1
|
Xu Y, Yang L, Teng Y, Li J, Li N. Exploring the underlying molecular mechanism of tri(1,3-dichloropropyl) phosphate-induced neurodevelopmental toxicity via thyroid hormone disruption in zebrafish by multi-omics analysis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 258:106510. [PMID: 37003012 DOI: 10.1016/j.aquatox.2023.106510] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Tri(1,3-dichloropropyl) phosphate (TDCPP) is widespread in the environment as a typical thyroid hormone-disrupting chemical. Here, we aimed to explore the toxicological mechanisms of the thyroid hormone-disrupting effects induced by TDCPP in zebrafish embryos/larvae using multi-omics analysis. The results showed that TDCPP (400 and 600 µg/L) induced phenotypic alteration and thyroid hormone imbalance in zebrafish larvae. It resulted in behavioral abnormalities during zebrafish embryonic development, suggesting that this chemical might exhibit neurodevelopmental toxicity. Transcriptomic and proteomic analysis provided consistent evidence at the gene and protein levels that neurodevelopmental disorders were significantly enhanced by TDCPP exposure (p < 0.05). Additionally, multi-omics data indicated that membrane thyroid hormone receptor (mTR)-mediated non-genomic pathways, including cell communication (ECM-receptor interactions, focal adhesion, etc.) and signal transduction pathways (MAPK signaling pathway, calcium signaling pathway, neuroactive ligand-receptor interaction pathway, etc.), were significantly disturbed (p < 0.05) and might contribute to the neurodevelopmental toxicity induced by TDCPP. Therefore, behavioral abnormalities and neurodevelopmental disorders might be important phenotypic characteristics of TDCPP-induced thyroid hormone disruption, and mTR-mediated non-genomic networks might participate in the disruptive effects of this chemical. This study provides new insights into the toxicological mechanisms of TDCPP-induced thyroid hormone disruption and proposes a theoretical basis for risk management of this chemical.
Collapse
Affiliation(s)
- Ying Xu
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Lei Yang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanguo Teng
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Jian Li
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
2
|
Fan P, Wang Y, Xu M, Han X, Liu Y. The Application of Brain Organoids in Assessing Neural Toxicity. Front Mol Neurosci 2022; 15:799397. [PMID: 35221913 PMCID: PMC8864968 DOI: 10.3389/fnmol.2022.799397] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022] Open
Abstract
The human brain is a complicated and precisely organized organ. Exogenous chemicals, such as pollutants, drugs, and industrial chemicals, may affect the biological processes of the brain or its function and eventually lead to neurological diseases. Animal models may not fully recapitulate the human brain for testing neural toxicity. Brain organoids with self-assembled three-dimensional (3D) structures provide opportunities to generate relevant tests or predictions of human neurotoxicity. In this study, we reviewed recent advances in brain organoid techniques and their application in assessing neural toxicants. We hope this review provides new insights for further progress in brain organoid application in the screening studies of neural toxicants.
Collapse
Affiliation(s)
- Pan Fan
- State Key Laboratory of Reproductive Medicine, School of Pharmacy, Institute for Stem Cell and Neural Regeneration, Nanjing Medical University, Nanjing, China
| | - YuanHao Wang
- State Key Laboratory of Reproductive Medicine, School of Pharmacy, Institute for Stem Cell and Neural Regeneration, Nanjing Medical University, Nanjing, China
| | - Min Xu
- State Key Laboratory of Reproductive Medicine, School of Pharmacy, Institute for Stem Cell and Neural Regeneration, Nanjing Medical University, Nanjing, China
| | - Xiao Han
- State Key Laboratory of Reproductive Medicine, School of Pharmacy, Institute for Stem Cell and Neural Regeneration, Nanjing Medical University, Nanjing, China
| | - Yan Liu
- State Key Laboratory of Reproductive Medicine, School of Pharmacy, Institute for Stem Cell and Neural Regeneration, Nanjing Medical University, Nanjing, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Cerrizuela S, Vega-Lopez GA, Méndez-Maldonado K, Velasco I, Aybar MJ. The crucial role of model systems in understanding the complexity of cell signaling in human neurocristopathies. WIREs Mech Dis 2022; 14:e1537. [PMID: 35023327 DOI: 10.1002/wsbm.1537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/07/2022]
Abstract
Animal models are useful to study the molecular, cellular, and morphogenetic mechanisms underlying normal and pathological development. Cell-based study models have emerged as an alternative approach to study many aspects of human embryonic development and disease. The neural crest (NC) is a transient, multipotent, and migratory embryonic cell population that generates a diverse group of cell types that arises during vertebrate development. The abnormal formation or development of the NC results in neurocristopathies (NCPs), which are characterized by a broad spectrum of functional and morphological alterations. The impaired molecular mechanisms that give rise to these multiphenotypic diseases are not entirely clear yet. This fact, added to the high incidence of these disorders in the newborn population, has led to the development of systematic approaches for their understanding. In this article, we have systematically reviewed the ways in which experimentation with different animal and cell model systems has improved our knowledge of NCPs, and how these advances might contribute to the development of better diagnostic and therapeutic tools for the treatment of these pathologies. This article is categorized under: Congenital Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Stem Cells and Development Congenital Diseases > Molecular and Cellular Physiology Neurological Diseases > Genetics/Genomics/Epigenetics.
Collapse
Affiliation(s)
- Santiago Cerrizuela
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina
| | - Guillermo A Vega-Lopez
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Karla Méndez-Maldonado
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Departamento de Fisiología y Farmacología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Iván Velasco
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Laboratorio de Reprogramación Celular del Instituto de Fisiología Celular, UNAM en el Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", Ciudad de México, Mexico
| | - Manuel J Aybar
- Instituto Superior de Investigaciones Biológicas (INSIBIO, CONICET-UNT), Tucumán, Argentina.,Instituto de Biología "Dr. Francisco D. Barbieri", Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
4
|
Rodriguez FD, Coveñas R. Biochemical Mechanisms Associating Alcohol Use Disorders with Cancers. Cancers (Basel) 2021; 13:cancers13143548. [PMID: 34298760 PMCID: PMC8306032 DOI: 10.3390/cancers13143548] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/01/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Of all yearly deaths attributable to alcohol consumption globally, approximately 12% are due to cancers, representing approximately 0.4 million deceased individuals. Ethanol metabolism disturbs cell biochemistry by targeting the structure and function of essential biomolecules (proteins, nucleic acids, and lipids) and by provoking alterations in cell programming that lead to cancer development and cancer malignancy. A better understanding of the metabolic and cell signaling realm affected by ethanol is paramount to designing effective treatments and preventive actions tailored to specific neoplasias. Abstract The World Health Organization identifies alcohol as a cause of several neoplasias of the oropharynx cavity, esophagus, gastrointestinal tract, larynx, liver, or female breast. We review ethanol’s nonoxidative and oxidative metabolism and one-carbon metabolism that encompasses both redox and transfer reactions that influence crucial cell proliferation machinery. Ethanol favors the uncontrolled production and action of free radicals, which interfere with the maintenance of essential cellular functions. We focus on the generation of protein, DNA, and lipid adducts that interfere with the cellular processes related to growth and differentiation. Ethanol’s effects on stem cells, which are responsible for building and repairing tissues, are reviewed. Cancer stem cells (CSCs) of different origins suffer disturbances related to the expression of cell surface markers, enzymes, and transcription factors after ethanol exposure with the consequent dysregulation of mechanisms related to cancer metastasis or resistance to treatments. Our analysis aims to underline and discuss potential targets that show more sensitivity to ethanol’s action and identify specific metabolic routes and metabolic realms that may be corrected to recover metabolic homeostasis after pharmacological intervention. Specifically, research should pay attention to re-establishing metabolic fluxes by fine-tuning the functioning of specific pathways related to one-carbon metabolism and antioxidant processes.
Collapse
Affiliation(s)
- Francisco D. Rodriguez
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, University of Salamanca, 37007 Salamanca, Spain
- Group GIR USAL: BMD (Bases Moleculares del Desarrollo), 37007 Salamanca, Spain;
- Correspondence: ; Tel.: +34-677-510-030
| | - Rafael Coveñas
- Group GIR USAL: BMD (Bases Moleculares del Desarrollo), 37007 Salamanca, Spain;
- Institute of Neurosciences of Castilla y León (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
5
|
Luo X, Guo X, Luo X, Tan Y, Zhang P, Yang K, Xie T, Shi J, Zhang Y, Xu J, Zuo L, Li CSR. Significant, replicable, and functional associations between KTN1 variants and alcohol and drug codependence. Addict Biol 2021; 26:e12888. [PMID: 32115811 PMCID: PMC7641293 DOI: 10.1111/adb.12888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/04/2020] [Accepted: 02/13/2020] [Indexed: 01/01/2023]
Abstract
The gray matter volume (GMV) of the putamen has been reported to be regulated by kinectin 1 gene (KTN1). As a hub of the dopaminergic circuit, the putamen is widely implicated in the etiological processes of substance use disorders (SUD). Here, we aimed to identify robust and reliable associations between KTN1 SNPs and SUD across multiple samples. We examined the associations between SUD and KTN1 SNPs in four independent population-based or family-based samples (n = 10,209). The potential regulatory effects of the risk alleles on the putamen GMVs, the effects of alcohol, nicotine, marijuana and cocaine on KTN1 mRNA expression, and the relationship between KTN1 mRNA expression and SUD were explored. We found that a total of 23 SNPs were associated with SUD across at least two independent samples (1.4 × 10-4 ≤ p ≤ 0.049), including one SNP (rs12895072) across three samples (8.8 × 10-3 ≤ p ≤ 0.049). Four other SNPs were significantly or suggestively associated with SUD only in European-Australians (4.8 × 10-4 ≤ p ≤ 0.058). All of the SUD-risk alleles of these 27 SNPs increased (β > 0) the putamen GMVs and represented major alleles (f > 0.5) in Europeans. Twenty-two SNPs were potentially biologically functional. Alcohol, nicotine and cocaine significantly affected the KTN1 mRNA expression, and the KTN1 mRNA was differentially expressed between nicotine or cocaine dependent and control subjects. We concluded that there was a replicable and robust relationship among the KTN1 variants, KTN1 mRNA expression, putamen GMVs, molecular effects of substances, and SUD, suggesting that some risk KTN1 alleles might increase kinectin 1 expression in the putamen, altering putamen structures and functions, and leading to SUD.
Collapse
Affiliation(s)
- Xingguang Luo
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing 100096, China
| | - Xiaoyun Guo
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai 200030, China
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Xingqun Luo
- Department of Clinical Medicine, College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350004, China
| | - Yunlong Tan
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing 100096, China
| | - Ping Zhang
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing 100096, China
| | - Kebing Yang
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing 100096, China
| | - Ting Xie
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing 100096, China
| | - Jing Shi
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing 100096, China
| | - Yong Zhang
- Department of Psychiatry, Tianjin Mental Health Center, Tianjin 300222, China
| | - Jianying Xu
- Department of Obstetrics and Gynecology, Zhuhai Municipal Maternal and Children’s Health Hospital, Zhuhai, Guangdong 519000, China
| | - Lingjun Zuo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
6
|
Tavanasefat H, Li F, Koyano K, Gourtani BK, Marty V, Mulpuri Y, Lee SH, Shin KH, Wong DTW, Xiao X, Spigelman I, Kim Y. Molecular consequences of fetal alcohol exposure on amniotic exosomal miRNAs with functional implications for stem cell potency and differentiation. PLoS One 2020; 15:e0242276. [PMID: 33196678 PMCID: PMC7668603 DOI: 10.1371/journal.pone.0242276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022] Open
Abstract
Alcohol (ethanol, EtOH) consumption during pregnancy can result in fetal alcohol spectrum disorders (FASDs), which are characterized by prenatal and postnatal growth restriction and craniofacial dysmorphology. Recently, cell-derived extracellular vesicles, including exosomes and microvesicles containing several species of RNAs (exRNAs), have emerged as a mechanism of cell-to-cell communication. However, EtOH's effects on the biogenesis and function of non-coding exRNAs during fetal development have not been explored. Therefore, we studied the effects of maternal EtOH exposure on the composition of exosomal RNAs in the amniotic fluid (AF) using rat fetal alcohol exposure (FAE) model. Through RNA-Seq analysis we identified and verified AF exosomal miRNAs with differential expression levels specifically associated with maternal EtOH exposure. Uptake of purified FAE AF exosomes by rBMSCs resulted in significant alteration of molecular markers associated with osteogenic differentiation of rBMSCs. We also determined putative functional roles for AF exosomal miRNAs (miR-199a-3p, miR-214-3p and let-7g) that are dysregulated by FAE in osteogenic differentiation of rBMSCs. Our results demonstrate that FAE alters AF exosomal miRNAs and that exosomal transfer of dysregulated miRNAs has significant molecular effects on stem cell regulation and differentiation. Our results further suggest the usefulness of assessing molecular alterations in AF exRNAs to study the mechanisms of FAE teratogenesis that should be further investigated by using an in vivo model.
Collapse
Affiliation(s)
- Honey Tavanasefat
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, UCLA, Los Angeles, California, United States of America
- CSUN-UCLA Stem Cell Research Bridge Program, Department of Biology, California State University at Northridge, Northridge, California, United States of America
| | - Feng Li
- Division of Oral Biology & Medicine, UCLA School of Dentistry, Los Angeles, California, United States of America
| | - Kikuye Koyano
- Department of Integrative Biology and Physiology, Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Bahar Khalilian Gourtani
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, UCLA, Los Angeles, California, United States of America
| | - Vincent Marty
- Division of Oral Biology & Medicine, UCLA School of Dentistry, Los Angeles, California, United States of America
| | - Yatendra Mulpuri
- Division of Oral Biology & Medicine, UCLA School of Dentistry, Los Angeles, California, United States of America
| | - Sung Hee Lee
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, California, United States of America
| | - Ki-Hyuk Shin
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, California, United States of America
| | - David T. W. Wong
- Division of Oral Biology & Medicine, UCLA School of Dentistry, Los Angeles, California, United States of America
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology, Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Igor Spigelman
- Division of Oral Biology & Medicine, UCLA School of Dentistry, Los Angeles, California, United States of America
| | - Yong Kim
- Laboratory of Stem Cell & Cancer Epigenetic Research, School of Dentistry, UCLA, Los Angeles, California, United States of America
- Division of Oral Biology & Medicine, UCLA School of Dentistry, Los Angeles, California, United States of America
- UCLA Broad Stem Cell Research Center, Los Angeles, California, United States of America
| |
Collapse
|
7
|
Liang S, Yin N, Faiola F. Human Pluripotent Stem Cells as Tools for Predicting Developmental Neural Toxicity of Chemicals: Strategies, Applications, and Challenges. Stem Cells Dev 2019; 28:755-768. [PMID: 30990109 DOI: 10.1089/scd.2019.0007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The human central nervous system (CNS) is very sensitive to perturbations, since it performs sophisticated biological processes and requires cooperation from multiple neural cell types. Subtle interference from exogenous chemicals, such as environmental pollutants, industrial chemicals, drug components, food additives, and cosmetic constituents, may initiate severe developmental neural toxicity (DNT). Human pluripotent stem cell (hPSC)-based neural differentiation assays provide effective and promising tools to help evaluate potential DNT caused by those toxicants. In fact, the specification of neural lineages in vitro recapitulates critical CNS developmental processes, such as patterning, differentiation, neurite outgrowth, synaptogenesis, and myelination. Hence, the established protocols to generate a repertoire of neural derivatives from hPSCs greatly benefit the in vitro evaluation of DNT. In this review, we first dissect the various differentiation protocols inducing neural cells from hPSCs, with an emphasis on the signaling pathways and endpoint markers defining each differentiation stage. We then highlight the studies with hPSC-based protocols predicting developmental neural toxicants, and discuss remaining challenges. We hope this review can provide insights for the further progress of DNT studies.
Collapse
Affiliation(s)
- Shengxian Liang
- 1 State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,2 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Nuoya Yin
- 1 State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,2 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Francesco Faiola
- 1 State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,2 College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Myrie SB, Pinder MA. Skeletal muscle and fetal alcohol spectrum disorder. Biochem Cell Biol 2018; 96:222-229. [DOI: 10.1139/bcb-2017-0118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle is critical for mobility and many metabolic functions integral to survival and long-term health. Alcohol can affect skeletal muscle physiology and metabolism, which will have immediate and long-term consequences on health. While skeletal muscle abnormalities, including morphological, biochemical, and functional impairments, are well-documented in adults that excessively consume alcohol, there is a scarcity of information about the skeletal muscle in the offspring prenatally exposed to alcohol (“prenatal alcohol exposure”; PAE). This minireview examines the available studies addressing skeletal muscle abnormalities due to PAE. Growth restriction, fetal alcohol myopathy, and abnormalities in the neuromuscular system, which contribute to deficits in locomotion, are some direct, immediate consequences of PAE on skeletal muscle morphology and function. Long-term health consequences of PAE-related skeletal abnormalities include impaired glucose metabolism in the skeletal muscle, resulting in glucose intolerance and insulin resistance, leading to an increased risk of type 2 diabetes. In general, there is limited information on the morphological, biochemical, and functional features of skeletal abnormalities in PAE offspring. There is a need to understand how PAE affects muscle growth and function at the cellular level during early development to improve the immediate and long-term health of offspring suffering from PAE.
Collapse
Affiliation(s)
- Semone B. Myrie
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Mark A. Pinder
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Richardson Centre for Functional Foods and Nutraceuticals, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
9
|
Zi XD, Luo B, Xia W, Zheng YC, Xiong XR, Li J, Zhong JC, Zhu JJ, Zhang ZF. Characterization of transcriptional complexity during pre-implantation development of the yak (Bos grunniens) using RNA-Seq. Reprod Domest Anim 2018; 53:759-768. [PMID: 29582471 DOI: 10.1111/rda.13167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 02/13/2018] [Indexed: 12/18/2022]
Abstract
The objective of this study was to investigate the mechanism that regulates pre-implantation development of the yak (Bos grunniens). We determined the transcriptomes of in vitro-produced yak embryos at two-cell, four-cell, eight-cell stages, and morula and blastocyst using the Illumina RNA-seq for the first time. We obtained 47.36-50.86 million clean reads for each stage, of which, 85.65%-90.02% reads were covered in the reference genome. A total of 17,368 genes were expressed during the two-cell stage to blastocyst of the yak, of which 7,236 genes were co-expressed at all stages, whereas 10,132 genes were stage-specific expression. Transcripts from 9,827 to 14,893 different genes were detected in various developmental stages. When |log2 ratio| ≥ 1 and q-value <0.05 were set as thresholds for identifying differentially expressed genes (DEGs), we detected a total of 6,922-10,555 DEGs between any two consecutive stages. The GO distributions of these DEGs were classified into three categories: biological processes (23 terms), cellular components (22 terms) and molecular functions (22 terms). Pathway analysis revealed 310 pathways of the DEGs that were operative in early pre-implantation yak development, of which 32 were the significantly enriched pathways. In conclusion, this is the first report to investigate the mechanism that regulates yak embryonic development using high-throughput sequencing, which provides a comprehensive framework of transcriptome landscapes of yak pre-implantation embryos.
Collapse
Affiliation(s)
- X-D Zi
- Key-Laboratory for Animal Science of State Ethnic Affairs Commission, Southwest University for Nationalities, Chengdu, China
| | - B Luo
- Key-Laboratory for Animal Science of State Ethnic Affairs Commission, Southwest University for Nationalities, Chengdu, China
| | - W Xia
- Key-Laboratory for Animal Science of State Ethnic Affairs Commission, Southwest University for Nationalities, Chengdu, China
| | - Y-C Zheng
- Key-Laboratory for Modern Biotechnology of State Ethnic Affairs Commission, Southwest University for Nationalities, Chengdu, China
| | - X-R Xiong
- Key-Laboratory for Animal Science of State Ethnic Affairs Commission, Southwest University for Nationalities, Chengdu, China
| | - J Li
- Key-Laboratory for Animal Science of State Ethnic Affairs Commission, Southwest University for Nationalities, Chengdu, China
| | - J-C Zhong
- Institute of Qinghai-Tibetan Plateau, Southwest University for Nationalities, Chengdu, China
| | - J-J Zhu
- Institute of Qinghai-Tibetan Plateau, Southwest University for Nationalities, Chengdu, China
| | - Z-F Zhang
- Key-Laboratory for Animal Science of State Ethnic Affairs Commission, Southwest University for Nationalities, Chengdu, China
| |
Collapse
|
10
|
Sanou AS, Diallo AH, Holding P, Nankabirwa V, Engebretsen IMS, Ndeezi G, Tumwine JK, Meda N, Tylleskar T, Kashala-Abotnes E. Maternal alcohol consumption during pregnancy and child's cognitive performance at 6-8 years of age in rural Burkina Faso: an observational study. PeerJ 2017; 5:e3507. [PMID: 28674660 PMCID: PMC5494175 DOI: 10.7717/peerj.3507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/06/2017] [Indexed: 01/06/2023] Open
Abstract
Background In Burkina Faso, it is not uncommon for mothers to drink alcohol, even during pregnancy. We aimed to study the association between maternal alcohol consumption during pregnancy and the child’s cognitive performance using the Kaufman Assessment Battery for Children, 2nd edition (KABC-II) and the Children’s Category Test Level 1 (CCT-1) in rural Burkina Faso. Methods We conducted a follow-up study of a community cluster-randomised Exclusive breastfeeding trial, and re-enrolled the children in rural Burkina Faso. A total of 518 children (268 boys and 250 girls) aged 6–8 years were assessed using the KABC-II and the CCT-1. We examined the effect size difference using Cohen’s d and conducted a linear regression analysis to examine the association. Results Self-reported alcohol consumption during pregnancy was 18.5% (96/518). Children whose mothers reported alcohol consumption during pregnancy performed significantly poorly for memory and spatial abilities tests from small effect size difference for ‘Atlantis’ (0.27) and ‘Triangle’ (0.29) to moderate effect size difference for ‘Number recall’ (0.72) compared to children whose mothers did not consume alcohol during pregnancy; the exposed children scored significantly higher errors with a small effect size (0.37) at problem solving (CCT-1) test compared to unexposed children. At unstandardized and standardized multivariable analysis, children whose mothers reported alcohol consumption during pregnancy performed significantly poorer for memory-‘Atlantis’ (p = 0.03) and ‘Number recall’ (p = 0.0001), and spatial ability tests-‘Triangle’ (p = 0.03); they scored significantly higher errors at problem solving CCT-1 test (p = 0.002); all the results were adjusted for age, sex, schooling, stunting, father’s education, mother’s employment and the promotion of exclusive breastfeeding. No statistical association was found for visual abilities-‘Conceptual Thinking’, ‘Face recognition’, ‘Story completion’, and reasoning tests-‘Rover’, ‘Block counting’, and ‘Pattern Reasoning’. Conclusion Maternal alcohol consumption during pregnancy is associated with poorer cognitive performance for memory, spatial ability, and problem solving tests in the offspring in rural Burkina Faso. Futures studies needs to assess in more detail the maternal alcohol consumption patterns in Burkina Faso and possible preventive strategies.
Collapse
Affiliation(s)
- Anselme Simeon Sanou
- Centre for International Health (CIH), Department of Global Public Health and Primary Health Care, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Public Health, Centre MURAZ Research Institute, Ministry of Health, Bobo-Dioulasso, Burkina Faso
| | - Abdoulaye Hama Diallo
- Department of Public Health, Centre MURAZ Research Institute, Ministry of Health, Bobo-Dioulasso, Burkina Faso.,Department of Public Health, University of Ouagadougou, Ouagadougou, Burkina Faso
| | | | - Victoria Nankabirwa
- Centre for International Health (CIH), Department of Global Public Health and Primary Health Care, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Epidemiology & Biostatistics, School of Public Health, Makerere University, Kampala, Uganda.,Centre for Intervention Science in Maternal and Child Health (CISMAC), Department of Global Public Health and Primary Health Care, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Ingunn Marie S Engebretsen
- Centre for International Health (CIH), Department of Global Public Health and Primary Health Care, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Grace Ndeezi
- Department of Paediatrics and Child Health, Makerere University, Kampala, Uganda
| | - James K Tumwine
- Department of Paediatrics and Child Health, Makerere University, Kampala, Uganda
| | - Nicolas Meda
- Department of Public Health, Centre MURAZ Research Institute, Ministry of Health, Bobo-Dioulasso, Burkina Faso.,Department of Public Health, University of Ouagadougou, Ouagadougou, Burkina Faso
| | - Thorkild Tylleskar
- Centre for International Health (CIH), Department of Global Public Health and Primary Health Care, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Esperance Kashala-Abotnes
- Centre for International Health (CIH), Department of Global Public Health and Primary Health Care, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
11
|
Zuiki M, Chiyonobu T, Yoshida M, Maeda H, Yamashita S, Kidowaki S, Hasegawa T, Gotoh H, Nomura T, Ono K, Hosoi H, Morimoto M. Luteolin attenuates interleukin-6-mediated astrogliosis in human iPSC-derived neural aggregates: A candidate preventive substance for maternal immune activation-induced abnormalities. Neurosci Lett 2017; 653:296-301. [PMID: 28595950 DOI: 10.1016/j.neulet.2017.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/26/2017] [Accepted: 06/04/2017] [Indexed: 11/30/2022]
Abstract
Maternal infection during pregnancy increases the risk of neurodevelopmental conditions such as autism spectrum disorders and schizophrenia in offspring. Several previous animal studies have indicated that maternal immune activation (MIA), rather than a specific pathogen, alters fetal brain development. Among them, prenatal exposure to interleukin-6 (IL-6) has been associated with behavioral and neuropathological abnormalities, though such findings remain to be elucidated in humans. We developed a human cell-based model of MIA by exposing human induced pluripotent stem cells (hiPSCs)-derived neural aggregates to IL-6 and investigated whether luteolin-a naturally occurring flavonoid found in edible plants-could prevent MIA-induced abnormalities. We generated neural aggregates from hiPSCs using the serum-free floating culture of embryoid body-like aggregates with quick reaggregation (SFEBq) method, following which aggregates were cultured in suspension. We then exposed the aggregates to IL-6 (100ng/ml) for 24h at day 51. Transient IL-6 exposure significantly increased the area ratio of astrocytes (GFAP-positive area ratio) and decreased the area ratio of early-born neurons (TBR1-positive or CTIP2-positive area ratio) relative to controls. In addition, western blot analysis revealed that levels of phosphorylated STAT3 were significantly elevated in IL-6-exposed neural aggregates. Luteolin treatment inhibited STAT3 phosphorylation and counteracted IL-6-mediated increases of GFAP-positive cells and reductions of TBR1-positive and CTIP2-positive cells. Our observations suggest that the flavonoid luteolin may attenuate or prevent MIA-induced neural abnormalities. As we observed increased apoptosis at high concentrations of luteolin, further studies are required to determine the optimal intake dosage and duration for pregnant women.
Collapse
Affiliation(s)
- Masashi Zuiki
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo, Kyoto 602-8566, Japan
| | - Tomohiro Chiyonobu
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo, Kyoto 602-8566, Japan.
| | - Michiko Yoshida
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo, Kyoto 602-8566, Japan
| | - Hiroshi Maeda
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo, Kyoto 602-8566, Japan
| | - Satoshi Yamashita
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo, Kyoto 602-8566, Japan
| | - Satoshi Kidowaki
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo, Kyoto 602-8566, Japan
| | - Tatsuji Hasegawa
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo, Kyoto 602-8566, Japan
| | - Hitoshi Gotoh
- Department of Biology, Kyoto Prefectural University of Medicine, Inamori Memorial Building, 1-5 Shimogamo hangi-cho, Sakyo, Kyoto 606-0823, Japan
| | - Tadashi Nomura
- Department of Biology, Kyoto Prefectural University of Medicine, Inamori Memorial Building, 1-5 Shimogamo hangi-cho, Sakyo, Kyoto 606-0823, Japan
| | - Katsuhiko Ono
- Department of Biology, Kyoto Prefectural University of Medicine, Inamori Memorial Building, 1-5 Shimogamo hangi-cho, Sakyo, Kyoto 606-0823, Japan
| | - Hajime Hosoi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo, Kyoto 602-8566, Japan
| | - Masafumi Morimoto
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo, Kyoto 602-8566, Japan
| |
Collapse
|