1
|
Chen J, Qin Z, Jia Z. The application status of sequencing technology in global respiratory infectious disease diagnosis. Infection 2024; 52:2169-2181. [PMID: 39152290 DOI: 10.1007/s15010-024-02360-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
Next-generation sequencing (NGS) has revolutionized clinical microbiology, particularly in diagnosing respiratory infectious diseases and conducting epidemiological investigations. This narrative review summarizes conventional methods for routine respiratory infection diagnosis, including culture, smear microscopy, immunological assays, image techniques as well as polymerase chain reaction(PCR). In contrast to conventional methods, there is a new detection technology, sequencing technology, and here we mainly focus on the next-generation sequencing NGS, especially metagenomic NGS(mNGS). NGS offers significant advantages over traditional methods. Firstly, mNGS eliminates assumptions about pathogens, leading to faster and more accurate results, thus reducing diagnostic time. Secondly, it allows unbiased identification of known and novel pathogens, offering broad-spectrum coverage. Thirdly, mNGS not only identifies pathogens but also characterizes microbiomes, analyzes human host responses, and detects resistance genes and virulence factors. It can complement targeted sequencing for bacterial and fungal classification. Unlike traditional methods affected by antibiotics, mNGS is less influenced due to the extended survival of pathogen DNA in plasma, broadening its applicability. However, barriers to full integration into clinical practice persist, primarily due to cost constraints and limitations in sensitivity and turnaround time. Despite these challenges, ongoing advancements aim to improve cost-effectiveness and efficiency, making NGS a cornerstone technology for global respiratory infection diagnosis.
Collapse
Affiliation(s)
- Jingyuan Chen
- Department of Global Health, School of Public Health, Peking University, Beijing, China
| | - Zhen Qin
- School of Public Health, Peking University, Beijing, China
| | - Zhongwei Jia
- Department of Global Health, School of Public Health, Peking University, Beijing, China.
- Center for Intelligent Public Health, Institute for Artificial Intelligence, Peking University, Beijing, China.
- Center for Drug Abuse Control and Prevention, National Institute of Health Data Science, Peking University, Beijing, China.
| |
Collapse
|
2
|
Gauthier NPG, Chorlton SD, Krajden M, Manges AR. Agnostic Sequencing for Detection of Viral Pathogens. Clin Microbiol Rev 2023; 36:e0011922. [PMID: 36847515 PMCID: PMC10035330 DOI: 10.1128/cmr.00119-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
The advent of next-generation sequencing (NGS) technologies has expanded our ability to detect and analyze microbial genomes and has yielded novel molecular approaches for infectious disease diagnostics. While several targeted multiplex PCR and NGS-based assays have been widely used in public health settings in recent years, these targeted approaches are limited in that they still rely on a priori knowledge of a pathogen's genome, and an untargeted or unknown pathogen will not be detected. Recent public health crises have emphasized the need to prepare for a wide and rapid deployment of an agnostic diagnostic assay at the start of an outbreak to ensure an effective response to emerging viral pathogens. Metagenomic techniques can nonspecifically sequence all detectable nucleic acids in a sample and therefore do not rely on prior knowledge of a pathogen's genome. While this technology has been reviewed for bacterial diagnostics and adopted in research settings for the detection and characterization of viruses, viral metagenomics has yet to be widely deployed as a diagnostic tool in clinical laboratories. In this review, we highlight recent improvements to the performance of metagenomic viral sequencing, the current applications of metagenomic sequencing in clinical laboratories, as well as the challenges that impede the widespread adoption of this technology.
Collapse
Affiliation(s)
- Nick P. G. Gauthier
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Mel Krajden
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
| | - Amee R. Manges
- British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Mayuramart O, Poomipak W, Rattanaburi S, Khongnomnan K, Anuntakarun S, Saengchoowong S, Chavalit T, Chantaravisoot N, Payungporn S. IRF7-deficient MDCK cell based on CRISPR/Cas9 technology for enhancing influenza virus replication and improving vaccine production. PeerJ 2022; 10:e13989. [PMID: 36164603 PMCID: PMC9508885 DOI: 10.7717/peerj.13989] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/11/2022] [Indexed: 01/19/2023] Open
Abstract
The influenza virus is a cause of seasonal epidemic disease and enormous economic injury. The best way to control influenza outbreaks is through vaccination. The Madin-Darby canine kidney cell line (MDCK) is currently approved to manufacture influenza vaccines. However, the viral load from cell-based production is limited by host interferons (IFN). Interferon regulating factor 7 (IRF7) is a transcription factor for type-I IFN that plays an important role in regulating the anti-viral mechanism and eliminating viruses. We developed IRF7 knock-out MDCK cells (IRF7-/ - MDCK) using CRISPR/Cas9 technology. The RNA expression levels of IRF7 in the IRF7-/ - MDCK cells were reduced by 94.76% and 95.22% under the uninfected and infected conditions, respectively. Furthermore, the IRF7 protein level was also significantly lower in IRF7-/ - MDCK cells for both uninfected (54.85% reduction) and viral infected conditions (32.27% reduction) compared to WT MDCK. The differential expression analysis of IFN-related genes demonstrated that the IRF7-/ - MDCK cell had a lower interferon response than wildtype MDCK under the influenza-infected condition. Gene ontology revealed down-regulation of the defense response against virus and IFN-gamma production in IRF7-/ - MDCK. The evaluation of influenza viral titers by RT-qPCR and hemagglutination assay (HA) revealed IRF7-/ - MDCK cells had higher viral titers in cell supernatant, including A/pH1N1 (4 to 5-fold) and B/Yamagata (2-fold). Therefore, the IRF7-/ - MDCK cells could be applied to cell-based influenza vaccine production with higher capacity and efficiency.
Collapse
Affiliation(s)
- Oraphan Mayuramart
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Witthaya Poomipak
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Somruthai Rattanaburi
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kritsada Khongnomnan
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Songtham Anuntakarun
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Suthat Saengchoowong
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tanit Chavalit
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Naphat Chantaravisoot
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand,Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sunchai Payungporn
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand,Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Havasi A, Visan S, Cainap C, Cainap SS, Mihaila AA, Pop LA. Influenza A, Influenza B, and SARS-CoV-2 Similarities and Differences – A Focus on Diagnosis. Front Microbiol 2022; 13:908525. [PMID: 35794916 PMCID: PMC9251468 DOI: 10.3389/fmicb.2022.908525] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/23/2022] [Indexed: 12/23/2022] Open
Abstract
In late December 2019, the first cases of viral pneumonia caused by an unidentified pathogen were reported in China. Two years later, SARS-CoV-2 was responsible for almost 450 million cases, claiming more than 6 million lives. The COVID-19 pandemic strained the limits of healthcare systems all across the world. Identifying viral RNA through real-time reverse transcription-polymerase chain reaction remains the gold standard in diagnosing SARS-CoV-2 infection. However, equipment cost, availability, and the need for trained personnel limited testing capacity. Through an unprecedented research effort, new diagnostic techniques such as rapid diagnostic testing, isothermal amplification techniques, and next-generation sequencing were developed, enabling accurate and accessible diagnosis. Influenza viruses are responsible for seasonal outbreaks infecting up to a quarter of the human population worldwide. Influenza and SARS-CoV-2 present with flu-like symptoms, making the differential diagnosis challenging solely on clinical presentation. Healthcare systems are likely to be faced with overlapping SARS-CoV-2 and Influenza outbreaks. This review aims to present the similarities and differences of both infections while focusing on the diagnosis. We discuss the clinical presentation of Influenza and SARS-CoV-2 and techniques available for diagnosis. Furthermore, we summarize available data regarding the multiplex diagnostic assay of both viral infections.
Collapse
Affiliation(s)
- Andrei Havasi
- Department of Oncology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, Cluj-Napoca, Romania
| | - Simona Visan
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, Cluj-Napoca, Romania
| | - Calin Cainap
- Department of Oncology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, Cluj-Napoca, Romania
| | - Simona Sorana Cainap
- Pediatric Clinic No. 2, Department of Pediatric Cardiology, Emergency County Hospital for Children, Cluj-Napoca, Romania
- Department of Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- *Correspondence: Simona Sorana Cainap, ;
| | - Alin Adrian Mihaila
- Faculty of Economics and Business Administration, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Laura-Ancuta Pop
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
5
|
Rattanaburi S, Sawaswong V, Nimsamer P, Mayuramart O, Sivapornnukul P, Khamwut A, Chanchaem P, Kongnomnan K, Suntronwong N, Poovorawan Y, Payungporn S. Genome characterization and mutation analysis of human influenza A virus in Thailand. Genomics Inform 2022; 20:e21. [PMID: 35794701 PMCID: PMC9299564 DOI: 10.5808/gi.21077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/05/2022] [Indexed: 11/20/2022] Open
Abstract
The influenza A viruses have high mutation rates and cause a serious health problem worldwide. Therefore, this study focused on genome characterization of the viruses isolated from Thai patients based on the next-generation sequencing technology. The nasal swabs were collected from patients with influenza-like illness in Thailand during 2017-2018. Then, the influenza A viruses were detected by reverse transcription-quantitative polymerase chain reaction and isolated by MDCK cells. The viral genomes were amplified and sequenced by Illumina MiSeq platform. Whole genome sequences were used for characterization, phylogenetic construction, mutation analysis and nucleotide diversity of the viruses. The result revealed that 90 samples were positive for the viruses including 44 of A/H1N1 and 46 of A/H3N2. Among these, 43 samples were successfully isolated and then the viral genomes of 25 samples were completely amplified. Finally, 17 whole genomes of the viruses (A/H1N1, n=12 and A/H3N2, n=5) were successfully sequenced with an average of 232,578 mapped reads and 1,720 genome coverage per sample. Phylogenetic analysis demonstrated that the A/H1N1 viruses were distinguishable from the recommended vaccine strains. However, the A/H3N2 viruses from this study were closely related to the recommended vaccine strains. The nonsynonymous mutations were found in all genes of both viruses, especially in HA and NA genes. The nucleotide diversity analysis revealed negative selection in the PB1, PA, hemagglutinin (HA) and neuraminidase (NA) genes of the A/H1N1 viruses. High-throughput data in this study allow for genetic characterization of circulating influenza viruses which would be crucial for preparation against pandemic and epidemic outbreaks in the future.
Collapse
Affiliation(s)
- Somruthai Rattanaburi
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand.,Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Vorthon Sawaswong
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pattaraporn Nimsamer
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Oraphan Mayuramart
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pavaret Sivapornnukul
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.,Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ariya Khamwut
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Prangwalai Chanchaem
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kritsada Kongnomnan
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nungruthai Suntronwong
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sunchai Payungporn
- Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.,Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
6
|
Courtney SJ, Stromberg ZR, Kubicek-Sutherland JZ. Nucleic Acid-Based Sensing Techniques for Diagnostics and Surveillance of Influenza. BIOSENSORS-BASEL 2021; 11:bios11020047. [PMID: 33673035 PMCID: PMC7918464 DOI: 10.3390/bios11020047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023]
Abstract
Influenza virus poses a threat to global health by causing seasonal outbreaks as well as three pandemics in the 20th century. In humans, disease is primarily caused by influenza A and B viruses, while influenza C virus causes mild disease mostly in children. Influenza D is an emerging virus found in cattle and pigs. To mitigate the morbidity and mortality associated with influenza, rapid and accurate diagnostic tests need to be deployed. However, the high genetic diversity displayed by influenza viruses presents a challenge to the development of a robust diagnostic test. Nucleic acid-based tests are more accurate than rapid antigen tests for influenza and are therefore better candidates to be used in both diagnostic and surveillance applications. Here, we review various nucleic acid-based techniques that have been applied towards the detection of influenza viruses in order to evaluate their utility as both diagnostic and surveillance tools. We discuss both traditional as well as novel methods to detect influenza viruses by covering techniques that require nucleic acid amplification or direct detection of viral RNA as well as comparing advantages and limitations for each method. There has been substantial progress in the development of nucleic acid-based sensing techniques for the detection of influenza virus. However, there is still an urgent need for a rapid and reliable influenza diagnostic test that can be used at point-of-care in order to enhance responsiveness to both seasonal and pandemic influenza outbreaks.
Collapse
|
7
|
Chauhan RP, Gordon ML. A Systematic Review Analyzing the Prevalence and Circulation of Influenza Viruses in Swine Population Worldwide. Pathogens 2020; 9:pathogens9050355. [PMID: 32397138 PMCID: PMC7281378 DOI: 10.3390/pathogens9050355] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/02/2020] [Accepted: 04/09/2020] [Indexed: 01/04/2023] Open
Abstract
The global anxiety and a significant threat to public health due to the current COVID-19 pandemic reiterate the need for active surveillance for the zoonotic virus diseases of pandemic potential. Influenza virus due to its wide host range and zoonotic potential poses such a significant threat to public health. Swine serve as a “mixing vessel” for influenza virus reassortment and evolution which as a result may facilitate the emergence of new strains or subtypes of zoonotic potential. In this context, the currently available scientific data hold a high significance to unravel influenza virus epidemiology and evolution. With this objective, the current systematic review summarizes the original research articles and case reports of all the four types of influenza viruses reported in swine populations worldwide. A total of 281 articles were found eligible through screening of PubMed and Google Scholar databases and hence were included in this systematic review. The highest number of research articles (n = 107) were reported from Asia, followed by Americas (n = 97), Europe (n = 55), Africa (n = 18), and Australia (n = 4). The H1N1, H1N2, H3N2, and A(H1N1)pdm09 viruses were the most common influenza A virus subtypes reported in swine in most countries across the globe, however, few strains of influenza B, C, and D viruses were also reported in certain countries. Multiple reports of the avian influenza virus strains documented in the last two decades in swine in China, the United States, Canada, South Korea, Nigeria, and Egypt provided the evidence of interspecies transmission of influenza viruses from birds to swine. Inter-species transmission of equine influenza virus H3N8 from horse to swine in China expanded the genetic diversity of swine influenza viruses. Additionally, numerous reports of the double and triple-reassortant strains which emerged due to reassortments among avian, human, and swine strains within swine further increased the genetic diversity of swine influenza viruses. These findings are alarming hence active surveillance should be in place to prevent future influenza pandemics.
Collapse
|
8
|
Kim GS, Kim TS, Son JS, Lai VD, Park JE, Wang SJ, Jheong WH, Mo IP. The difference of detection rate of avian influenza virus in the wild bird surveillance using various methods. J Vet Sci 2020; 20:e56. [PMID: 31565899 PMCID: PMC6769331 DOI: 10.4142/jvs.2019.20.e56] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/17/2019] [Accepted: 08/28/2019] [Indexed: 11/20/2022] Open
Abstract
Korea is located within the East Asian-Australian flyway of wild migratory birds during the fall and winter seasons. Consequently, the likelihood of introduction of numerous subtypes and pathotypes of the Avian influenza (AI) virus to Korea has been thought to be very high. In the current study, we surveyed wild bird feces for the presence of AI virus that had been introduced to Korea between September 2017 and February 2018. To identify and characterize the AI virus, we employed commonly used methods, namely, virus isolation (VI) via egg inoculation, real-time reverse transcription-polymerase chain reaction (rRT-PCR), conventional RT-PCR (cRT-PCR) and a newly developed next generation sequencing (NGS) approach. In this study, 124 out of 11,145 fresh samples of wild migratory birds tested were rRT-PCR positive; only 52.0% of VI positive samples were determined as positive by rRT-PCR from fecal supernatant. Fifty AI virus specimens were isolated from fresh fecal samples and typed. The cRT-PCR subtyping results mostly coincided with the NGS results, although NGS detected the presence of 11 HA genes and four NA genes that were not detected by cRT-PCR. NGS analysis confirmed that 12% of the identified viruses were mixed-subtypes which were not detected by cRT-PCR. Prevention of the occurrence of AI virus requires a workflow for rapid and accurate virus detection and verification. However, conventional methods of detection have some limitations. Therefore, different methods should be combined for optimal surveillance, and further studies are needed in aspect of the introduction and application of new methods such as NGS.
Collapse
Affiliation(s)
- Gang San Kim
- Avian Disease Laboratory, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Tae Sik Kim
- Avian Disease Laboratory, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Joo Sung Son
- Avian Disease Laboratory, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Van Dam Lai
- Avian Disease Laboratory, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Jung Eun Park
- Environmental Health Research Division, National Institute of Environmental Research, Incheon 22689, Korea
| | - Seung Jun Wang
- Environmental Health Research Division, National Institute of Environmental Research, Incheon 22689, Korea
| | - Weon Hwa Jheong
- Environmental Health Research Division, National Institute of Environmental Research, Incheon 22689, Korea
| | - In Pil Mo
- Avian Disease Laboratory, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Korea.
| |
Collapse
|
9
|
Yao C, Zhang W, Shuai L. The first cell fate decision in pre-implantation mouse embryos. CELL REGENERATION 2019; 8:51-57. [PMID: 31844518 PMCID: PMC6895705 DOI: 10.1016/j.cr.2019.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 10/27/2022]
Abstract
Fertilization happens when sperm and oocytes meet, which is a complicated process involving many important types of biological activation. Beginning in the 2-cell stage, an important event referred to as zygotic genome activation (ZGA) occurs, which governs the subsequent development of the embryo. In ZGA, multiple epigenetic modifications are involved and critical for pre-implantation development. These changes occur after ZGA, resulting in blastomeres segregate into two different lineages. Some blastomeres develop into the inner cell mass (ICM), and others develop into the trophectoderm (TE), which is considered the first cell fate decision. How this process is initiated and the exact molecular mechanisms involved are fascinating questions that remain to be answered. In this review, we introduce some possible developmental models of the first cell fate decision and discuss the signalling pathways and transcriptional networks regulating this process.
Collapse
Affiliation(s)
- Chunmeng Yao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Wenhao Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Ling Shuai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| |
Collapse
|
10
|
Biographical Feature: Marie-Louise Landry, M.D. J Clin Microbiol 2019; 57:JCM.01013-19. [PMID: 31413080 DOI: 10.1128/jcm.01013-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
11
|
Comparison of nucleic acid extraction methods for next-generation sequencing of avian influenza A virus from ferret respiratory samples. J Virol Methods 2019; 270:95-105. [DOI: 10.1016/j.jviromet.2019.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/13/2019] [Accepted: 04/15/2019] [Indexed: 11/13/2022]
|
12
|
Wang C, Wang C, Wang X, Wang K, Zhu Y, Rong Z, Wang W, Xiao R, Wang S. Magnetic SERS Strip for Sensitive and Simultaneous Detection of Respiratory Viruses. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19495-19505. [PMID: 31058488 DOI: 10.1021/acsami.9b03920] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Rapid and early diagnosis of respiratory viruses is key to preventing infections from spreading and guiding treatments. Here, we developed a sensitive and quantitative surface-enhanced Raman scattering-based lateral flow immunoassay (SERS-based LFIA) strip for simultaneous detection of influenza A H1N1 virus and human adenovirus (HAdV) by using Fe3O4@Ag nanoparticles as magnetic SERS nanotags. The new type of Fe3O4@Ag magnetic tags, which were conjugated with dual-layer Raman dye molecules and target virus-capture antibodies, performs the following functions: specific recognition and magnetic enrichment of target viruses in the solution and SERS detection of the viruses on the strip. Based on this strategy, the magnetic SERS strip can directly be used for real biological samples without any sample pretreatment steps. The limits of detection for H1N1 and HAdV were 50 and 10 pfu/mL, respectively, which were 2000 times more sensitive than those from the standard colloidal gold strip method. Moreover, the proposed strip is easy to operate, rapid, stable, and can achieve high throughput and is thus a potential tool for early detection of virus infection.
Collapse
Affiliation(s)
- Chongwen Wang
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
| | - Chaoguang Wang
- College of Mechatronics Engineering and Automation , National University of Defense Technology , Changsha 410073 , P. R. China
| | - Xiaolong Wang
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic research , Shandong University of Traditional Chinese Medicine , Jinan 250355 , P. R. China
| | - Keli Wang
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
| | - Yanhui Zhu
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
| | - Zhen Rong
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
| | | | - Rui Xiao
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
| | - Shengqi Wang
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic research , Shandong University of Traditional Chinese Medicine , Jinan 250355 , P. R. China
| |
Collapse
|
13
|
Ferreri LM, Ortiz L, Geiger G, Barriga GP, Poulson R, Gonzalez-Reiche AS, Crum JA, Stallknecht D, Moran D, Cordon-Rosales C, Rajao D, Perez DR. Improved detection of influenza A virus from blue-winged teals by sequencing directly from swab material. Ecol Evol 2019; 9:6534-6546. [PMID: 31236242 PMCID: PMC6580304 DOI: 10.1002/ece3.5232] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 12/22/2022] Open
Abstract
Abstract The greatest diversity of influenza A virus (IAV) is found in wild aquatic birds of the orders Anseriformes and Charadriiformes. In these birds, IAV replication occurs mostly in the intestinal tract. Fecal, cloacal, and/or tracheal swabs are typically collected and tested by real-time RT-PCR (rRT-PCR) and/or by virus isolation in embryonated chicken eggs in order to determine the presence of IAV. Virus isolation may impose bottlenecks that select variant populations that are different from those circulating in nature, and such bottlenecks may result in artifactual representation of subtype diversity and/or underrepresented mixed infections. The advent of next-generation sequencing (NGS) technologies provides an opportunity to explore to what extent IAV subtype diversity is affected by virus isolation in eggs. In the present work, we evaluated the advantage of sequencing by NGS directly from swab material of IAV rRT-PCR-positive swabs collected during the 2013-14 surveillance season in Guatemala and compared to results from NGS after virus isolation. The results highlight the benefit of sequencing IAV genomes directly from swabs to better understand subtype diversity and detection of alternative amino acid motifs that could otherwise escape detection using traditional methods of virus isolation. In addition, NGS sequencing data from swabs revealed reduced presence of defective interfering particles compared to virus isolates. We propose an alternative workflow in which original swab samples positive for IAV by rRT-PCR are first subjected to NGS before attempting viral isolation. This approach should speed the processing of samples and better capture natural IAV diversity. OPEN RESEARCH BADGES This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://doi.org/10.5061/dryad.3h2n106.
Collapse
Affiliation(s)
- Lucas M Ferreri
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine University of Georgia Athens Georgia
| | - Lucia Ortiz
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine University of Georgia Athens Georgia.,Centro de Estudios en Salud Universidad del Valle de Guatemala Guatemala City Guatemala
| | - Ginger Geiger
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine University of Georgia Athens Georgia
| | - Gonzalo P Barriga
- Laboratory of Emerging Viruses, Virology Program Institute of Biomedical Sciences, Faculty of Medicine Universidad de Chile Santiago Chile
| | - Rebecca Poulson
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine University of Georgia Athens Georgia
| | | | - Jo Anne Crum
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine University of Georgia Athens Georgia
| | - David Stallknecht
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine University of Georgia Athens Georgia
| | - David Moran
- Centro de Estudios en Salud Universidad del Valle de Guatemala Guatemala City Guatemala
| | - Celia Cordon-Rosales
- Centro de Estudios en Salud Universidad del Valle de Guatemala Guatemala City Guatemala
| | - Daniela Rajao
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine University of Georgia Athens Georgia
| | - Daniel R Perez
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine University of Georgia Athens Georgia
| |
Collapse
|
14
|
Imai K, Tamura K, Tanigaki T, Takizawa M, Nakayama E, Taniguchi T, Okamoto M, Nishiyama Y, Tarumoto N, Mitsutake K, Murakami T, Maesaki S, Maeda T. Whole Genome Sequencing of Influenza A and B Viruses With the MinION Sequencer in the Clinical Setting: A Pilot Study. Front Microbiol 2018; 9:2748. [PMID: 30483243 PMCID: PMC6243006 DOI: 10.3389/fmicb.2018.02748] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/26/2018] [Indexed: 02/01/2023] Open
Abstract
Introduction: Whole genome sequencing (WGS) of influenza viruses is important for preparing vaccines and coping with newly emerging viruses. However, WGS is difficult to perform using conventional next-generation sequencers in developing countries, where facilities are often inadequate. In this study, we developed a high-throughput WGS method for influenza viruses in clinical specimens with the MinION portable sequencer. Methods: Whole genomes of influenza A and B viruses were amplified by multiplex RT-PCR from 13 clinical specimens collected in Tokyo, Japan. Barcode tags for multiplex MinION sequencing were added with each multiplex RT-PCR amplicon by nested PCR with custom barcoded primers. All barcoded amplicons were mixed and multiplex sequencing using the MinION sequencer with 1D2 sequencing kit. In addition, multiplex RT-PCR amplicons generated from each clinical specimen were sequenced using the Illumina MiSeq platform to validate the performance of MinION sequencer. The accuracy, recall, and precision rates of MinION sequencing were calculated by comparing the results of variant calling in the Illumina MiSeq platform and MinION sequencer. Results: Whole genomes of influenza A and B viruses were successfully amplified by multiplex RT-PCR from 13 clinical samples. We identified 6 samples as influenza type A virus H3N2 subtype and 7 as influenza B virus Yamagata lineage using the Illumina MiSeq platform. The overall accuracy, recall, and precision rates of the MinION sequencer were, respectively 99.95%, 89.41%, and 97.88% from 1D reads and 99.97%, 93.28%, and 99.86% from 1D2 reads. Conclusion: We developed a novel WGS method for influenza A and B viruses. It is necessary to improve read accuracy and analytical tools in order to better utilize the MinION sequencer for real-time monitoring of genetic rearrangements and for evaluation of newly emerging viruses.
Collapse
Affiliation(s)
- Kazuo Imai
- Department of Infectious Disease and Infection Control, Saitama Medical University, Saitama, Japan.,Center for Clinical Infectious Diseases and Research, Saitama Medical University, Saitama, Japan.,Department of Infectious Diseases, Self-Defense Forces Central Hospital, Japan Ground Self-Defense Forces, Tokyo, Japan
| | - Kaku Tamura
- Department of Infectious Diseases, Self-Defense Forces Central Hospital, Japan Ground Self-Defense Forces, Tokyo, Japan
| | - Tomomi Tanigaki
- NBC Counter Medical Unit, Japan Ground Self-Defense Forces, Tokyo, Japan
| | - Mari Takizawa
- Camp Asaka Medical Office, Japan Ground Self-Defense Forces, Tokyo, Japan
| | - Eiko Nakayama
- Camp Asaka Medical Office, Japan Ground Self-Defense Forces, Tokyo, Japan
| | - Takahiko Taniguchi
- Camp Asaka Medical Office, Japan Ground Self-Defense Forces, Tokyo, Japan
| | - Misako Okamoto
- Camp Asaka Medical Office, Japan Ground Self-Defense Forces, Tokyo, Japan
| | - Yasumasa Nishiyama
- NBC Counter Medical Unit, Japan Ground Self-Defense Forces, Tokyo, Japan
| | - Norihito Tarumoto
- Department of Infectious Disease and Infection Control, Saitama Medical University, Saitama, Japan.,Center for Clinical Infectious Diseases and Research, Saitama Medical University, Saitama, Japan
| | - Kotaro Mitsutake
- Center for Clinical Infectious Diseases and Research, Saitama Medical University, Saitama, Japan.,Department of Infectious Disease and Infection Control, Saitama Medical University International Medical Center, Saitama, Japan
| | - Takashi Murakami
- Center for Clinical Infectious Diseases and Research, Saitama Medical University, Saitama, Japan.,Department of Microbiology, Saitama Medical University, Saitama, Japan
| | - Shigefumi Maesaki
- Department of Infectious Disease and Infection Control, Saitama Medical University, Saitama, Japan.,Center for Clinical Infectious Diseases and Research, Saitama Medical University, Saitama, Japan
| | - Takuya Maeda
- Center for Clinical Infectious Diseases and Research, Saitama Medical University, Saitama, Japan.,Department of Microbiology, Saitama Medical University, Saitama, Japan
| |
Collapse
|
15
|
Barbezange C, Jones L, Blanc H, Isakov O, Celniker G, Enouf V, Shomron N, Vignuzzi M, van der Werf S. Seasonal Genetic Drift of Human Influenza A Virus Quasispecies Revealed by Deep Sequencing. Front Microbiol 2018; 9:2596. [PMID: 30429836 PMCID: PMC6220372 DOI: 10.3389/fmicb.2018.02596] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/11/2018] [Indexed: 01/06/2023] Open
Abstract
After a pandemic wave in 2009 following their introduction in the human population, the H1N1pdm09 viruses replaced the previously circulating, pre-pandemic H1N1 virus and, along with H3N2 viruses, are now responsible for the seasonal influenza type A epidemics. So far, the evolutionary potential of influenza viruses has been mainly documented by consensus sequencing data. However, like other RNA viruses, influenza A viruses exist as a population of diverse, albeit related, viruses, or quasispecies. Interest in this quasispecies nature has increased with the development of next generation sequencing (NGS) technologies that allow a more in-depth study of the genetic variability. NGS deep sequencing methodologies were applied to determine the whole genome genetic heterogeneity of the three categories of influenza A viruses that circulated in humans between 2007 and 2012 in France, directly from clinical respiratory specimens. Mutation frequencies and single nucleotide polymorphisms were used for comparisons to address the level of natural intrinsic heterogeneity of influenza A viruses. Clear differences in single nucleotide polymorphism profiles between seasons for a given subtype also revealed the constant genetic drift that human influenza A virus quasispecies undergo.
Collapse
Affiliation(s)
- Cyril Barbezange
- Viral Populations and Pathogenesis, Department of Virology, Institut Pasteur, Paris, France
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur, Paris, France
- UMR 3569, Centre National de la Recherche Scientifique, Paris, France
- Cellule Pasteur, Université Paris Diderot–Université Sorbonne Paris Cité, Paris, France
| | - Louis Jones
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur, Paris, France
- UMR 3569, Centre National de la Recherche Scientifique, Paris, France
- Cellule Pasteur, Université Paris Diderot–Université Sorbonne Paris Cité, Paris, France
- Bioinformatics and Biostatistics HUB, The Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, Paris, France
| | - Hervé Blanc
- Viral Populations and Pathogenesis, Department of Virology, Institut Pasteur, Paris, France
- UMR 3569, Centre National de la Recherche Scientifique, Paris, France
| | - Ofer Isakov
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gershon Celniker
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Vincent Enouf
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur, Paris, France
- UMR 3569, Centre National de la Recherche Scientifique, Paris, France
- Cellule Pasteur, Université Paris Diderot–Université Sorbonne Paris Cité, Paris, France
| | - Noam Shomron
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis, Department of Virology, Institut Pasteur, Paris, France
- UMR 3569, Centre National de la Recherche Scientifique, Paris, France
| | - Sylvie van der Werf
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur, Paris, France
- UMR 3569, Centre National de la Recherche Scientifique, Paris, France
- Cellule Pasteur, Université Paris Diderot–Université Sorbonne Paris Cité, Paris, France
| |
Collapse
|
16
|
Borges V, Pinheiro M, Pechirra P, Guiomar R, Gomes JP. INSaFLU: an automated open web-based bioinformatics suite "from-reads" for influenza whole-genome-sequencing-based surveillance. Genome Med 2018; 10:46. [PMID: 29954441 PMCID: PMC6027769 DOI: 10.1186/s13073-018-0555-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/07/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND A new era of flu surveillance has already started based on the genetic characterization and exploration of influenza virus evolution at whole-genome scale. Although this has been prioritized by national and international health authorities, the demanded technological transition to whole-genome sequencing (WGS)-based flu surveillance has been particularly delayed by the lack of bioinformatics infrastructures and/or expertise to deal with primary next-generation sequencing (NGS) data. RESULTS We developed and implemented INSaFLU ("INSide the FLU"), which is the first influenza-oriented bioinformatics free web-based suite that deals with primary NGS data (reads) towards the automatic generation of the output data that are actually the core first-line "genetic requests" for effective and timely influenza laboratory surveillance (e.g., type and sub-type, gene and whole-genome consensus sequences, variants' annotation, alignments and phylogenetic trees). By handling NGS data collected from any amplicon-based schema, the implemented pipeline enables any laboratory to perform multi-step software intensive analyses in a user-friendly manner without previous advanced training in bioinformatics. INSaFLU gives access to user-restricted sample databases and projects management, being a transparent and flexible tool specifically designed to automatically update project outputs as more samples are uploaded. Data integration is thus cumulative and scalable, fitting the need for a continuous epidemiological surveillance during the flu epidemics. Multiple outputs are provided in nomenclature-stable and standardized formats that can be explored in situ or through multiple compatible downstream applications for fine-tuned data analysis. This platform additionally flags samples as "putative mixed infections" if the population admixture enrolls influenza viruses with clearly distinct genetic backgrounds, and enriches the traditional "consensus-based" influenza genetic characterization with relevant data on influenza sub-population diversification through a depth analysis of intra-patient minor variants. This dual approach is expected to strengthen our ability not only to detect the emergence of antigenic and drug resistance variants but also to decode alternative pathways of influenza evolution and to unveil intricate routes of transmission. CONCLUSIONS In summary, INSaFLU supplies public health laboratories and influenza researchers with an open "one size fits all" framework, potentiating the operationalization of a harmonized multi-country WGS-based surveillance for influenza virus. INSaFLU can be accessed through https://insaflu.insa.pt .
Collapse
Affiliation(s)
- Vítor Borges
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - Miguel Pinheiro
- Institute of Biomedicine—iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pedro Pechirra
- National Reference Laboratory for Influenza and other Respiratory Viruses, Department of Infectious Diseases, National Institute of Health, 1649-016 Lisbon, Portugal
| | - Raquel Guiomar
- National Reference Laboratory for Influenza and other Respiratory Viruses, Department of Infectious Diseases, National Institute of Health, 1649-016 Lisbon, Portugal
| | - João Paulo Gomes
- Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal
| |
Collapse
|
17
|
Mbondji-wonje C, Dong M, Wang X, Zhao J, Ragupathy V, Sanchez AM, Denny TN, Hewlett I. Distinctive variation in the U3R region of the 5' Long Terminal Repeat from diverse HIV-1 strains. PLoS One 2018; 13:e0195661. [PMID: 29664930 PMCID: PMC5903597 DOI: 10.1371/journal.pone.0195661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/27/2018] [Indexed: 12/14/2022] Open
Abstract
Functional mapping of the 5’LTR has shown that the U3 and the R regions (U3R) contain a cluster of regulatory elements involved in the control of HIV-1 transcription and expression. As the HIV-1 genome is characterized by extensive variability, here we aimed to describe mutations in the U3R from various HIV-1 clades and CRFs in order to highlight strain specific differences that may impact the biological properties of diverse HIV-1 strains. To achieve our purpose, the U3R sequence of plasma derived virus belonging to different clades (A1, B, C, D, F2) and recombinants (CRF02_AG, CRF01_AE and CRF22_01A1) was obtained using Illumina technology. Overall, the R region was very well conserved among and across different strains, while in the U3 region the average inter-strains nucleotide dissimilarity was up to 25%. The TAR hairpin displayed a strain-distinctive cluster of mutations affecting the bulge and the loop, but mostly the stem. Like in previous studies we found a TATAA motif in U3 promoter region from the majority of HIV-1 strains and a TAAAA motif in CRF01_AE; but also in LTRs from CRF22_01A1 isolates. Although LTRs from CRF22_01A1 specimens were assigned CRF01_AE, they contained two NF-kB sites instead of the single TFBS described in CRF01_AE. Also, as previously describe in clade C isolates, we found no C/EBP binding site directly upstream of the enhancer region in CRF22_01A1 specimens. In our study, one-third of CRF02_AG LTRs displayed three NF-kB sites which have been mainly described in clade C isolates. Overall, the number, location and binding patterns of potential regulatory elements found along the U3R might be specific to some HIV-1 strains such as clade F2, CRF02_AG, CRF01_AE and CRF22_01A1. These features may be worth consideration as they may be involved in distinctive regulation of HIV-1 transcription and replication by different and diverse infecting strains.
Collapse
Affiliation(s)
- Christelle Mbondji-wonje
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
- Department of Molecular Biology, Faculty of Medicine, Pharmacy and Biomedical sciences, University of Douala, Douala, Cameroon
- * E-mail: (CM); (IH)
| | - Ming Dong
- U.S. Military HIV Research Program, Silver Spring, Maryland United States of America
| | - Xue Wang
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Jiangqin Zhao
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Viswanath Ragupathy
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Ana M. Sanchez
- Department of Medicine, Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States
| | - Thomas N. Denny
- Department of Medicine, Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States
| | - Indira Hewlett
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail: (CM); (IH)
| |
Collapse
|
18
|
A Filippov model describing the effects of media coverage and quarantine on the spread of human influenza. Math Biosci 2017; 296:98-112. [PMID: 29273381 DOI: 10.1016/j.mbs.2017.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/02/2017] [Accepted: 12/08/2017] [Indexed: 12/11/2022]
Abstract
Mass-media reports on an epidemic or pandemic have the potential to modify human behaviour and affect social attitudes. Here we construct a Filippov model to evaluate the effects of media coverage and quarantine on the transmission dynamics of influenza. We first choose a piecewise smooth incidence rate to represent media reports being triggered once the number of infected individuals exceeds a certain critical level [Formula: see text] . Further, if the number of infected cases increases and exceeds another larger threshold value [Formula: see text] ( [Formula: see text] ), we consider that the incidence rate tends to a saturation level due to the protection measures taken by individuals; meanwhile, we begin to quarantine susceptible individuals when the number of susceptible individuals is larger than a threshold value Sc. Then, for each susceptible threshold value Sc, the global properties of the Filippov model with regard to the existence and stability of all possible equilibria and sliding-mode dynamics are examined, as we vary the infected threshold values [Formula: see text] and [Formula: see text] . We show generically that the Filippov system stabilizes at either the endemic equilibrium of the subsystem or the pseudoequilibrium on the switching surface or the endemic equilibrium [Formula: see text] depending on the choice of the threshold values. The findings suggest that proper combinations of infected and susceptible threshold values can maintain the number of infected individuals either below a certain threshold level or at a previously given level.
Collapse
|
19
|
Ramamurthy M, Sankar S, Kannangai R, Nandagopal B, Sridharan G. Application of viromics: a new approach to the understanding of viral infections in humans. Virusdisease 2017; 28:349-359. [PMID: 29291225 DOI: 10.1007/s13337-017-0415-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/17/2017] [Indexed: 12/19/2022] Open
Abstract
This review is focused at exploring the strengths of modern technology driven data compiled in the areas of virus gene sequencing, virus protein structures and their implication to viral diagnosis and therapy. The information for virome analysis (viromics) is generated by the study of viral genomes (entire nucleotide sequence) and viral genes (coding for protein). Presently, the study of viral infectious diseases in terms of etiopathogenesis and development of newer therapeutics is undergoing rapid changes. Currently, viromics relies on deep sequencing, next generation sequencing (NGS) data and public domain databases like GenBank and unique virus specific databases. Two commonly used NGS platforms: Illumina and Ion Torrent, recommend maximum fragment lengths of about 300 and 400 nucleotides for analysis respectively. Direct detection of viruses in clinical samples is now evolving using these methods. Presently, there are a considerable number of good treatment options for HBV/HIV/HCV. These viruses however show development of drug resistance. The drug susceptibility regions of the genomes are sequenced and the prediction of drug resistance is now possible from 3 public domains available on the web. This has been made possible through advances in the technology with the advent of high throughput sequencing and meta-analysis through sophisticated and easy to use software and the use of high speed computers for bioinformatics. More recently NGS technology has been improved with single-molecule real-time sequencing. Here complete long reads can be obtained with less error overcoming a limitation of the NGS which is inherently prone to software anomalies that arise in the hands of personnel without adequate training. The development in understanding the viruses in terms of their genome, pathobiology, transcriptomics and molecular epidemiology constitutes viromics. It could be stated that these developments will bring about radical changes and advancement especially in the field of antiviral therapy and diagnostic virology.
Collapse
Affiliation(s)
- Mageshbabu Ramamurthy
- Sri Sakthi Amma Institute of Biomedical Research, Sri Narayani Hospital and Research Centre, Sripuram, Vellore, Tamil Nadu 632 055 India
| | - Sathish Sankar
- Sri Sakthi Amma Institute of Biomedical Research, Sri Narayani Hospital and Research Centre, Sripuram, Vellore, Tamil Nadu 632 055 India
| | - Rajesh Kannangai
- Department of Clinical Virology, Christian Medical College and Hospital, Vellore, Tamil Nadu 632 004 India
| | - Balaji Nandagopal
- Sri Sakthi Amma Institute of Biomedical Research, Sri Narayani Hospital and Research Centre, Sripuram, Vellore, Tamil Nadu 632 055 India
| | - Gopalan Sridharan
- Sri Sakthi Amma Institute of Biomedical Research, Sri Narayani Hospital and Research Centre, Sripuram, Vellore, Tamil Nadu 632 055 India
| |
Collapse
|
20
|
Multiplex Reverse Transcription-PCR for Simultaneous Surveillance of Influenza A and B Viruses. J Clin Microbiol 2017; 55:3492-3501. [PMID: 28978683 DOI: 10.1128/jcm.00957-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/02/2017] [Indexed: 01/07/2023] Open
Abstract
Influenza A and B viruses are the causative agents of annual influenza epidemics that can be severe, and influenza A viruses intermittently cause pandemics. Sequence information from influenza virus genomes is instrumental in determining mechanisms underpinning antigenic evolution and antiviral resistance. However, due to sequence diversity and the dynamics of influenza virus evolution, rapid and high-throughput sequencing of influenza viruses remains a challenge. We developed a single-reaction influenza A/B virus (FluA/B) multiplex reverse transcription-PCR (RT-PCR) method that amplifies the most critical genomic segments (hemagglutinin [HA], neuraminidase [NA], and matrix [M]) of seasonal influenza A and B viruses for next-generation sequencing, regardless of viral type, subtype, or lineage. Herein, we demonstrate that the strategy is highly sensitive and robust. The strategy was validated on thousands of seasonal influenza A and B virus-positive specimens using multiple next-generation sequencing platforms.
Collapse
|
21
|
Dimitrov KM, Sharma P, Volkening JD, Goraichuk IV, Wajid A, Rehmani SF, Basharat A, Shittu I, Joannis TM, Miller PJ, Afonso CL. A robust and cost-effective approach to sequence and analyze complete genomes of small RNA viruses. Virol J 2017; 14:72. [PMID: 28388925 PMCID: PMC5384157 DOI: 10.1186/s12985-017-0741-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/29/2017] [Indexed: 01/26/2023] Open
Abstract
Background Next-generation sequencing (NGS) allows ultra-deep sequencing of nucleic acids. The use of sequence-independent amplification of viral nucleic acids without utilization of target-specific primers provides advantages over traditional sequencing methods and allows detection of unsuspected variants and co-infecting agents. However, NGS is not widely used for small RNA viruses because of incorrectly perceived cost estimates and inefficient utilization of freely available bioinformatics tools. Methods In this study, we have utilized NGS-based random sequencing of total RNA combined with barcode multiplexing of libraries to quickly, effectively and simultaneously characterize the genomic sequences of multiple avian paramyxoviruses. Thirty libraries were prepared from diagnostic samples amplified in allantoic fluids and their total RNAs were sequenced in a single flow cell on an Illumina MiSeq instrument. After digital normalization, data were assembled using the MIRA assembler within a customized workflow on the Galaxy platform. Results Twenty-eight avian paramyxovirus 1 (APMV-1), one APMV-13, four avian influenza and two infectious bronchitis virus complete or nearly complete genome sequences were obtained from the single run. The 29 avian paramyxovirus genomes displayed 99.6% mean coverage based on bases with Phred quality scores of 30 or more. The lower and upper quartiles of sample median depth per position for those 29 samples were 2984 and 6894, respectively, indicating coverage across samples sufficient for deep variant analysis. Sample processing and library preparation took approximately 25–30 h, the sequencing run took 39 h, and processing through the Galaxy workflow took approximately 2–3 h. The cost of all steps, excluding labor, was estimated to be 106 USD per sample. Conclusions This work describes an efficient multiplexing NGS approach, a detailed analysis workflow, and customized tools for the characterization of the genomes of RNA viruses. The combination of multiplexing NGS technology with the Galaxy workflow platform resulted in a fast, user-friendly, and cost-efficient protocol for the simultaneous characterization of multiple full-length viral genomes. Twenty-nine full-length or near-full-length APMV genomes with a high median depth were successfully sequenced out of 30 samples. The applied de novo assembly approach also allowed identification of mixed viral populations in some of the samples. Electronic supplementary material The online version of this article (doi:10.1186/s12985-017-0741-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kiril M Dimitrov
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Road, Athens, GA, 30605, USA
| | - Poonam Sharma
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Road, Athens, GA, 30605, USA
| | | | - Iryna V Goraichuk
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Road, Athens, GA, 30605, USA.,National Scientific Center Institute of Experimental and Clinical Veterinary Medicine, 83 Pushkinskaya Street, Kharkiv, 61023, Ukraine
| | - Abdul Wajid
- Quality Operations Laboratory (QOL), University of Veterinary and Animal Sciences, Syed Abdul Qadir Jilani Road, Lahore, 54000, Pakistan.,Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Syed Abdul Qadir Jilani Road, Lahore, 54000, Pakistan
| | - Shafqat Fatima Rehmani
- Quality Operations Laboratory (QOL), University of Veterinary and Animal Sciences, Syed Abdul Qadir Jilani Road, Lahore, 54000, Pakistan
| | - Asma Basharat
- Quality Operations Laboratory (QOL), University of Veterinary and Animal Sciences, Syed Abdul Qadir Jilani Road, Lahore, 54000, Pakistan
| | - Ismaila Shittu
- Regional Laboratory for Animal Influenza and other Transboundary Animal Diseases, National Veterinary Research Institute, PMB01, Vom, 930010, Plateau State, Nigeria
| | - Tony M Joannis
- Regional Laboratory for Animal Influenza and other Transboundary Animal Diseases, National Veterinary Research Institute, PMB01, Vom, 930010, Plateau State, Nigeria
| | - Patti J Miller
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Road, Athens, GA, 30605, USA
| | - Claudio L Afonso
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, US National Poultry Research Center, Agricultural Research Service, USDA, 934 College Station Road, Athens, GA, 30605, USA.
| |
Collapse
|
22
|
Vemula SV, Zhao J, Liu J, Wang X, Biswas S, Hewlett I. Current Approaches for Diagnosis of Influenza Virus Infections in Humans. Viruses 2016; 8:96. [PMID: 27077877 PMCID: PMC4848591 DOI: 10.3390/v8040096] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 12/15/2022] Open
Abstract
Despite significant advancement in vaccine and virus research, influenza continues to be a major public health concern. Each year in the United States of America, influenza viruses are responsible for seasonal epidemics resulting in over 200,000 hospitalizations and 30,000–50,000 deaths. Accurate and early diagnosis of influenza viral infections are critical for rapid initiation of antiviral therapy to reduce influenza related morbidity and mortality both during seasonal epidemics and pandemics. Several different approaches are currently available for diagnosis of influenza infections in humans. These include viral isolation in cell culture, immunofluorescence assays, nucleic acid amplification tests, immunochromatography-based rapid diagnostic tests, etc. Newer diagnostic approaches are being developed to overcome the limitations associated with some of the conventional detection methods. This review discusses diagnostic approaches currently available for detection of influenza viruses in humans.
Collapse
Affiliation(s)
- Sai Vikram Vemula
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Jiangqin Zhao
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Jikun Liu
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Xue Wang
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Santanu Biswas
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Indira Hewlett
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA.
| |
Collapse
|