1
|
Elliott Williams M, Hardnett FP, Sheth AN, Wein AN, Li ZRT, Radzio-Basu J, Dinh C, Haddad LB, Collins EMB, Ofotokun I, Antia R, Scharer CD, Garcia-Lerma JG, Kohlmeier JE, Swaims-Kohlmeier A. The menstrual cycle regulates migratory CD4 T-cell surveillance in the female reproductive tract via CCR5 signaling. Mucosal Immunol 2024; 17:41-53. [PMID: 37866719 PMCID: PMC10990418 DOI: 10.1016/j.mucimm.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Despite their importance for immunity against sexually transmitted infections, the composition of female reproductive tract (FRT) memory T-cell populations in response to changes within the local tissue environment under the regulation of the menstrual cycle remains poorly defined. Here, we show that in humans and pig-tailed macaques, the cycle determines distinct clusters of differentiation 4 T-cell surveillance behaviors by subsets corresponding to migratory memory (TMM) and resident memory T cells. TMM displays tissue-itinerant trafficking characteristics, restricted distribution within the FRT microenvironment, and distinct effector responses to infection. Gene pathway analysis by RNA sequencing identified TMM-specific enrichment of genes involved in hormonal regulation and inflammatory responses. FRT T-cell subset fluctuations were discovered that synchronized to cycle-driven CCR5 signaling. Notably, oral administration of a CCR5 antagonist drug blocked TMM trafficking. Taken together, this study provides novel insights into the dynamic nature of FRT memory CD4 T cells and identifies the menstrual cycle as a key regulator of immune surveillance at the site of STI pathogen exposure.
Collapse
Affiliation(s)
- M Elliott Williams
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Felica P Hardnett
- Division of HIV Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Anandi N Sheth
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine and Grady Health System, Atlanta, GA, USA
| | - Alexander N Wein
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Zheng-Rong Tiger Li
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jessica Radzio-Basu
- Division of HIV Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Chuong Dinh
- Division of HIV Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Lisa B Haddad
- Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Elizabeth M B Collins
- Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Igho Ofotokun
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine and Grady Health System, Atlanta, GA, USA
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Christopher D Scharer
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - J Gerardo Garcia-Lerma
- Division of HIV Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jacob E Kohlmeier
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Alison Swaims-Kohlmeier
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, USA; Division of HIV Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA; Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
2
|
Massud I, Cong ME, Ruone S, Holder A, Dinh C, Nishiura K, Khalil G, Pan Y, Lipscomb J, Johnson R, Deyounks F, Rooney JF, Babusis D, Park Y, McCallister S, Callebaut C, Heneine W, García-Lerma JG. Efficacy of Oral Tenofovir Alafenamide/Emtricitabine Combination or Single-Agent Tenofovir Alafenamide Against Vaginal Simian Human Immunodeficiency Virus Infection in Macaques. J Infect Dis 2020; 220:1826-1833. [PMID: 31362305 DOI: 10.1093/infdis/jiz383] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/18/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Tenofovir alafenamide (TAF)-based regimens are being evaluated for pre-exposure prophylaxis (PrEP). We used a macaque model of repeated exposures to simian human immunodeficiency virus (SHIV) to investigate whether TAF alone or the combination of TAF and emtricitabine (FTC) can prevent vaginal infection. METHODS Pigtail macaques were exposed vaginally to SHIV162p3 once a week for up to 15 weeks. Animals received clinical doses of FTC/TAF (n = 6) or TAF (n = 9) orally 24 hours before and 2 hours after each weekly virus exposure. Infection was compared with 21 untreated controls. RESULTS Five of the 6 animals in the FTC/TAF and 4 of the 9 animals in the TAF alone group were protected against infection (P = .001 and P = .049, respectively). The calculated efficacy of FTC/TAF and TAF was 91% (95% confidence interval [CI], 34.9%-98.8%) and 57.8% (95% CI, -8.7% to 83.6%), respectively. Infection in FTC/TAF but not TAF-treated macaques was delayed relative to controls (P = .005 and P = .114). Median tenofovir diphosphate (TFV-DP) levels in peripheral blood mononuclear cells (PBMCs) were similar among infected and uninfected macaques receiving TAF PrEP (351 and 143 fmols/106 cells, respectively; P = .921). CONCLUSIONS Emtricitabine/TAF provided a level of protection against vaginal challenge similar to FTC/TFV disoproxil fumarate combination in the macaque model. Our results support the clinical evaluation of FTC/TAF for PrEP in women.
Collapse
Affiliation(s)
- Ivana Massud
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Mian-Er Cong
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Susan Ruone
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Angela Holder
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Chuong Dinh
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Kenji Nishiura
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - George Khalil
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Yi Pan
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jonathan Lipscomb
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ryan Johnson
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Frank Deyounks
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | | | - Yeojin Park
- Gilead Sciences, Inc., Foster City, California
| | | | | | - Walid Heneine
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - J Gerardo García-Lerma
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
3
|
Yap PK, Loo Xin GL, Tan YY, Chellian J, Gupta G, Liew YK, Collet T, Dua K, Chellappan DK. Antiretroviral agents in pre-exposure prophylaxis: emerging and advanced trends in HIV prevention. ACTA ACUST UNITED AC 2019; 71:1339-1352. [PMID: 31144296 DOI: 10.1111/jphp.13107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 05/05/2019] [Indexed: 01/07/2023]
Abstract
OBJECTIVES Antiretroviral agents (ARVs) have been the most promising line of therapy in the management of human immunodeficiency virus (HIV) infections. Some of these ARVs are used in the pre-exposure prophylaxis (PrEP) to suppress the transmission of HIV. Prophylaxis is primarily used in uninfected people, before exposure, to effectively prevent HIV infection. Several studies have shown that ART PrEP prevents HIV acquisition from sexual, blood and mother-to-child transmissions. However, there are also several challenges and limitations to PrEP. This review focuses on the current antiretroviral therapies used in PrEP. KEY FINDINGS Among ARVs, the most common drugs employed from the class of entry inhibitors are maraviroc (MVC), which is a CCR5 receptor antagonist. Other entry inhibitors like emtricitabine (FTC) and tenofovir (TFV) are also used. Rilpivirine (RPV) and dapivirine (DPV) are the most common drugs employed from the Non-nucleoside reverse transcriptase inhibitor (NNRTIs) class, whereas, tenofovir disoproxil fumarate (TDF) is primarily used in the Nucleoside Reverse Transcriptase Inhibitor (NRTIs) class. Cabotegravir (CAB) is an analog of dolutegravir, and it is an integrase inhibitor. Some of these drugs are also used in combination with other drugs from the same class. SUMMARY Some of the most common pre-exposure prophylactic strategies employed currently are the use of inhibitors, namely entry inhibitors, non-nucleoside reverse transcriptase inhibitors, nucleoside reverse transcriptase inhibitors, integrase and protease inhibitors. In addition, we have also discussed on the adverse effects caused by ART in PrEP, pharmacoeconomics factors and the use of antiretroviral prophylaxis in serodiscordant couples.
Collapse
Affiliation(s)
- Pui Khee Yap
- School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Griselda Lim Loo Xin
- School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Yoke Ying Tan
- School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Jestin Chellian
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India
| | - Yun Khoon Liew
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Trudi Collet
- Innovative Medicines Group, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Qld, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney (UTS), Ultimo, NSW, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) & School of Biomedical Sciences and Pharmacy, The University of Newcastle (UoN), Callaghan, NSW, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
On the Death Rate of Abortively Infected Cells: Estimation from Simian-Human Immunodeficiency Virus Infection. J Virol 2017; 91:JVI.00352-17. [PMID: 28679753 DOI: 10.1128/jvi.00352-17] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/26/2017] [Indexed: 02/07/2023] Open
Abstract
Progressive T cell depletion during chronic human immunodeficiency virus type 1 (HIV) infection is a key mechanism that leads to the development of AIDS. Recent studies have suggested that most T cells in the tissue die through pyroptosis triggered by abortive infection, i.e., infection of resting T cells in which HIV failed to complete reverse transcription. However, the contribution of abortive infection to T cell loss and how quickly abortively infected cells die in vivo, key parameters for a quantitative understanding of T cell population dynamics, are not clear. Here, we infected rhesus macaques with simian-human immunodeficiency viruses (SHIV) and followed the dynamics of both plasma SHIV RNA and total cell-associated SHIV DNA. Fitting mathematical models to the data, we estimate that upon infection a majority of CD4+ T cells (approximately 65%, on average) become abortively infected and die at a relatively high rate of 0.27 day-1 (half-life, 2.6 days). This confirms the importance of abortive infection in driving T cell depletion. Further, we find evidence suggesting that an immune response may be restricting viral infection 1 to 3 weeks after infection. Our study serves as a step forward toward a quantitative understanding of the mechanisms driving T cell depletion during HIV infection.IMPORTANCE In HIV-infected patients, progressive CD4+ T cell loss ultimately leads to the development of AIDS. The mechanisms underlying this T cell loss are not clear. Recent experimental data suggest that the majority of CD4+ T cells in tissue die through abortive infection, where the accumulation of incomplete HIV transcripts triggers cell death. To investigate the role of abortive infection in driving CD4+ T cell loss in vivo, we infected macaques with simian-human immunodeficiency viruses (SHIV) and followed the viral kinetics of both plasma RNA and cell-associated DNA during infection. Fitting mathematical models, we estimated that a large fraction of infected cells dies through abortive infection and has a half-life of approximately 2.6 days. Our results provide the first in vivo quantitative estimates of parameters characterizing abortive infection and support the notion that abortive infection represents an important mechanism underlying progressive CD4+ T cell depletion in vivo.
Collapse
|
5
|
A multiplex assay for detection of SHIV plasma and mucosal IgG and IgA. J Immunol Methods 2017; 450:34-40. [PMID: 28750871 DOI: 10.1016/j.jim.2017.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/13/2017] [Accepted: 07/24/2017] [Indexed: 11/24/2022]
Abstract
Evaluating antibody maturation provides valuable data to characterize immune responses to HIV infection and can provide insight into biomedical intervention efficacy. It is important to develop assays that evaluate antibody maturation in both plasma and mucosal compartments. The nonhuman primate model provides a controlled system to collect temporal data that are integral to assessing intervention strategies. We report the development of a novel multiplex assay, based on the Bio-Plex platform, to evaluate plasma and mucosal IgG and IgA avidity and maturation against simian/human immunodeficiency virus (SHIV) in this controlled system. Vaginal mucosa and plasma samples were collected from a prior study evaluating the efficacy of a tenofovir disoproxil fumarate (TDF) intravaginal ring (IVR) against SHIVSF162P3 challenge in female pigtailed macaques. For validation of the multiplex assay, specimens from six SHIV-infected placebo animals and one TDF breakthrough animal were evaluated. For SHIV and HIV envelope analytes, antibody levels and avidity in both compartments continued to mature post-infection. Maturation of IgG and IgA levels was similar in each compartment, however, mucosal antibody levels tended to be more variable. This SHIV assay elucidates IgG/IgA antibody kinetics in the plasma and vaginal mucosa and will be a valuable tool in vaccine and other biomedical intervention studies in the nonhuman primate model.
Collapse
|