sancho JJ, Martín J, González-Escribano MF. Mutational profile of rare variants in inflammasome-related genes in Behçet disease: A Next Generation Sequencing approach. Sci Rep 2017; 7:8453. [PMID: 28814775 PMCID: PMC5559572 DOI: 10.1038/s41598-017-09164-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/24/2017] [Indexed: 12/20/2022] Open
Abstract
Behçet's disease (BD) is an immune-mediated systemic disorder with a well-established association with HLA class I and other genes. BD has clinical overlap with many autoinflammatory diseases (AIDs). The aim of this study was to investigate the role of rare variants in seven genes involved in AIDs: CECR1, MEFV, MVK, NLRP3, NOD2, PSTPIP1 and TNFRSF1A using a next generation sequencing (NGS) approach in 355 BD patients. To check global association of each gene, 4 tests: SKAT, CollapseBt, C(α) and weighted KBAC were used. Databases: 1000 Genomes Project Phase 3, Infevers, HGMD and ClinVar and algorithms: PolyPhen2 and SIFT were consulted to collect information of the 62 variants found. All the genes resulted associated using SKAT but only 3 (MVK, NOD2 and PSTPIP1) with C(α) and weighted KBAC. When all the genes are considered, 40 variants were associated to AIDs in clinical databases and 25 were predicted as pathogenic at least by one of the algorithms. Including only MVK, NOD2 and PSTPIP1, the associated to AIDs variants found in BD were 20 and the predicted as pathogenic, 12. The maxima contribution corresponds to NOD2. This study supports influence of rare variants in genes involved in AIDs in the pathogenesis of BD.
Collapse
Affiliation(s)
- Sergio Burillo-Sanz
- Department of Immunology, Hospital Universitario Virgen del Rocío (IBiS, CSIC, US), Sevilla, 41013, Spain
| | - Marco-Antonio Montes-Cano
- Department of Immunology, Hospital Universitario Virgen del Rocío (IBiS, CSIC, US), Sevilla, 41013, Spain
| | - José-Raúl García-Lozano
- Department of Immunology, Hospital Universitario Virgen del Rocío (IBiS, CSIC, US), Sevilla, 41013, Spain
| | - Lourdes Ortiz-Fernández
- Department of Immunology, Hospital Universitario Virgen del Rocío (IBiS, CSIC, US), Sevilla, 41013, Spain
| | | | | | - Gerard Espinosa
- Department Autoimmune Diseases, Hospital Universitari Clínic, Barcelona, 08036, Spain
| | - Genaro Graña-Gil
- Department of Rheumatology, Complejo Hospitalario Universitario A Coruña, A Coruña, 15006, Spain
| | - Juan Sánchez-Bursón
- Department of Rheumatology, Hospital Universitario de Valme, Sevilla, 41014, Spain
| | - María Rosa Juliá
- Department of Immunology, Hospital Universitari Son Espases, Palma de Mallorca, 07120, Spain
| | - Roser Solans
- Department of Internal Medicine, Autoimmune Systemic Diseases Unit, Hospital Vall d'Hebron, Universidad Autonoma de Barcelona, Barcelona, 08035, Spain
| | - Ricardo Blanco
- Department of Rheumatology, Hospital Universitario Marqués de Valdecilla, Santander, 39008, Spain
| | | | | | - Patricia Fanlo
- Department of Internal Medicine, Hospital Virgen del Camino, Pamplona, 31008, Spain
| | | | | | - Teresa Camps
- Department of Internal Medicine, Hospital Regional Universitario de Málaga, Málaga, 29010, Spain
| | - Santos Castañeda
- Department of Rheumatology, Hospital de la Princesa, IIS-Princesa, Madrid, 28006, Spain
| | | | - Javier Martín
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, PTS Granada, Granada, 18016, Spain
| | | |
Collapse
|
37
|
Yang Y, Tan H, Deng B, Yu H, Su G, Hu J, Cao Q, Yuan G, Kijlstra A, Yang P. Genetic polymorphisms of C-type lectin receptors in Behcet's disease in a Chinese Han population. Sci Rep 2017; 7:5348. [PMID: 28706259 PMCID: PMC5509750 DOI: 10.1038/s41598-017-05877-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 06/05/2017] [Indexed: 12/29/2022] Open
Abstract
C-type lectin receptors (CLRs) have been demonstrated to be involved in several autoimmune diseases. The role of CLRs in Behcet’s disease (BD) is unknown and thus was the purpose of this study. A two-stage association study was carried out and a total of 766 BD patients and 1674 healthy controls were recruited. Genotyping of 14 SNPs of 13 genes in CLRs was carried out by iPLEX Gold genotyping or polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay. The expression of mannose binding lectin 2 (MBL2) and killer cell lectin like receptor C4 (KLRC4) was measured by Real-time PCR. Significantly increased frequencies of the A allele as well as AA genotype of rs1800450 in MBL2 (Pc = 2.50 × 10−6, OR = 1.494; Pc = 2.24 × 10−6,OR = 2.899; respectively) and TT genotype of rs2617170 in KLRC4 (Pc = 2.53 × 10−6, OR = 1.695) and decreased frequencies of GG genotype of rs1800450 (Pc = 1.56 × 10−3, OR = 0.689) and C allele as well as CC genotype of rs2617170 (Pc = 2.05 × 10−9,OR = 0.664; Pc = 1.20 × 10−5, OR = 0.585; respectively) were observed in BD. Two variants, p.Gly54Asp (rs1800450) and p.Asn104Ser (rs2617170) affect MBL2 and KLRC4 protein stability and expression. Our study demonstrates that the MBL2/rs1800450 and KLRC4/rs2617170 are susceptibility factors for BD in a Chinese Han population.
Collapse
Affiliation(s)
- Yi Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, P. R. China.,The second hospital of Lanzhou University, Lanzhou, Gansu, P. R. China
| | - Handan Tan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, P. R. China
| | - Bolin Deng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, P. R. China
| | - Hongsong Yu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, P. R. China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, P. R. China
| | - Jiayue Hu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, P. R. China
| | - Qingfeng Cao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, P. R. China
| | - Gangxiang Yuan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, P. R. China
| | - Aize Kijlstra
- University Eye Clinic Maastricht, Maastricht, The Netherlands
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, P. R. China.
| |
Collapse
|
38
|
López-Mejías R, Carmona FD, Castañeda S, Genre F, Remuzgo-Martínez S, Sevilla-Perez B, Ortego-Centeno N, Llorca J, Ubilla B, Mijares V, Pina T, Miranda-Filloy JA, Navas Parejo A, de Argila D, Aragües M, Rubio E, Luque ML, Blanco-Madrigal JM, Galíndez-Aguirregoikoa E, Jayne D, Blanco R, Martín J, González-Gay MA. A genome-wide association study suggests the HLA Class II region as the major susceptibility locus for IgA vasculitis. Sci Rep 2017; 7:5088. [PMID: 28698626 PMCID: PMC5506002 DOI: 10.1038/s41598-017-03915-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/05/2017] [Indexed: 12/13/2022] Open
Abstract
The genetic component of Immunoglobulin-A (IgA) vasculitis is still far to be elucidated. To increase the current knowledge on the genetic component of this vasculitis we performed the first genome-wide association study (GWAS) on this condition. 308 IgA vasculitis patients and 1,018 healthy controls from Spain were genotyped by Illumina HumanCore BeadChips. Imputation of GWAS data was performed using the 1000 Genomes Project Phase III dataset as reference panel. After quality control filters and GWAS imputation, 285 patients and 1,006 controls remained in the datasets and were included in further analysis. Additionally, the human leukocyte antigen (HLA) region was comprehensively studied by imputing classical alleles and polymorphic amino acid positions. A linkage disequilibrium block of polymorphisms located in the HLA class II region surpassed the genome-wide level of significance (OR = 0.56, 95% CI = 0.46–0.68). Although no polymorphic amino acid positions were associated at the genome-wide level of significance, P-values of potential relevance were observed for the positions 13 and 11 of HLA-DRB1 (P = 6.67E-05, P = 1.88E-05, respectively). Outside the HLA, potential associations were detected, but none of them were close to the statistical significance. In conclusion, our study suggests that IgA vasculitis is an archetypal HLA class II disease.
Collapse
Affiliation(s)
- Raquel López-Mejías
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Rheumatology Division, Hospital Universitario Marqués de Valdecilla, IDIVAL, Santander, Spain.
| | - F David Carmona
- Instituto de Parasitología y Biomedicina 'López-Neyra', CSIC, PTS Granada, Granada, Spain.,Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Granada, Spain
| | - Santos Castañeda
- Rheumatology Department, Hospital Universitario La Princesa, IIS-IPrincesa, Madrid, Spain
| | - Fernanda Genre
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Rheumatology Division, Hospital Universitario Marqués de Valdecilla, IDIVAL, Santander, Spain
| | - Sara Remuzgo-Martínez
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Rheumatology Division, Hospital Universitario Marqués de Valdecilla, IDIVAL, Santander, Spain
| | | | | | - Javier Llorca
- Epidemiology and Computational Biology Department, School of Medicine, University of Cantabria, and CIBER Epidemiología y Salud Pública (CIBERESP), IDIVAL, Santander, Spain
| | - Begoña Ubilla
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Rheumatology Division, Hospital Universitario Marqués de Valdecilla, IDIVAL, Santander, Spain
| | - Verónica Mijares
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Rheumatology Division, Hospital Universitario Marqués de Valdecilla, IDIVAL, Santander, Spain
| | - Trinitario Pina
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Rheumatology Division, Hospital Universitario Marqués de Valdecilla, IDIVAL, Santander, Spain
| | | | | | - Diego de Argila
- Dermatology Department, Hospital Universitario La Princesa, IIS-IPrincesa, Madrid, Spain
| | - Maximiliano Aragües
- Dermatology Department, Hospital Universitario La Princesa, IIS-IPrincesa, Madrid, Spain
| | - Esteban Rubio
- Rheumatology Department, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Manuel León Luque
- Rheumatology Department, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | | | | | - David Jayne
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ricardo Blanco
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Rheumatology Division, Hospital Universitario Marqués de Valdecilla, IDIVAL, Santander, Spain
| | - Javier Martín
- Instituto de Parasitología y Biomedicina 'López-Neyra', CSIC, PTS Granada, Granada, Spain
| | - Miguel A González-Gay
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Rheumatology Division, Hospital Universitario Marqués de Valdecilla, IDIVAL, Santander, Spain.,School of Medicine, University of Cantabria, Santander, Spain.,Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
39
|
Rustemoglu A, Erkol Inal E, Inanir A, Ekinci D, Gul U, Yigit S, Ates O, Karakus N. Clinical significance of NCOA5 gene rs2903908 polymorphism in Behçet's disease. EXCLI JOURNAL 2017; 16:609-617. [PMID: 28694762 PMCID: PMC5491927 DOI: 10.17179/excli2017-189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/27/2017] [Indexed: 12/24/2022]
Abstract
Behçet's disease (BD) is an autoimmune multisystemic disease. The precise etiology of BD is not fully understood; however, it is thought that interactions between genetic and environmental factors play an essential role in its pathogenesis. The nuclear receptor coactivator-5 (NCOA5) gene encodes a coregulator for nuclear receptor subfamily 1 group D member 2 (NR1D2) and estrogen receptor 1 and 2 (ESR1 and ESR2). Also, the NCOA5 gene insufficiency leads to an elevated expression of IL-6, and increased levels of IL-6 were found to be related to the pathogenesis of BD. In this study, we aimed to clarify the impact of the NCOA5 rs2903908 polymorphism on susceptibility and clinical findings of BD. This study included 671 participants (300 BD patients and 371 healthy controls). The analyses of NCOA5 rs2903908 polymorphism was performed by using the TaqMan allelic discrimination assay. The frequency of TT genotype of the NCOA5 rs2903908 polymorphism was found significantly higher in BD patients compared to those in healthy controls (p=0.016, OR=1.46, 95 % CI=1.08-1.99). Also, the frequencies of CT genotype was observed significantly higher in BD patients with genital ulceration and uveitis than without genital ulceration and uveitis (p=0.002 and p=0.005, respectively). The most significant association was found between C allele frequencies of BD patients with and without uveitis (p=0.0001). Our study represents for the first time that the NCOA5 rs2903908 polymorphism seemed to be linked to BD susceptibility and clinical findings.
Collapse
Affiliation(s)
- Aydin Rustemoglu
- Gaziosmanpasa University, Faculty of Medicine, Department of Medical Biology, Tokat, Turkey
| | - Esra Erkol Inal
- Suleyman Demirel University, Faculty of Medicine, Department of Physical Medicine and Rehabilitation, Isparta, Turkey
| | - Ahmet Inanir
- Gaziosmanpasa University, Faculty of Medicine, Department of Physical Medicine and Rehabilitation, Tokat, Turkey
| | - Duygu Ekinci
- Gaziosmanpasa University, Faculty of Medicine, Department of Medical Biology, Tokat, Turkey
| | - Ulker Gul
- Akdeniz University, Faculty of Medicine, Department of Dermatology, Antalya, Turkey
| | - Serbulent Yigit
- Gaziosmanpasa University, Faculty of Medicine, Department of Medical Biology, Tokat, Turkey
| | - Omer Ates
- Gaziosmanpasa University, Faculty of Medicine, Department of Medical Biology, Tokat, Turkey
| | - Nevin Karakus
- Gaziosmanpasa University, Faculty of Medicine, Department of Medical Biology, Tokat, Turkey
| |
Collapse
|
40
|
Analysis of the common genetic component of large-vessel vasculitides through a meta-Immunochip strategy. Sci Rep 2017; 7:43953. [PMID: 28277489 PMCID: PMC5344032 DOI: 10.1038/srep43953] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/31/2017] [Indexed: 12/13/2022] Open
Abstract
Giant cell arteritis (GCA) and Takayasu’s arteritis (TAK) are major forms of large-vessel vasculitis (LVV) that share clinical features. To evaluate their genetic similarities, we analysed Immunochip genotyping data from 1,434 LVV patients and 3,814 unaffected controls. Genetic pleiotropy was also estimated. The HLA region harboured the main disease-specific associations. GCA was mostly associated with class II genes (HLA-DRB1/HLA-DQA1) whereas TAK was mostly associated with class I genes (HLA-B/MICA). Both the statistical significance and effect size of the HLA signals were considerably reduced in the cross-disease meta-analysis in comparison with the analysis of GCA and TAK separately. Consequently, no significant genetic correlation between these two diseases was observed when HLA variants were tested. Outside the HLA region, only one polymorphism located nearby the IL12B gene surpassed the study-wide significance threshold in the meta-analysis of the discovery datasets (rs755374, P = 7.54E-07; ORGCA = 1.19, ORTAK = 1.50). This marker was confirmed as novel GCA risk factor using four additional cohorts (PGCA = 5.52E-04, ORGCA = 1.16). Taken together, our results provide evidence of strong genetic differences between GCA and TAK in the HLA. Outside this region, common susceptibility factors were suggested, especially within the IL12B locus.
Collapse
|
41
|
Takeuchi M, Mizuki N, Meguro A, Ombrello MJ, Kirino Y, Satorius C, Le J, Blake M, Erer B, Kawagoe T, Ustek D, Tugal-Tutkun I, Seyahi E, Ozyazgan Y, Sousa I, Davatchi F, Francisco V, Shahram F, Abdollahi BS, Nadji A, Shafiee NM, Ghaderibarmi F, Ohno S, Ueda A, Ishigatsubo Y, Gadina M, Oliveira SA, Gül A, Kastner DL, Remmers EF. Dense genotyping of immune-related loci implicates host responses to microbial exposure in Behçet's disease susceptibility. Nat Genet 2017; 49:438-443. [PMID: 28166214 PMCID: PMC5369770 DOI: 10.1038/ng.3786] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/12/2017] [Indexed: 12/14/2022]
Abstract
We analyzed 1,900 Turkish Behçet’s disease cases and 1,779 controls genotyped with the Immunochip. The most significantly associated single nucleotide polymorphism (SNP) was rs1050502, a tag SNP for HLA-B*51. In the Turkish discovery set, we identified three novel loci, IL1A-IL1B, IRF8, and CEBPB-PTPN1, with genome-wide significance (P<5×10−8) by direct genotyping, and ADO-EGR2 by imputation. ADO-EGR2, IRF8, and CEBPB-PTPN1 replicated by genotyping 969 Iranian cases and 826 controls. Imputed data in 608 Japanese cases and 737 controls replicated ADO-EGR2 and IRF8 and meta-analysis additionally identified RIPK2 and LACC1. The disease-associated allele of rs4402765, the lead marker of the IL1A-IL1B locus, was associated with both decreased interleukin-1α and increased interleukin-1β production. ABO non-secretor genotypes of two ancestry-specific FUT2 SNPs showed strong disease association (P=5.89×10−15). Our findings extend shared susceptibility genes with Crohn’s disease and leprosy, and implicate mucosal factors and the innate immune response to microbial exposure in Behçet’s disease susceptibility.
Collapse
Affiliation(s)
- Masaki Takeuchi
- Inflammatory Disease Section, National Human Genome Research Institute, US National Institutes of Health, Bethesda, Maryland, USA.,Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Nobuhisa Mizuki
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Akira Meguro
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Michael J Ombrello
- Translational Genetics and Genomics Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, US National Institutes of Health, Bethesda, Maryland, USA
| | - Yohei Kirino
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Colleen Satorius
- Inflammatory Disease Section, National Human Genome Research Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Julie Le
- Inflammatory Disease Section, National Human Genome Research Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Mary Blake
- Translational Immunology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, US National Institutes of Health, Bethesda, Maryland, USA
| | - Burak Erer
- Inflammatory Disease Section, National Human Genome Research Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Tatsukata Kawagoe
- Department of Ophthalmology and Visual Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Duran Ustek
- Department of Genetics, Institute for Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ilknur Tugal-Tutkun
- Department of Ophthalmology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Emire Seyahi
- Department of Internal Medicine, Division of Rheumatology, Cerrahpasş a Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Yilmaz Ozyazgan
- Department of Ophthalmology, Cerrahpaşa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Inês Sousa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Fereydoun Davatchi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Vânia Francisco
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Farhad Shahram
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Abdolhadi Nadji
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fahmida Ghaderibarmi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shigeaki Ohno
- Department of Ophthalmology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Atsuhisa Ueda
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yoshiaki Ishigatsubo
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Massimo Gadina
- Translational Immunology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, US National Institutes of Health, Bethesda, Maryland, USA
| | - Sofia A Oliveira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Ahmet Gül
- Department of Internal Medicine, Division of Rheumatology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Daniel L Kastner
- Inflammatory Disease Section, National Human Genome Research Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Elaine F Remmers
- Inflammatory Disease Section, National Human Genome Research Institute, US National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|