1
|
Mellouk A, Michel V, Lemâle O, Goossens T, Consuegra J. Glycerides of lauric acid supplementation in the chicken diet enhances the humoral and cellular immune response to infectious bronchitis virus. Vet Immunol Immunopathol 2024; 274:110802. [PMID: 38924873 DOI: 10.1016/j.vetimm.2024.110802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Controlling pathogenic infections while reducing antibiotic usage is an important challenge during poultry production. In addition to vaccination strategies, several solutions to enhance the immune response against pathogens are evaluated. In this study, we aim to determine the effects of the glycerides of lauric acid (GLA) supplementation in chickens' diets on humoral and cellular immune response pathogenic infections, using an in vivo model of infectious bronchitis virus (IBV). One-day-old Ross 308 broilers were vaccinated with live attenuated IBV and fed diets supplemented with or without GLA at 3 kg/ton. The levels of early (day 7) specific anti-IBV in sera were significantly increased in broilers fed GLA, compared to the control groups (P<0.05), showing a stronger primary humoral response. The secretion levels of main cytokines remained similar in spleens of all the experimental groups. However, the splenocytes from broilers fed GLA showed higher activation and effector abilities when measured by IFN-γ ELISpot in presence of N-261-280 IBV peptide or Concanavalin A (Con A), a pan T lymphocytes mitogen. In response to N-261-280 peptide, GLA group showed a 2-fold increase of spot numbers (P < 0.05) and 3-fold increase of spot surfaces (P < 0.01) compared to the control groups. Similarly, Con A stimulation showed a 2-fold increases in spot surfaces and numbers in the GLA supplemented group compared to the control group (P < 0.01). In summary, GLA supplementation in chicken feed enhances the primary humoral immune response and strengthen the T lymphocytes mediated cellular immune response. These findings demonstrate how GLA can improve chicken resilience against pathogenic challenges by enhancing their immune responses.
Collapse
Affiliation(s)
- Amine Mellouk
- Adisseo France S.A.S. European Laboratory of Innovation, Science & Expertise (ELISE), Department of R&I in Monogastric Animal Nutrition, 20 rue Prosper Monnet, Saint Fons 69190, France
| | - Virginie Michel
- Adisseo France S.A.S. European Laboratory of Innovation, Science & Expertise (ELISE), Department of R&I in Monogastric Animal Nutrition, 20 rue Prosper Monnet, Saint Fons 69190, France
| | - Olga Lemâle
- Adisseo France S.A.S. European Laboratory of Innovation, Science & Expertise (ELISE), Department of R&I in Monogastric Animal Nutrition, 20 rue Prosper Monnet, Saint Fons 69190, France
| | - Tim Goossens
- Adisseo France S.A.S. European Laboratory of Innovation, Science & Expertise (ELISE), Department of R&I in Monogastric Animal Nutrition, 20 rue Prosper Monnet, Saint Fons 69190, France
| | - Jessika Consuegra
- Adisseo France S.A.S. European Laboratory of Innovation, Science & Expertise (ELISE), Department of R&I in Monogastric Animal Nutrition, 20 rue Prosper Monnet, Saint Fons 69190, France.
| |
Collapse
|
2
|
Marin A, Kethanapalli SH, Andrianov AK. Immunopotentiating Polyphosphazene Delivery Systems: Supramolecular Self-Assembly and Stability in the Presence of Plasma Proteins. Mol Pharm 2024; 21:791-800. [PMID: 38206583 PMCID: PMC11164237 DOI: 10.1021/acs.molpharmaceut.3c00916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Studies on the biological performance of nanomedicines have been increasingly focused on the paradigm shifting role of the protein corona, which is imminently formed once the formulation is placed in a complex physiological environment. This phenomenon is predominantly studied in the context of protein adsorption science, while such interactions for water-soluble systems remain virtually unexplored. In particular, the importance of plasma protein binding is yet to be understood for pharmaceuticals designed on the basis of supramolecular architectures, which generally lack well-defined surfaces. Water-soluble ionic polyphosphazenes, clinically proven immunoadjuvants and vaccine delivery vehicles, represent an example of a system that requires supramolecular coassembly with antigenic proteins to attain an optimal immunopotentiating effect. Herein, the self-assembly behavior and stability of noncovalently bound complexes on the basis of a model antigen─hen egg lysozyme─and polyphosphazene adjuvant are studied in the presence of plasma proteins utilizing isothermal calorimetry, asymmetric flow field flow fractionation, dynamic light scattering, and size exclusion chromatography methods. The results demonstrate that although plasma proteins, such as human serum albumin (HSA), show detectable avidity to polyphosphazene, the strength of such interactions is significantly lower than that for the model antigen. Furthermore, thermodynamic parameters indicate different models of binding: entropy driven, which is consistent with the counterion release mechanism for albumin versus electrostatic interactions for lysozyme, which are characterized by beneficial enthalpy changes. In vitro protein release experiments conducted in Franz diffusion cells using enzyme-linked immunoassay detection suggest that the antigen-adjuvant complex stability is not adversely affected by the presence of the most physiologically abundant protein, which confirms the importance of the delivery modality for this immunoadjuvant. Moreover, HSA shows an unexpected stabilizing effect on complexes with high antigen load─an important consideration for further development of polyphosphazene adjuvanted vaccine formulations and their functional assessment.
Collapse
Affiliation(s)
- Alexander Marin
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
| | - Sri H. Kethanapalli
- University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Alexander K. Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States
| |
Collapse
|
3
|
Fosdick MG, Chheda PR, Tran PM, Wolff A, Peralta R, Zhang MY, Kerns R, Houtman JCD. Suppression of human T cell activation by derivatives of glycerol monolaurate. Sci Rep 2021; 11:8943. [PMID: 33903712 PMCID: PMC8076190 DOI: 10.1038/s41598-021-88584-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 04/07/2021] [Indexed: 11/20/2022] Open
Abstract
Glycerol monolaurate (GML), a naturally occurring monoglyceride, is widely used commercially for its antimicrobial properties. Interestingly, several studies have shown that GML not only has antimicrobial properties but is also an anti-inflammatory agent. GML inhibits peripheral blood mononuclear cell proliferation and inhibits T cell receptor (TCR)-induced signaling events. In this study, we perform an extensive structure activity relationship analysis to investigate the structural components of GML necessary for its suppression of human T cell activation. Human T cells were treated with analogs of GML, differing in acyl chain length, head group, linkage of acyl chain, and number of laurate groups. Treated cells were then tested for changes in membrane dynamics, LAT clustering, calcium signaling, and cytokine production. We found that an acyl chain with 12-14 carbons, a polar head group, an ester linkage, and a single laurate group at any position are all necessary for GML to inhibit protein clustering, calcium signaling, and cytokine production. Removing the glycerol head group or replacing the ester linkage with a nitrogen prevented derivative-mediated inhibition of protein cluster formation and calcium signaling, while still inhibiting TCR-induced cytokine production. These findings expand our current understanding of the mechanisms of action of GML and the of GML needed to function as a novel immunosuppressant.
Collapse
Affiliation(s)
- Micaela G Fosdick
- Biomedical Sciences Graduate Program, Subprogram in Molecular Medicine, Carver College of Medicine, University of Iowa, 2110 MERF, Iowa City, IA, 52242, USA
| | - Pratik Rajesh Chheda
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, USA
| | - Phuong M Tran
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Alex Wolff
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Ronal Peralta
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Michael Y Zhang
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Robert Kerns
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, USA
| | - Jon C D Houtman
- Biomedical Sciences Graduate Program, Subprogram in Molecular Medicine, Carver College of Medicine, University of Iowa, 2110 MERF, Iowa City, IA, 52242, USA.
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, USA.
| |
Collapse
|
4
|
Barker LA, Bakkum BW, Chapman C. The Clinical Use of Monolaurin as a Dietary Supplement: A Review of the Literature. J Chiropr Med 2019; 18:305-310. [PMID: 32952476 PMCID: PMC7486475 DOI: 10.1016/j.jcm.2019.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 01/23/2019] [Accepted: 02/20/2019] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE The purpose of this study was to determine what the peer-reviewed literature says about the clinical applications, therapeutic dosages, bioavailability, efficacy, and safety of monolaurin as a dietary supplement. METHODS This was a narrative review using the PubMed database and the terms "monolaurin" and its chemical synonyms. Commercial websites that sell monolaurin were also searched for pertinent references. The reference sections of the newer articles were searched for any other relevant articles. Consensus was reached among the authors as to what articles had clinical relevance. RESULTS Twenty-eight articles were found that appeared to address the clinical use of monolaurin. CONCLUSION There are many articles that address the antimicrobial effects of monolaurin in vitro. Only 3 peer-reviewed papers that evidence in vivo antimicrobial effects of monolaurin in humans were located, and these were only for intravaginal and intraoral-that is, topical-use. No peer-reviewed evidence was found for the clinical use of monolaurin as a human dietary supplement other than as a nutrient.
Collapse
Affiliation(s)
- Lisa A. Barker
- Hartsburg Chiropractic Health Center, Danbury, Connecticut
| | | | | |
Collapse
|
5
|
Sun L, Yin H, Liu M, Xu G, Zhou X, Ge P, Yang H, Mao Y. Impaired albumin function: a novel potential indicator for liver function damage? Ann Med 2019; 51:333-344. [PMID: 31714153 PMCID: PMC7877890 DOI: 10.1080/07853890.2019.1693056] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/18/2019] [Accepted: 10/26/2019] [Indexed: 02/08/2023] Open
Abstract
Albumin is the most abundant plasma protein and albumin infusion is commonly used. Conventionally, the biologic and therapeutic effects of albumin have been thought to be due to its oncotic properties. However, albumin has a variety of biologic functions, including molecular transport, anti-oxidation, anti-inflammation, endothelial stabilisation, anti-thrombotic effects, and the adjustment of capillary permeability. Despite this, the functions of albumin have not been thoroughly investigated. Recent studies have shown non-alcoholic fatty liver disease (NAFLD), viral hepatitis, cirrhosis, and liver failure to be associated with impairments in albumin function, which are associated with impairments in liver function and disease prognosis. Post-translational modifications of albumin cause structural modifications that affect protein function. Recently, the concentration of albumin associated with normal function, the 'efficient albumin concentration', has been attracting more interest. In addition, although many biologic markers, including albumin concentration, are widely used for the assessment of early liver dysfunction in patients with liver diseases, the predictive values are unsatisfactory. However, clinical evidence has suggested that albumin function may represent a novel biomarker of early impairment in liver function. In this review, we summarise the factors affecting albumin function and discuss the clinical significance of impairments in albumin function in various liver diseases.Key messagesThe importance of albumin depends not only on its concentration, but also on its various physiological functions.Impaired albumin function has been reported in a variety of liver diseases, and is associated with disease severity and prognosis, thereby proposing the concept of 'effective albumin concentration'.Albumin dysfunction occurs earlier than other conventional indicators, and albumin dysfunction may be a new biomarker of early impairment in liver function.Many exogenous and endogenous factors lead to post-translational modifications of albumin, which alters the three-dimensional structure of albumin, resulting in a decrease in its biological activity.
Collapse
Affiliation(s)
- Lejia Sun
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, China
| | - Huanhuan Yin
- Peking Union Medical College (PUMC) Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, China
| | - Meixi Liu
- Peking Union Medical College (PUMC) Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, China
| | - Gang Xu
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoxiang Zhou
- Peking Union Medical College (PUMC) Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, China
| | - Penglei Ge
- Department of Hepatobiliary and Pancreatic Surgery, Zhengzhou University First Affiliated Hospital, Zhengzhou, China
| | - Huayu Yang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, China
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Glycerol Monolaurate Contributes to the Antimicrobial and Anti-inflammatory Activity of Human Milk. Sci Rep 2019; 9:14550. [PMID: 31601928 PMCID: PMC6787265 DOI: 10.1038/s41598-019-51130-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023] Open
Abstract
Human milk has antimicrobial compounds and immunomodulatory activities. We investigated glycerol monolaurate (GML) in human milk versus bovine milk and infant formula for antimicrobial and anti-inflammatory activities. Human milk contained approximately 3000 µg/ml of GML, compared to 150 μg/ml in bovine milk and none in infant formula. For bacteria tested (Staphylococcus aureus, Bacillus subtilis, Clostridium perfringens, Escherichia coli), except Enterococcus faecalis, human milk was more antimicrobial than bovine milk and formula. The Enterococcus faecalis strain, which was not inhibited, produced reutericyclin, which is an analogue of GML and functions as a growth stimulant in bacteria that produce it. Removal of GML and other lipophilic molecules from human milk by ethanol extraction resulted in a loss of antibacterial activity, which was restored by re-addition of GML. GML addition caused bovine milk to become antimicrobial. Human milk but not bovine milk or formula inhibited superantigen and bacterial-induced IL-8 production by model human epithelial cells. GML may contribute beneficially to human milk compared to bovine milk or infant formula.
Collapse
|
7
|
Lim JH, Lee CH, Kim KY, Jung HY, Choi JY, Cho JH, Park SH, Kim YL, Baek MC, Park JB, Kim YH, Chung BH, Lee SH, Kim CD. Novel urinary exosomal biomarkers of acute T cell-mediated rejection in kidney transplant recipients: A cross-sectional study. PLoS One 2018; 13:e0204204. [PMID: 30226858 PMCID: PMC6143249 DOI: 10.1371/journal.pone.0204204] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/05/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Acute rejection is hazardous to graft survival in kidney transplant recipients (KTRs). We aimed to identify novel biomarkers for early diagnosis of acute T cell-mediated rejection (TCMR) in urinary exosomes of KTRs. METHODS Among 458 graft biopsies enrolled in a cross-sectional multicenter study, 22 patients with stable graft function (STA) who had not shown pathologic abnormality and 25 patients who diagnosed biopsy-proven TCMR were analyzed. We performed proteomic analysis using nano-ultra performance liquid chromatography-tandem mass spectrometry (nano-UPLC-MS/MS) to identify candidate biomarkers for early TCMR diagnosis on urinary exosomes. We confirmed the protein levels of each candidate biomarker by western blot analysis. RESULTS A total of 169 urinary exosome proteins were identified by nano-UPLC-MS/MS. Forty-six proteins showed increased expression in STA patients, while 17 proteins were increased in TCMR patients. Among them, we selected five proteins as candidate biomarkers for early diagnosis of TCMR according to significance, degree of quantity variance, and information from the ExoCarta database. We confirmed the proteomic expression levels of five candidate biomarkers by western blot analysis in each patient. Of all candidate biomarkers, tetraspanin-1 and hemopexin were significantly higher in TCMR patients (STA:TCMR ratio = 1:1.8, P = 0.009, and 1:3.5, P = 0.046, respectively). CONCLUSIONS Tetraspanin-1 and hemopexin were detected in KTR urine and could act as potential diagnostic proteins for TCMR.
Collapse
Affiliation(s)
- Jeong-Hoon Lim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Chan-Hyeong Lee
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Kyu Yeun Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Hee-Yeon Jung
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Ji-Young Choi
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Jang-Hee Cho
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Sun-Hee Park
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Yong-Lim Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Moon-Chang Baek
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jae Berm Park
- Department of Surgery, Samsung Medical Center, Seoul, South Korea
| | - Young-Hoon Kim
- Division of Nephrology, Department of Internal Medicine, College of Medicine, Inje University, Pusan, South Korea
| | - Byung Ha Chung
- Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sang-Ho Lee
- Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul, South Korea
| | - Chan-Duck Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| |
Collapse
|
8
|
Zhang MS, Tran PM, Wolff AJ, Tremblay MM, Fosdick MG, Houtman JCD. Glycerol monolaurate induces filopodia formation by disrupting the association between LAT and SLP-76 microclusters. Sci Signal 2018; 11:11/528/eaam9095. [PMID: 29717064 DOI: 10.1126/scisignal.aam9095] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glycerol monolaurate (GML) is a monoglyceride with potent antimicrobial properties that suppresses T cell receptor (TCR)-induced signaling and T cell effector function. Actin rearrangement is needed for the interaction of T cells with antigen-presenting cells and for migration to sites of infection. Because of the critical role actin rearrangement plays in T cell effector function, we analyzed the effect of GML on the rearrangement of the actin cytoskeleton after TCR activation. We found that GML-treated human T cells were less adherent than untreated T cells and did not form actin ring structures but instead developed numerous inappropriate actin-mediated filopodia. The formation of these filopodia was not due to disruption of TCR-proximal regulators of actin or microtubule polymerization. Instead, total internal reflection fluorescence microscopy demonstrated mislocalization of actin nucleation protein Arp2 microclusters, but not those containing the adaptor proteins SLP-76 and WASp, or the actin nucleation protein ARPC3, which are necessary for TCR-induced actin rearrangement. Additionally, SLP-76 microclusters colocalized with WASp and WAVE microclusters but not with LAT. Together, our data suggest that GML alters actin cytoskeletal rearrangements and identify diverse functions for GML as a T cell-suppressive agent.
Collapse
Affiliation(s)
- Michael S Zhang
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Phuong M Tran
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Alexander J Wolff
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Mikaela M Tremblay
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Micaela G Fosdick
- Biomedical Sciences Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Jon C D Houtman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA. .,Biomedical Sciences Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|